1887

Abstract

The genetic variation of virus (CTV) was analysed by comparing the predominant sequence variants in seven genomic regions (p33, p65, p61, p18, p13, p20 and p23) of 18 pathogenically distinct isolates from seven different countries. Analyses of the selective constraints acting on each codon suggest that most regions were under purifying selection. Phylogenetic analysis shows diverse patterns of molecular evolution for different genomic regions. A first clade composed of isolates that are genetically close to the reference mild isolates T385 or T30 was inferred from all genomic regions. A second clade, mostly comprising virulent isolates, was defined from regions p33, p65, p13 and p23. For regions p65, p61, p18, p13 and p23, a third clade that mostly included South American isolates could not be related to any reference genotype. Phylogenetic relationships among isolates did not reflect their geographical origin, suggesting significant gene flow between geographically distant areas. Incongruent phylogenetic trees for different genomic regions suggested recombination events, an extreme that was supported by several recombination-detecting methods. A phylogenetic network incorporating the effect of recombination showed an explosive radiation pattern for the evolution of some isolates and also grouped isolates by virulence. Taken together, the above results suggest that negative selection, gene flow, sequence recombination and virulence may be important factors driving CTV evolution.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.008193-0
2009-06-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/6/1527.html?itemId=/content/journal/jgv/10.1099/vir.0.008193-0&mimeType=html&fmt=ahah

References

  1. Abascal, F., Zardoya, R. & Posada, D. ( 2005; ). ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21, 2104–2105.[CrossRef]
    [Google Scholar]
  2. Albiach-Martí, M. R., Guerri, J., Hermoso de Mendoza, A., Laigret, F., Ballester-Olmos, J. F. & Moreno, P. ( 2000a; ). Aphid transmission alters the genomic and defective RNA populations of Citrus tristeza virus isolates. Phytopathology 90, 134–138.[CrossRef]
    [Google Scholar]
  3. Albiach-Martí, M. R., Mawassi, M., Gowda, S., Satyanarayana, T., Hilf, S., Shanker, M. E., Almira, E. C., Vives, M. C., López, C. & other authors ( 2000b; ). Sequences of Citrus tristeza virus separated in time and space are essentially identical. J Virol 74, 6856–6865.[CrossRef]
    [Google Scholar]
  4. Allison, R., Thompson, C. & Ahlquist, P. ( 1990; ). Regeneration of a functional RNA virus genome by recombination between deletion mutants and requirement for Cowpea chlorotic mottle virus 3a and coat genes for systemic infection. Proc Natl Acad Sci U S A 87, 1820–1824.[CrossRef]
    [Google Scholar]
  5. Ayllón, M. A., López, C., Navas-Castillo, J., Mawassi, M., Dawson, W. O., Guerri, J., Flores, R. & Moreno, P. ( 1999; ). New defective RNAs from citrus tristeza virus: evidence for a replicase-driven template switching mechanism in their generation. J Gen Virol 80, 817–821.
    [Google Scholar]
  6. Ayllón, M. A., Rubio, L., Sentandreu, V., Moya, A., Guerri, J. & Moreno, P. ( 2006; ). Variations in two gene sequences of citrus tristeza virus after host passage. Virus Genes 32, 119–128.[CrossRef]
    [Google Scholar]
  7. Boni, M. F., Posada, D. & Feldman, M. W. ( 2007; ). An exact nonparametric method for inferring mosaic structure in sequence triplets. Genetics 176, 1035–1047.
    [Google Scholar]
  8. Chare, E. R. & Holmes, E. C. ( 2005; ). A phylogenetic survey of recombination frequency in plant RNA viruses. Arch Virol 151, 933–946.
    [Google Scholar]
  9. Codoñer, F. M. & Elena, S. F. ( 2008; ). The promiscuous evolutionary history of the Bromoviridae family. J Gen Virol 89, 1739–1747.[CrossRef]
    [Google Scholar]
  10. Dolja, V. V., Kreuze, J. F. & Valkonen, J. P. T. ( 2006; ). Comparative and functional genomics of closteroviruses. Virus Res 117, 38–51.[CrossRef]
    [Google Scholar]
  11. Domingo, E. & Holland, J. J. ( 1994; ). Mutation rates and rapid evolution of RNA viruses. In The Evolutionary Biology of Viruses, pp. 161–184. Edited by S. S. Morse. New York: Raven Press.
