Evidence of a possible association of cutaneous human papillomavirus (HPV) types, especially members of the genus , and the development of non-melanoma skin cancer (NMSC) is accumulating. Vaccination with virus-like particles (VLPs) consisting of self-assembled L1, the major capsid protein, has been introduced to control anogenital HPV infection. This study examined the serological relationship between betapapillomavirus (-PV) types 5 and 8 and the new type HPV-92, which has recently been isolated from a basal cell carcinoma containing a high number of viral genomes. Following expression by recombinant baculoviruses, the L1 protein of HPV-92 self-assembled into VLPs that elicited high-titre antibodies after immunization, similar to VLPs from HPV-5 and -8. Haemagglutination inhibition (HAI) assays were used as a surrogate method for the detection of virion-neutralizing antibodies, which correlates with protection from infection. Antisera raised against HPV-5 and -8 VLPs displayed HAI activity not only against the homologous type, but also against heterologous HPV types 5, 8 and 92, whereas HAI activity of antisera against HPV-92 VLP was restricted to the homologous type. The results of neutralization assays using HPV-5 pseudovirions were consistent with those from HAI assays. Cross-neutralizing immune responses by VLP vaccination against heterologous HPV types may provide broader protection against the multiplicity of HPV types detected in NMSC. If a close link to HPV infection can be conclusively established, these results may provide a basis for further evaluation of VLPs of -PVs as candidates for a prophylactic skin-type HPV vaccine, aimed at reducing the incidence of NMSC.


Article metrics loading...

Loading full text...

Full text loading...



  1. Antonsson, A., Forslund, O., Ekberg, H., Sterner, G. & Hansson, B. G.(2000). The ubiquity and impressive genomic diversity of human skin papillomaviruses suggest a commensalic nature of these viruses. J Virol 74, 11636–11641.[CrossRef] [Google Scholar]
  2. Bedard, K. M., Underbrink, M. P., Howie, H. L. & Galloway, D. A.(2008). The E6 oncoproteins from human betapapillomaviruses differentially activate telomerase through an E6AP-dependent mechanism and prolong the lifespan of primary keratinocytes. J Virol 82, 3894–3902.[CrossRef] [Google Scholar]
  3. Boxman, I. L., Berkhout, R. J., Mulder, L. H., Wolkers, M. C., Bouwes Bavinck, J. N., Vermeer, B. J. & ter Schegget, J.(1997). Detection of human papillomavirus DNA in plucked hairs from renal transplant recipients and healthy volunteers. J Invest Dermatol 108, 712–715.[CrossRef] [Google Scholar]
  4. Buck, C. B., Pastrana, D. V., Lowy, D. R. & Schiller, J. T.(2005). Generation of HPV pseudovirions using transfection and their use in neutralization assays. Methods Mol Med 119, 445–462. [Google Scholar]
  5. Cheng, G., Icenogle, J. P., Kirnbauer, R., Hubbert, N. L., St Louis, M. E., Han, C., Svare, E. I., Kruger Kjaer, S., Lowy, D. R. & Schiller, J. T.(1995). Divergent human papillomavirus type 16 variants are serologically cross-reactive. J Infect Dis 172, 1584–1587.[CrossRef] [Google Scholar]
  6. Day, P. M., Thompson, C. D., Buck, C. B., Pang, Y. Y., Lowy, D. R. & Schiller, J. T.(2007). Neutralization of human papillomavirus with monoclonal antibodies reveals different mechanisms of inhibition. J Virol 81, 8784–8792.[CrossRef] [Google Scholar]
  7. de Jong-Tieben, L. M., Berkhout, R. J., Smits, H. L., Bouwes Bavinck, J. N., Vermeer, B. J., van der Woude, F. J. & ter Schegget, J.(1995). High frequency of detection of epidermodysplasia verruciformis-associated human papillomavirus DNA in biopsies from malignant and premalignant skin lesions from renal transplant recipients. J Invest Dermatol 105, 367–371.[CrossRef] [Google Scholar]
  8. de Villiers, E. M., Fauquet, C., Broker, T. R., Bernard, H. U. & zur Hausen, H.(2004). Classification of papillomaviruses. Virology 324, 17–27.[CrossRef] [Google Scholar]
