1887

Abstract

Norovirus (NV) is a leading cause of gastroenteritis worldwide and a major public health concern. So far, the replication strategy of NV remains poorly understood, mainly because of the lack of a cell system to cultivate the virus. In this study, the function and the structure of a key viral enzyme of replication, the RNA-dependent RNA polymerase (RdRp, NS7), was examined. The overall structure of the NV NS7 RdRp was determined by X-ray crystallography to a 2.3 Å (0.23 nm) resolution (PDB ID 2B43), displaying a right-hand fold typical of the template-dependent polynucleotide polymerases. Biochemical analysis evidenced that NV NS7 RdRp is active as a homodimer, with an apparent of 0.649 μM and a positive cooperativity (Hill coefficient n=1.86). Crystals of the NV NS7 homodimer displayed lattices containing dimeric arrangements with high shape complementarity statistics. This experimental data on the structure and function of the NV RdRp may set the cornerstone for the development of polymerase inhibitors to control the infection with NV, a medically relevant pathogen.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.005629-0
2009-02-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/2/281.html?itemId=/content/journal/jgv/10.1099/vir.0.005629-0&mimeType=html&fmt=ahah

References

  1. Biswal B. K., Cherney M. M., Wang M., Chan L., Yannopoulos C. G., Bilimoria D., Nicolas O., Bedard J., James M. N. G. 2005; Crystal structures of the RNA dependent RNA polymerase genotype 2a of hepatitis C virus reveal two conformations and suggest mechanisms of inhibition by non-nucleoside inhibitors. J Biol Chem 280:18202–18210 [CrossRef]
    [Google Scholar]
  2. Choi K. H., Groarke J. M., Young D. C., Kuhn R. J., Smith J. L., Pevear D. C., Rossmann M. G. 2004; The structure of the RNA-dependent RNA polymerase from bovine viral diarrhea virus establishes the role of GTP in de novo initiation. Proc Natl Acad Sci U S A 101:4425–4430 [CrossRef]
    [Google Scholar]
  3. Dumont S., Cheng W., Serebrov V., Beran R. K., Tinoco I. Jr, Pyle A. M., Bustamante C. 2006; RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP. Nature 439:105–108 [CrossRef]
    [Google Scholar]
  4. Fullerton S. W., Blaschke M., Coutard B., Gebhardt J., Gorbalenya A., Canard B., Tucker P. A., Rohayem J. 2007; Structural and functional characterization of sapovirus RNA-dependent RNA polymerase. J Virol 81:1858–1871 [CrossRef]
    [Google Scholar]
  5. Goodrich J. A., Kugel J. A. 2007 Binding and Kinetics for Molecular Biologists p– 182 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  6. Green K. Y. 2007; Caliciviridae : The Noroviruses. In Fields Virology , 5th edn.Edited by Knipe D. M., Howley P. M., Griffin D. E., Lamb R. A., Martin M. A., Roizman, Straus S. E. Lippincott Williams and Wilkins;
    [Google Scholar]
  7. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. 1991; Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A 47:110–119 [CrossRef]
    [Google Scholar]
  8. Jorba N., Area E., Ortin J. 2008; Oligomerization of the influenza virus polymerase complex in vivo . J Gen Virol 89:520–524 [CrossRef]
    [Google Scholar]
  9. Kaiser W. J., Chaudhry Y., Sosnovtsev S. V., Goodfellow I. G. 2006; Analysis of protein–protein interactions in the feline calicivirus replication complex. J Gen Virol 87:363–368 [CrossRef]
    [Google Scholar]
  10. Lamzin V. S., Morris R. J., Dauter Z., Wilson K. S., Teeter M. M. 1999; Experimental observation of bonding electrons in proteins. J Biol Chem 274:20753–20755 [CrossRef]
    [Google Scholar]
  11. Lawrence M. C., Colman P. M. 1993; Shape complementarity at protein/protein interfaces. J Mol Biol 234:946–950 [CrossRef]
    [Google Scholar]
  12. Lee B., Richards F. M. 1971; The interpretation of protein structures: estimation of static accessibility. J Mol Biol 55:379–400 [CrossRef]
    [Google Scholar]