  12. D'Urso, F., Ayllón, M. A., Rubio, L., Sambade, A., Hermoso de Mendoza, A., Guerri, J. & Moreno, P. ( 2000; ). Contribution of uneven distribution of genomic RNA variants of Citrus tristeza virus (CTV) within the plant to changes in the viral population following aphid transmission. Plant Pathol 49, 288–294.[CrossRef]
    [Google Scholar]
  13. Edgar, R. C. ( 2004; ). muscle: a multiple sequence alignment method with reduced time and space complexity. Bioinformatics 5. doi: 10.1186/1471-2105-5-113
    [Google Scholar]
  14. Escriu, F., Fraile, A. & García-Arenal, F. ( 2000; ). Evolution of virulence in natural populations of the satellite RNA of Cucumber mosaic virus. Phytopathology 90, 480–485.[CrossRef]
    [Google Scholar]
  15. Fagoaga, C., López, C., Moreno, P., Navarro, L., Flores, R. & Peña, L. ( 2005; ). Viral-like symptoms induced by the ectopic expression of the p23 gene of Citrus tristeza virus are citrus specific and do not correlate with the pathogenicity of the virus strain. Mol Plant Microbe Interact 18, 435–445.[CrossRef]
    [Google Scholar]
  16. Febres, V. J., Ashoulin, L., Mawassi, M., Frank, A., Bar-Joseph, M., Manjunath, K. L., Lee, R. F. & Niblett, C. L. ( 1996; ). The p27 protein is present at one end of Citrus tristeza virus particles. Phytopathology 86, 1331–1335.
    [Google Scholar]
  17. Felsenstein, J. ( 2005; ). phylip (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  18. Fernández-Cuartero, B., Burgyan, J., Aranda, M. A., Salanki, K., Moriones, E. & García-Arenal, F. ( 1994; ). Increase in the relative fitness of a plant virus RNA associated with its recombinant nature. Virology 203, 373–377.[CrossRef]
    [Google Scholar]
  19. Gandía, M., Conesa, A., Ancillo, G., Gadea, J., Forment, J., Pallás, V., Flores, R., Duran-Vila, N., Moreno, P. & Guerri, J. ( 2007; ). Transcriptional response of Citrus aurantifolia to infection by Citrus tristeza virus. Virology 367, 298–306.[CrossRef]
    [Google Scholar]
  20. García-Arenal, F. & McDonald, B. A. ( 2003; ). An analysis of the durability of resistance to plant viruses. Phytopathology 93, 941–952.[CrossRef]
    [Google Scholar]
  21. García-Arenal, F., Fraile, A. & Malpica, J. M. ( 2001; ). Variability and genetic structure of plant virus populations. Annu Rev Phytopathol 39, 157–186.[CrossRef]
    [Google Scholar]
  22. Garnsey, S. M., Civerolo, E. L., Gumpf, D. J., Paul, C., Hilf, M. E., Lee, R. F., Brlansky, R. H., Yokomi, R. K. & Hartung, J. S. ( 2005; ). Biological characterization of an international collection of Citrus tristeza virus (CTV) isolates. In Proceedings of the 16th Conference of the International Organization of Citrus Virologists, pp. 75–93, Edited by M. E. Hilf, N. Duran-Vila & M. A. Rocha-Peña. Riverside, CA: International Organisation of Citrus Virologists. http://www.ivia.es/iocv/
  23. Ghorbel, R., López, C., Fagoaga, C., Moreno, P., Navarro, L., Flores, R. & Peña, L. ( 2001; ). Transgenic citrus plants expressing the Citrus tristeza virus p23 protein exhibit viral-like symptoms. Mol Plant Pathol 2, 27–36.[CrossRef]
    [Google Scholar]
  24. Gibbs, M. J., Armstrong, J. S. & Gibbs, A. J. ( 2000; ). Sister-Scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics 16, 573–582.[CrossRef]
    [Google Scholar]
  25. Gomes, C. P. C., Nagata, T., de Jesus, W. C., Jr, Neto, C. R. B., Pappas, G. J., Jr & Martin, D. P. ( 2008; ). Genetic variation and recombination of RdRp and HSP 70h genes of Citrus tristeza virus isolates from orange trees showing symptoms of citrus sudden death disease. Virol J 5. doi:10.1186/1743-422x-5-9
    [Google Scholar]
  26. Gowda, S., Satyanarayana, T., Davis, C. L., Navas-Castillo, J., Albiach-Martí, M. R., Mawassi, M., Valkov, N., Bar-Joseph, M., Moreno, P. & Dawson, W. O. ( 2000; ). The p20 gene product of Citrus tristeza virus accumulates in the amorphous inclusion bodies. Virology 274, 246–254.[CrossRef]
    [Google Scholar]
  27. Gowda, S., Ayllón, M. A., Satyanarayana, T., Bar-Joseph, M. & Dawson, W. O. ( 2003; ). Transcription strategy in a Closterovirus: a novel 5′-proximal controller element of Citrus tristeza virus produces 5′- and 3′- terminal subgenomic RNAs and differs from 3′ open reading frame controller elements. J Virol 77, 340–352.[CrossRef]
    [Google Scholar]
  28. Guindon, S. & Gascuel, O. ( 2003; ). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52, 696–704.[CrossRef]
    [Google Scholar]
  29. Hilf, M. E. ( 2009; ). Two distinct evolutionary pathways for Citrus tristeza virus: recombination defines two gene modules and provides for increased genetic diversity in a narrow host range plant virus. In Proceedings of the 17th Conference of the International Organization of Citrus Virologists (in press).