  9. Diepgen, T. L. & Mahler, V.(2002). The epidemiology of skin cancer. Br J Dermatol 146 (Suppl 61), 1–6. [Google Scholar]
  10. Favre, M., Breitburd, F., Croissant, O. & Orth, G.(1974). Hemagglutinating activity of bovine papilloma virus. Virology 60, 572–578.[CrossRef] [Google Scholar]
  11. Favre, M., Orth, G., Majewski, S., Baloul, S., Pura, A. & Jablonska, S.(1998). Psoriasis: a possible reservoir for human papillomavirus type 5, the virus associated with skin carcinomas of epidermodysplasia verruciformis. J Invest Dermatol 110, 311–317.[CrossRef] [Google Scholar]
  12. Favre, M., Majewski, S., Noszczyk, B., Maienfisch, F., Pura, A., Orth, G. & Jablonska, S.(2000). Antibodies to human papillomavirus type 5 are generated in epidermal repair processes. J Invest Dermatol 114, 403–407.[CrossRef] [Google Scholar]
  13. Feltkamp, M. C., Broer, R., di Summa, F. M., Struijk, L., van der Meijden, E., Verlaan, B. P., Westendorp, R. G., ter Schegget, J., Spaan, W. J. & Bouwes Bavinck, J. N.(2003). Seroreactivity to epidermodysplasia verruciformis-related human papillomavirus types is associated with nonmelanoma skin cancer. Cancer Res 63, 2695–2700. [Google Scholar]
  14. Forslund, O., Antonsson, A., Higgins, G., Ly, H., Delius, H., Hunziker, A. & de Villiers, E. M.(2003a). Nucleotide sequence and phylogenetic classification of candidate human papilloma virus type 92. Virology 312, 255–260.[CrossRef] [Google Scholar]
  15. Forslund, O., DeAngelis, P. M., Beigi, M., Schjolberg, A. R. & Clausen, O. P.(2003b). Identification of human papillomavirus in keratoacanthomas. J Cutan Pathol 30, 423–429.[CrossRef] [Google Scholar]
  16. Forslund, O., Ly, H., Reid, C. & Higgins, G.(2003c). A broad spectrum of human papillomavirus types is present in the skin of Australian patients with non-melanoma skin cancers and solar keratosis. Br J Dermatol 149, 64–73.[CrossRef] [Google Scholar]
  17. Forslund, O., Iftner, T., Andersson, K., Lindelof, B., Hradil, E., Nordin, P., Stenquist, B., Kirnbauer, R., Dillner, J. & de Villiers, E. M.(2007). Cutaneous human papillomaviruses found in sun-exposed skin: beta-papillomavirus species 2 predominates in squamous cell carcinoma. J Infect Dis 196, 876–883.[CrossRef] [Google Scholar]
  18. Garland, S. M., Hernandez-Avila, M., Wheeler, C. M., Perez, G., Harper, D. M., Leodolter, S., Tang, G. W., Ferris, D. G., Steben, M. & other authors(2007). Quadrivalent vaccine against human papillomavirus to prevent anogenital diseases. N Engl J Med 356, 1928–1943.[CrossRef] [Google Scholar]
  19. Giroglou, T., Sapp, M., Lane, C., Fligge, C., Christensen, N. D., Streeck, R. E. & Rose, R. C.(2001). Immunological analyses of human papillomavirus capsids. Vaccine 19, 1783–1793.[CrossRef] [Google Scholar]
  20. Handisurya, A., Gilch, S., Winter, D., Shafti-Keramat, S., Maurer, D., Schatzl, H. M. & Kirnbauer, R.(2007). Vaccination with prion peptide-displaying papillomavirus-like particles induces autoantibodies to normal prion protein that interfere with pathologic prion protein production in infected cells. FEBS J 274, 1747–1758.[CrossRef] [Google Scholar]
  21. Harper, D. M., Franco, E. L., Wheeler, C. M., Moscicki, A. B., Romanowski, B., Roteli-Martins, C. M., Jenkins, D., Schuind, A., Costa Clemens, S. A. & Dubin, G.(2006). Sustained efficacy up to 4.5 years of a bivalent L1 virus-like particle vaccine against human papillomavirus types 16 and 18: follow-up from a randomised control trial. Lancet 367, 1247–1255.[CrossRef] [Google Scholar]
  22. Harwood, C. A., Surentheran, T., Sasieni, P., Proby, C. M., Bordea, C., Leigh, I. M., Wojnarowska, F., Breuer, J. & McGregor, J. M.(2004). Increased risk of skin cancer associated with the presence of epidermodysplasia verruciformis human papillomavirus types in normal skin. Br J Dermatol 150, 949–957.[CrossRef] [Google Scholar]
  23. Howley, P. M. & Lowy, D. R.(2007). Papillomavirus. In Fields Virology, 5th edn, pp. 2299–2354. Edited by D. M. Knipe & P. M. Howley. Philadelphia: Lippincott Williams and Wilkins.
