To date, the entry pathway and replication mechanisms for members of the family , and especially for Crimean-Congo hemorrhagic fever virus (CCHFV), are poorly understood. Considering the severity of disease and the widespread geographical occurrence of CCHFV, investigating viral entry is of great value for development of antivirals. In this study, we have shown that knockdown of clathrin by small interfering RNA significantly reduced CCHFV nucleocapsid protein and viral RNA levels, suggesting that CCHFV utilizes clathrin-dependent endocytosis. In contrast, caveolin-1, an important constituent of caveolae endocytosis, is not important in CCHFV infection. Moreover, treatment with drugs that are known to interfere with the formation of clathrin-coated pits (sucrose and chlorpromazine) or endosome acidification (bafilomycin A1 and NHCl) also supported a clathrin-dependent pathway in the entry process of CCHFV. Finally, we demonstrated that cholesterol depletion in the cell plasma membrane significantly inhibited CCHFV infection. In the presence of exogenous cholesterol, this process was reversed, suggesting that cholesterol is important in the life cycle of CCHFV.


Article metrics loading...

Loading full text...

Full text loading...



  1. Andersson, I., Simon, M., Lundkvist, A., Nilsson, M., Holmstrom, A., Elgh, F. & Mirazimi, A.(2004). Role of actin filaments in targeting of Crimean-Congo hemorrhagic fever virus nucleocapsid protein to perinuclear regions of mammalian cells. J Med Virol 72, 83–93.[CrossRef] [Google Scholar]
  2. Campbell, S. M., Crowe, S. M. & Mak, J.(2001). Lipid rafts and HIV-1: from viral entry to assembly of progeny virions. J Clin Virol 22, 217–227.[CrossRef] [Google Scholar]
  3. Chung, C. S., Huang, C. Y. & Chang, W.(2005). Vaccinia virus penetration requires cholesterol and results in specific viral envelope proteins associated with lipid rafts. J Virol 79, 1623–1634.[CrossRef] [Google Scholar]
  4. Damm, E. M., Pelkmans, L., Kartenbeck, J., Mezzacasa, A., Kurzchalia, T. & Helenius, A.(2005). Clathrin- and caveolin-1-independent endocytosis: entry of simian virus 40 into cells devoid of caveolae. J Cell Biol 168, 477–488.[CrossRef] [Google Scholar]
  5. Ergönül, O.(2006). Crimean-Congo haemorrhagic fever. Lancet Infect Dis 6, 203–214.[CrossRef] [Google Scholar]
  6. Gavrilovskaya, I. N., Shepley, M., Shaw, R., Ginsberg, M. H. & Mackow, E. R.(1998).β3 Integrins mediate the cellular entry of hantaviruses that cause respiratory failure. Proc Natl Acad Sci U S A 95, 7074–7079.[CrossRef] [Google Scholar]
  7. Gonzalez-Scarano, F., Pobjecky, N. & Nathanson, N.(1984). La Crosse bunyavirus can mediate pH-dependent fusion from without. Virology 132, 222–225.[CrossRef] [Google Scholar]
  8. Hacker, J. K. & Hardy, J. L.(1997). Adsorptive endocytosis of California encephalitis virus into mosquito and mammalian cells: a role for G1. Virology 235, 40–47.[CrossRef] [Google Scholar]
  9. Heuser, J. E. & Anderson, R. G.(1989). Hypertonic media inhibit receptor-mediated endocytosis by blocking clathrin-coated pit formation. J Cell Biol 108, 389–400.[CrossRef] [Google Scholar]
  10. Hoogstraal, H.(1979). The epidemiology of tick-borne Crimean-Congo hemorrhagic fever in Asia, Europe, and Africa. J Med Entomol 15, 307–417.[CrossRef] [Google Scholar]
  11. Imelli, N., Meier, O., Boucke, K., Hemmi, S. & Greber, U. F.(2004). Cholesterol is required for endocytosis and endosomal escape of adenovirus type 2. J Virol 78, 3089–3098.[CrossRef] [Google Scholar]
  12. Inoue, Y., Tanaka, N., Tanaka, Y., Inoue, S., Morita, K., Zhuang, M., Hattori, T. & Sugamura, K.(2007). Clathrin-dependent entry of severe acute respiratory syndrome coronavirus into target cells expressing ACE2 with the cytoplasmic tail deleted. J Virol 81, 8722–8729.[CrossRef] [Google Scholar]