  13. Lesburg C. A., Cable M. B., Ferrari E., Hong Z., Mannarino A. F., Weber P. C. 1999; Crystal structure of the RNA-dependent RNA polymerase from hepatitis C virus reveals a fully encircled active site. Nat Struct Biol 6:937–943 [CrossRef]
    [Google Scholar]
  14. Levin M. K., Patel S. S. 1999; The helicase from hepatitis C virus is active as an oligomer. J Biol Chem 274:31839–31846 [CrossRef]
    [Google Scholar]
  15. Lo Conte L., Chothia C., Janin J. 1999; The atomic structure of protein-protein recognition sites. J Mol Biol 285:2177–2198 [CrossRef]
    [Google Scholar]
  16. Lopman B. A., Reacher M. H., Van Duijnhoven Y., Hanon F. X., Brown D., Koopmans M. 2003; Viral gastroenteritis outbreaks in Europe, 1995–2000. Emerg Infect Dis 9:90–96 [CrossRef]
    [Google Scholar]
  17. Lopman B., Zambon M., Brown D. W. 2008; The evolution of norovirus, the ‘gastric flu’. PLoS Med 5:e42 [CrossRef]
    [Google Scholar]
  18. Murshudov G. N., Vagin A. A., Dodson E. J. 1997; Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53:240–255 [CrossRef]
    [Google Scholar]
  19. Ng K. K., Cherney M. M., Vazquez A. L., Machin A., Alonso J. M., Parra F., James M. N. 2002; Crystal structures of active and inactive conformations of a caliciviral RNA-dependent RNA polymerase. J Biol Chem 277:1381–1387 [CrossRef]
    [Google Scholar]
  20. Ng K. K., Pendas-Franco N., Rojo J., Boga J. A., Machin A., Alonso J. M., Parra F. 2004; Crystal structure of Norwalk virus polymerase reveals the carboxyl terminus in the active site cleft. J Biol Chem 279:16638–16645 [CrossRef]
    [Google Scholar]
  21. Niepmann M., Zheng J. 2006; Discontinuous native protein gel electrophoresis. Electrophoresis 27:3949–3951 [CrossRef]
    [Google Scholar]
  22. Perez I., McAfee J. G., Patton J. G. 1997; Multiple RRMs contribute to RNA binding specificity and affinity for polypyrimidine tract binding protein. Biochemistry 36:11881–11890 [CrossRef]
    [Google Scholar]
  23. Rohayem J., Jager K., Robel I., Scheffler U., Temme A., Rudolph W. 2006a; Characterization of norovirus 3Dpol RNA-dependent RNA polymerase activity and initiation of RNA synthesis. J Gen Virol 87:2621–2630 [CrossRef]
    [Google Scholar]
  24. Rohayem J., Robel I., Jager K., Scheffler U., Rudolph W. 2006b; Protein-primed and de novo initiation of RNA synthesis by norovirus 3Dpol. J Virol 80:7060–7069 [CrossRef]
    [Google Scholar]
  25. Sikora B., Chen Y., Lichti C. F., Harrison M. K., Jennings T. A., Tang Y., Tackett A. J., Jordan J. B., Sakon J. other authors 2008; Hepatitis C virus NS3 helicase forms oligomeric structures that exhibit optimal DNA unwinding activity in vitro . J Biol Chem 283:11516–11525 [CrossRef]
    [Google Scholar]
  26. Song Y., Tzima E., Ochs K., Bassili G., Trusheim H., Linder M., Preissner K. T., Niepmann M. 2005; Evidence for an RNA chaperone function of polypyrimidine tract-binding protein in picornavirus translation. RNA 11:1809–1824 [CrossRef]
    [Google Scholar]
  27. Thompson A. A., Peersen O. B. 2004; Structural basis for proteolysis-dependent activation of the poliovirus RNA-dependent RNA polymerase. EMBO J 23:3462–3471 [CrossRef]
    [Google Scholar]
  28. Wang Q. M., Hockman M. A., Staschke K., Johnson R. B., Case K. A., Lu J., Parsons S., Zhang F., Rathnachalam R. other authors 2002; Oligomerization and cooperative RNA synthesis activity of hepatitis C virus RNA-dependent RNA polymerase. J Virol 76:3865–3872 [CrossRef]
    [Google Scholar]
  29. Zamyatkin D. F., Parra F., Alonso J. M., Harki D. A., Peterson B. R., Grochulski P., Ng K. K. 2008; Structural insights into mechanisms of catalysis and inhibition in Norwalk virus polymerase. J Biol Chem 283:7705–7712 [CrossRef]
    [Google Scholar]
  30. Zheng D. P., Ando T., Fankhauser R. L., Beard R. S., Glass R. I., Monroe S. S. 2006; Norovirus classification and proposed strain nomenclature. Virology 346:312–323 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.005629-0
Loading
/content/journal/jgv/10.1099/vir.0.005629-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error