  24. Jackson, S., Harwood, C., Thomas, M., Banks, L. & Storey, A.(2000). Role of Bak in UV-induced apoptosis in skin cancer and abrogation by HPV E6 proteins. Genes Dev 14, 3065–3073.[CrossRef] [Google Scholar]
  25. Kirnbauer, R., Booy, F., Cheng, N., Lowy, D. R. & Schiller, J. T.(1992). Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc Natl Acad Sci U S A 89, 12180–12184.[CrossRef] [Google Scholar]
  26. Kirnbauer, R., Taub, J., Greenstone, H., Roden, R., Dürst, M., Gissmann, L., Lowy, D. R. & Schiller, J. T.(1993). Efficient self-assembly of human papillomavirus type 16 L1 and L1–L2 into virus-like particles. J Virol 67, 6929–6936. [Google Scholar]
  27. Kirnbauer, R., Hubbert, N. L., Wheeler, C. M., Becker, T. M., Lowy, D. R. & Schiller, J. T.(1994). A virus-like particle enzyme-linked immunosorbent assay detects serum antibodies in a majority of women infected with human papillomavirus type 16. J Natl Cancer Inst 86, 494–499.[CrossRef] [Google Scholar]
  28. Kirnbauer, R., Lenz, P. & Okun, M. M.(2008). Human papillomavirus. In Dermatology, pp. 1183–1198. Edited by J. Bolognia, J. Jorizzo & R. Rapini. London: Mosby.
  29. Orth, G.(2006). Genetics of epidermodysplasia verruciformis: insights into host defense against papillomaviruses. Semin Immunol 18, 362–374.[CrossRef] [Google Scholar]
  30. Paavonen, J., Jenkins, D., Bosch, F. X., Naud, P., Salmeron, J., Wheeler, C. M., Chow, S. N., Apter, D. L., Kitchener, H. C. & other authors(2007). Efficacy of a prophylactic adjuvanted bivalent L1 virus-like-particle vaccine against infection with human papillomavirus types 16 and 18 in young women: an interim analysis of a phase III double-blind, randomised controlled trial. Lancet 369, 2161–2170.[CrossRef] [Google Scholar]
  31. Pfister, H.(2003). Chapter 8: human papillomavirus and skin cancer. J Natl Cancer Inst Monogr 31, 52–56. [Google Scholar]
  32. Purdie, K. J., Surentheran, T., Sterling, J. C., Bell, L., McGregor, J. M., Proby, C. M., Harwood, C. A. & Breuer, J.(2005). Human papillomavirus gene expression in cutaneous squamous cell carcinomas from immunosuppressed and immunocompetent individuals. J Invest Dermatol 125, 98–107.[CrossRef] [Google Scholar]
  33. Ramoz, N., Rueda, L. A., Bouadjar, B., Montoya, L. S., Orth, G. & Favre, M.(2002). Mutations in two adjacent novel genes are associated with epidermodysplasia verruciformis. Nat Genet 32, 579–581.[CrossRef] [Google Scholar]
  34. Roden, R. B., Hubbert, N., Kirnbauer, R., Christensen, N., Lowy, D. & Schiller, J.(1996). Assessment of the serological relatedness of genital human papillomaviruses by hemagglutination inhibition. J Virol 70, 3298–3301. [Google Scholar]
  35. Schaper, I. D., Marcuzzi, G. P., Weissenborn, S. J., Kasper, H. U., Dries, V., Smyth, N., Fuchs, P. & Pfister, H.(2005). Development of skin tumors in mice transgenic for early genes of human papillomavirus type 8. Cancer Res 65, 1394–1400.[CrossRef] [Google Scholar]
  36. Slupetzky, K., Shafti-Keramat, S., Lenz, P., Brandt, S., Grassauer, A., Sara, M. & Kirnbauer, R.(2001). Chimeric papillomavirus-like particles expressing a foreign epitope on capsid surface loops. J Gen Virol 82, 2799–2804. [Google Scholar]
  37. Stark, S., Petridis, A. K., Ghim, S. J., Jenson, A. B., Bouwes Bavinck, J. N., Gross, G., Stockfleth, E., Fuchs, P. G. & Pfister, H.(1998). Prevalence of antibodies against virus-like particles of Epidermodysplasia verruciformis-associated HPV8 in patients at risk of skin cancer. J Invest Dermatol 111, 696–701.[CrossRef] [Google Scholar]
  38. Termorshuizen, F., Feltkamp, M. C., Struijk, L., de Gruijl, F. R., Bavinck, J. N. & van Loveren, H.(2004). Sunlight exposure and (sero)prevalence of epidermodysplasia verruciformis-associated human papillomavirus. J Invest Dermatol 122, 1456–1462.[CrossRef] [Google Scholar]
  39. White, W. I., Wilson, S. D., Bonnez, W., Rose, R. C., Koenig, S. & Suzich, J. A.(1998). In vitro infection and type-restricted antibody-mediated neutralization of authentic human papillomavirus type 16. J Virol 72, 959–964. [Google Scholar]
  40. Zamora, E., Handisurya, A., Shafti-Keramat, S., Borchelt, D., Rudow, G., Conant, K., Cox, C., Troncoso, J. C. & Kirnbauer, R.(2006). Papillomavirus-like particles are an effective platform for amyloid-β immunization in rabbits and transgenic mice. J Immunol 177, 2662–2670.[CrossRef] [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error