  30. Hilf, M. E., Karasev, A. V., Pappu, H. R., Gumpf, D. J., Niblett, C. L. & Garnsey, S. M. ( 1995; ). Characterization of Citrus tristeza virus subgenomic RNAs in infected tissue. Virology 208, 576–582.[CrossRef]
    [Google Scholar]
  31. Holmes, E. C. ( 2003; ). Error thresholds and the constraints to RNA virus evolution. Trends Microbiol 11, 543–546.[CrossRef]
    [Google Scholar]
  32. Huson, D. H. ( 1998; ). SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics 14, 68–73.[CrossRef]
    [Google Scholar]
  33. Iglesias, N. G., Gago-Zachert, S. P., Robledo, G., Costa, N., Plata, M. I., Vera, O., Grau, O. & Semorile, L. C. ( 2008; ). Population structure of Citrus tristeza virus from field Argentinean isolates. Virus Genes 36, 199–207.[CrossRef]
    [Google Scholar]
  34. Karasev, A. V., Boyko, V. P., Gowda, S., Nikolaeva, O. V., Hilf, M. E., Koonin, E. V., Niblett, C. L., Cline, K., Gumpf, D. J. & other authors ( 1995; ). Complete sequence of the Citrus tristeza virus RNA genome. Virology 208, 511–520.[CrossRef]
    [Google Scholar]
  35. Karl, B. N. & Hugh, B. N. ( 1997; ). GeneDoc: a tool for editing and annotating multiple sequence alignments. www.nrbsc.org/gfx/genedoc/ebinet.htm.
  36. Kosakovsky Pond, S. L. & Frost, S. D. W. ( 2005a; ). Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21, 2531–2533.[CrossRef]
    [Google Scholar]
  37. Kosakovsky Pond, S. L. & Frost, S. D. W. ( 2005b; ). Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22, 1208–1222.[CrossRef]
    [Google Scholar]
  38. Kosakovsky Pond, S. L. & Frost, S. D. W. ( 2005c; ). A genetic algorithm approach to detecting lineage-specific variation in selection pressure. Mol Biol Evol 22, 478–485.
    [Google Scholar]
  39. Kosakovsky Pond, S. L., Frost, S. D. W. & Muse, S. V. ( 2005; ). HyPhy: hypothesis testing using phylogenies. Bioinformatics 21, 676–679.[CrossRef]
    [Google Scholar]