  13. Jin, M., Park, J., Lee, S., Park, B., Shin, J., Song, K. J., Ahn, T. I., Hwang, S. Y., Ahn, B. Y. & Ahn, K.(2002). Hantaan virus enters cells by clathrin-dependent receptor-mediated endocytosis. Virology 294, 60–69.[CrossRef] [Google Scholar]
  14. Le, P. U., Guay, G., Altschuler, Y. & Nabi, I. R.(2002). Caveolin-1 is a negative regulator of caveolae-mediated endocytosis to the endoplasmic reticulum. J Biol Chem 277, 3371–3379.[CrossRef] [Google Scholar]
  15. Lee, C. J., Lin, H. R., Liao, C. L. & Lin, Y. L.(2008). Cholesterol effectively blocks entry of flavivirus infection. J Virol 82, 6470–6480.[CrossRef] [Google Scholar]
  16. Lu, Y., Liu, D. X. & Tam, J. P.(2008). Lipid rafts are involved in SARS-CoV entry into Vero E6 cells. Biochem Biophys Res Commun 369, 344–349.[CrossRef] [Google Scholar]
  17. Marsh, M. & Helenius, A.(2006). Virus entry: open sesame. Cell 124, 729–740.[CrossRef] [Google Scholar]
  18. Medigeshi, G. R., Hirsch, A. J., Streblow, D. N., Nikolich-Zugich, J. & Nelson, J. A.(2008). West Nile virus entry requires cholesterol-rich membrane microdomains and is independent of αvβ3 integrin. J Virol 82, 5212–5219.[CrossRef] [Google Scholar]
  19. Pekosz, A. & Gonzalez-Scarano, F.(1996). The extracellular domain of La Crosse virus G1 forms oligomers and undergoes pH-dependent conformational changes. Virology 225, 243–247.[CrossRef] [Google Scholar]
  20. Pelkmans, L., Kartenbeck, J. & Helenius, A.(2001). Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol 3, 473–483.[CrossRef] [Google Scholar]
  21. Rodal, S. K., Skretting, G., Garred, O., Vilhardt, F., van Deurs, B. & Sandvig, K.(1999). Extraction of cholesterol with methyl-β-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. Mol Biol Cell 10, 961–974.[CrossRef] [Google Scholar]
  22. Rojek, J. M., Perez, M. & Kunz, S.(2008). Cellular entry of lymphocytic choriomeningitis virus. J Virol 82, 1505–1517.[CrossRef] [Google Scholar]
  23. Sandvig, K., Torgersen, M. L., Raa, H. A. & van Deurs, B.(2008). Clathrin-independent endocytosis: from nonexisting to an extreme degree of complexity. Histochem Cell Biol 129, 267–276.[CrossRef] [Google Scholar]
  24. Sieczkarski, S. B. & Whittaker, G. R.(2002). Dissecting virus entry via endocytosis. J Gen Virol 83, 1535–1545. [Google Scholar]
  25. Simon, M., Falk, K. I., Lundkvist, A. & Mirazimi, A.(2006). Exogenous nitric oxide inhibits Crimean Congo hemorrhagic fever virus. Virus Res 120, 184–190.[CrossRef] [Google Scholar]
  26. Simons, K. & Toomre, D.(2000). Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1, 31–39. [Google Scholar]
  27. Subtil, A., Gaidarov, I., Kobylarz, K., Lampson, M. A., Keen, J. H. & McGraw, T. E.(1999). Acute cholesterol depletion inhibits clathrin-coated pit budding. Proc Natl Acad Sci U S A 96, 6775–6780.[CrossRef] [Google Scholar]
  28. Thomsen, P., Roepstorff, K., Stahlhut, M. & van Deurs, B.(2002). Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Mol Biol Cell 13, 238–250.[CrossRef] [Google Scholar]
  29. Torgersen, M. L., Skretting, G., van Deurs, B. & Sandvig, K.(2001). Internalization of cholera toxin by different endocytic mechanisms. J Cell Sci 114, 3737–3747. [Google Scholar]
  30. Wang, L. H., Rothberg, K. G. & Anderson, R. G.(1993). Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J Cell Biol 123, 1107–1117.[CrossRef] [Google Scholar]
  31. Wang, H., Yang, P., Liu, K., Guo, F., Zhang, Y., Zhang, G. & Jiang, C.(2008). SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway. Cell Res 18, 290–301.[CrossRef] [Google Scholar]
  32. Whitfield, A. E., Ullman, D. E. & German, T. L.(2005). Tomato spotted wilt virus glycoprotein G(C) is cleaved at acidic pH. Virus Res 110, 183–186.[CrossRef] [Google Scholar]

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error