  40. Lai, M. M. ( 1992; ). RNA recombination in animal and plant viruses. Microbiol Rev 56, 61–79.
    [Google Scholar]
  41. López, C., Navas-Castillo, J., Gowda, S., Moreno, P. & Flores, R. ( 2000; ). The 23-kDa protein coded by the 3′-terminal gene of Citrus tristeza virus is an RNA-binding protein. Virology 269, 462–470.[CrossRef]
    [Google Scholar]
  42. Lu, R., Folimonov, A., Shintaku, M., Li, W. X., Falk, B. W., Dawson, W. O. & Ding, S. W. ( 2004; ). Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome. Proc Natl Acad Sci U S A 101, 15742–15747.[CrossRef]
    [Google Scholar]
  43. Martin, D. P. & Rybicki, E. ( 2000; ). rdp: detection of recombination amongst aligned sequences. Bioinformatics 16, 562–563.[CrossRef]
    [Google Scholar]
  44. Martin, D. P., Williamson, C. & Posada, D. ( 2005a; ). rdp2: recombination detection and analysis from sequence alignments. Bioinformatics 21, 260–262.[CrossRef]
    [Google Scholar]
  45. Martin, D. P., Posada, D., Crandall, K. A. & Williamson, C. ( 2005b; ). A modified bootscan algorithm for automated identification of recombinant sequences and recombination breakpoints. AIDS Res Hum Retroviruses 21, 98–102.[CrossRef]
    [Google Scholar]
  46. Moreno, P., Guerri, J. & Muñoz, N. ( 1990; ). Identification of Spanish strains of Citrus tristeza virus by analysis of double-stranded RNA. Phytopathology 80, 477–482.[CrossRef]
    [Google Scholar]
  47. Moreno, P., Ambrós, S., Albiach-Martí, M. R., Guerri, J. & Peña, L. ( 2008; ). Citrus tristeza virus: a pathogen that changed the course of the citrus industry. Mol Plant Pathol 9, 251–268.[CrossRef]
    [Google Scholar]
  48. Padidam, M., Sawyer, S. & Fauquet, C. M. ( 1999; ). Possible emergence of new geminiviruses by frequent recombination. Virology 265, 218–225.[CrossRef]
    [Google Scholar]
  49. Pappu, H. R., Karasev, A. V., Anderson, E. J., Pappu, S. S., Hilf, M. E., Febres, V. J., Eckloff, R. M., McCaffery, M., Boyko, V. & Gowda, S. ( 1994; ). Nucleotide sequence and organization of eight 3′ open reading frames of the Citrus tristeza closterovirus genome. Virology 199, 35–46.[CrossRef]
    [Google Scholar]
  50. Posada, D. & Crandall, K. A. ( 2001; ). Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proc Natl Acad Sci U S A 98, 13757–13762.[CrossRef]
    [Google Scholar]
  51. Reed, J. C., Kasschau, K. D., Prokhnevsky, A. I., Gopinath, K., Pogue, G. P., Carrington, J. C. & Dolja, V. V. ( 2003; ). Suppressor of RNA silencing encoded by Beet yellows virus. Virology 306, 203–209.[CrossRef]
    [Google Scholar]
  52. Roossinck, M. J. ( 1997; ). Mechanisms of plant virus evolution. Annu Rev Phytopathol 35, 191–209.[CrossRef]
    [Google Scholar]
  53. Rubio, L., Ayllón, M. A., Kong, P., Fernández, A., Polek, M., Guerri, J., Moreno, P. & Falk, B. W. ( 2001; ). Genetic variation of Citrus tristeza virus isolates from California and Spain, evidence for mixed infections and recombination. J Virol 75, 8054–8062.[CrossRef]
    [Google Scholar]
  54. Ruiz-Ruiz, S., Moreno, P., Guerri, J. & Ambrós, S. ( 2006; ). The complete nucleotide sequence of a severe stem pitting isolate of Citrus tristeza virus from Spain, comparison with isolates from different origins. Arch Virol 151, 387–398.[CrossRef]
    [Google Scholar]
  55. Salminen, M. O., Carr, J. K., Burke, D. S. & McCutchan, F. E. ( 1995; ). Identification of breakpoints in intergenotypic recombinants of HIV type 1 by Bootscanning. AIDS Res Hum Retroviruses 11, 1423–1425.[CrossRef]
    [Google Scholar]
  56. Sambade, A., Rubio, L., Garnsey, S. M., Costa, N., Müller, G. W., Peyrou, M., Guerri, J. & Moreno, P. ( 2002; ). Comparison of viral RNA populations of pathogenically distinct isolates of Citrus tristeza virus, application to monitoring cross-protection. Plant Pathol 51, 257–265.[CrossRef]
    [Google Scholar]
  57. Sambade, A., López, C., Rubio, L., Flores, R., Guerri, J. & Moreno, P. ( 2003; ). Polymorphism of a specific region in gene p23 of Citrus tristeza virus allows discrimination between mild and severe isolates. Arch Virol 148, 2325–2340.[CrossRef]
    [Google Scholar]
  58. Sambade, A., Ambrós, S., López, C., Ruiz-Ruiz, S., Hermoso de Mendoza, A., Flores, R., Guerri, J. & Moreno, P. ( 2007; ). Preferential accumulation of severe variants of Citrus tristeza virus in plants co-inoculated with mild and severe variants. Arch Virol 152, 1115–1126.[CrossRef]
    [Google Scholar]
  59. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  60. Satyanarayana, T., Gowda, S., Boyko, V. P., Albiach-Martí, M. R., Mawassi, M., Navas-Castillo, J., Karasev, A. V., Dolja, V., Hilf, M. E. & other authors ( 1999; ). An engineered closterovirus RNA replicon and analysis of heterologous terminal sequences for replication. Proc Natl Acad Sci U S A 96, 7433–7438.[CrossRef]
    [Google Scholar]
  61. Satyanarayana, T., Gowda, S., Mawassi, M., Albiach-Martí, M. R., Ayllón, M. A., Robertson, C., Garnsey, S. M. & Dawson, W. O. ( 2000; ). Closterovirus encoded HSP70 homolog and p61 in addition to both coat proteins function in efficient virion assembly. Virology 278, 253–265.[CrossRef]
    [Google Scholar]
  62. Satyanarayana, T., Bar-Joseph, M., Mawassi, M., Albiach-Martí, M. R., Ayllón, M. A., Gowda, S., Hilf, M. E., Moreno, P., Garnsey, S. M. & Dawson, W. O. ( 2001; ). Amplification of Citrus tristeza virus from a cDNA clone and infection of citrus trees. Virology 280, 87–96.[CrossRef]
    [Google Scholar]
  63. Satyanarayana, T., Gowda, S., Ayllón, M. A., Albiach-Martí, M. R., Rabindran, S. & Dawson, W. O. ( 2002; ). The p23 protein of Citrus tristeza virus controls asymmetrical RNA accumulation. J Virol 76, 473–483.[CrossRef]
    [Google Scholar]
  64. Satyanarayana, T., Gowda, S., Ayllón, M. A. & Dawson, W. O. ( 2004; ). Closterovirus bipolar virion: evidence for initiation of assembly by minor coat protein and its restriction to the genomic RNA 5′ region. Proc Natl Acad Sci U S A 101, 799–804.[CrossRef]
    [Google Scholar]
  65. Schmidt, H. A., Strimmer, K., Vingron, M. & von Haeseler, A. ( 2002; ). tree-puzzle: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18, 502–504.[CrossRef]
    [Google Scholar]
  66. Shimodaira, H. & Hasegawa, M. ( 1999; ). Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16, 1114–1116.[CrossRef]
    [Google Scholar]
  67. Smith, J. M. ( 1992; ). Analyzing the mosaic structure of genes. J Mol Evol 34, 126–129.
    [Google Scholar]
  68. Tamura, K., Dudley, J., Nei, M. & Kumar, S. ( 2007; ). mega4: Molecular Evolutionary Genetics Analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef]
    [Google Scholar]
  69. Tárraga, J., Medina, I., Arbiza, L., Huerta-Cepas, J., Gabaldón, T., Dopazo, J. & Dopazo, H. ( 2007; ). Phylemon: a suite of web tools for molecular evolution, phylogenetics and phylogenomics. Nucleic Acids Res 35, W38–W42
    [Google Scholar]
  70. Tatineni, S., Robertson, C. J., Garnsey, S. M., Bar-Joseph, M., Gowda, S. & Dawson, W. O. ( 2008; ). Three genes of Citrus tristeza virus are dispensable for infection and movement throughout some varieties of citrus trees. Virology 376, 297–307.[CrossRef]
    [Google Scholar]
  71. Vives, M. C., Rubio, L., Sambade, A., Mirkov, T. E., Moreno, P. & Guerri, J. ( 2005; ). Evidence of multiple recombination events between two RNA sequence variants within a Citrus tristeza virus isolate. Virology 331, 232–237.[CrossRef]
    [Google Scholar]
  72. Weng, Z., Barthelson, R., Gowda, S., Hilf, M. E., Dawson, W. O., Galbraith, D. W. & Xiong, Z. ( 2007; ). Persistent infection and promiscuous recombination of multiple genotypes of an RNA virus within a single host generate extensive diversity. PLoS One 2, e917 [CrossRef]
    [Google Scholar]
  73. Yang, G. A., Mawassi, M., Gofman, R., Gafny, R. & Bar-Joseph, M. ( 1997; ). Involvement of a subgenomic mRNA in the generation of a variable population of defective Citrus tristeza virus molecules. J Virol 71, 9800–9802.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.008193-0
Loading
/content/journal/jgv/10.1099/vir.0.008193-0
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error