1887

Abstract

The nuclear egress of cytomegaloviral capsids traversing the nuclear envelope is dependent on a locally restricted destabilization of the rigid nuclear lamina. It has been suggested that the multi-component nuclear egress complex (NEC) that is formed is comprised of both viral and cellular proteins which act to recruit lamin-phosphorylating protein kinases. Recently, we reported that the lamina-associated human cytomegalovirus-encoded proteins pUL50 and pUL53, conserved among herpesviruses, interact with each other and recruit protein kinase C (PKC) to the nuclear envelope in transfected cells. The multiple interactions of the transmembrane protein pUL50 with pUL53, PKC and cellular PKC-binding protein p32, appear crucial to the formation of the NEC. In this study, we mapped individual interaction sequence elements of pUL50 by coimmunoprecipitation analysis of deletion mutants and yeast two-hybrid studies. Amino acids 1–250 were shown to be responsible for interaction with pUL53, 100–280 for PKC and 100–358 for p32. Interestingly, p32 specifically interacted with multiple NEC components, including the kinases PKC and pUL97, thus possibly acting as an adaptor for protein recruitment to the lamin B receptor. Notably, p32 was the only protein that interacted with the lamin B receptor. Immunofluorescence studies visualized the colocalization of NEC components at the nuclear rim in coexpression studies. The data imply that a tight interaction between at least six viral and cellular proteins leads to the formation of a postulated multi-protein complex required for nuclear egress.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.005231-0
2009-03-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/3/579.html?itemId=/content/journal/jgv/10.1099/vir.0.005231-0&mimeType=html&fmt=ahah

References

  1. Bjerke, S. L. & Roller, R. J. ( 2006; ). Roles for herpes simplex virus type 1 UL34 and US3 proteins in disrupting the nuclear lamina during herpes simplex virus type 1 egress. Virology 347, 261–276.[CrossRef]
    [Google Scholar]
  2. Brokstad, K. A., Kalland, K.-H., Russel, W. C. & Matthews, D. A. ( 2001; ). Mitochondrial protein p32 can accumulate in the nucleus. Biochem Biophys Res Commun 281, 1161–1169.[CrossRef]
    [Google Scholar]
  3. Buser, C., Walther, P., Mertens, T. & Michel, D. ( 2007; ). Cytomegalovirus primary envelopment occurs at large infoldings of the inner nuclear membrane. J Virol 81, 3042–3048.[CrossRef]
    [Google Scholar]
  4. Camozzi, D., Pignatelli, S., Valvo, C., Lattanti, G., Capanni, C., Dal Monte, P. & Landini, M. P. ( 2008; ). Remodelling of the nuclear lamina during human cytomegalovirus infection: role of the viral proteins pUL50 and pUL53. J Gen Virol 89, 731–740.[CrossRef]
    [Google Scholar]
  5. Chen, D. H., Jiang, H., Lee, M., Liu, F. & Zhou, Z. H. ( 1999; ). Three-dimensional visualization of tegument/capsid interactions in the intact human cytomegalovirus. Virology 260, 10–16.[CrossRef]
    [Google Scholar]
  6. Collas, P., Thompson, L., Fields, A. P., Poccia, D. L. & Courvalin, J. C. ( 1997; ). Protein kinase C-mediated interphase lamin B phosphorylation and solubilization. J Biol Chem 272, 21274–21280.[CrossRef]
    [Google Scholar]
  7. Combet, C., Blanchet, C., Geourjon, C. & Deléage, G. ( 2000; ). [email protected]: Network Protein Sequence Analysis. Trends Biochem Sci 25, 147–150.[CrossRef]
    [Google Scholar]
  8. Dal Monte, P., Pignatelli, S., Zini, N., Maraldi, N. M., Perret, E., Prevost, M. C. & Landini, M. P. ( 2002; ). Analysis of intracellular and intraviral localization of the human cytomegalovirus UL53 protein. J Gen Virol 83, 1005–1012.
    [Google Scholar]
  9. Dechat, T., Pfleghaar, K., Sengupta, K., Shimi, T., Shumaker, D. K., Solimando, L. & Goldman, R. D. ( 2008; ). Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev 22, 832–853.[CrossRef]
    [Google Scholar]
  10. Durfee, T., Becherer, K., Chen, P. L., Yeh, S. H., Yang, Y., Kilburn, A. E., Lee, W. H. & Elledge, S. J. ( 1993; ). The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. Genes Dev 7, 555–569.[CrossRef]
    [Google Scholar]
  11. Farina, A., Feederle, R., Raffa, S., Gonnella, R., Santarelli, R., Frati, L., Angeloni, A., Torrisi, M. R., Faggioni, A. & Delecluse, H. J. ( 2005; ). BFRF1 of Epstein–Barr virus is essential for efficient primary viral envelopment and egress. J Virol 79, 3703–3712.[CrossRef]
    [Google Scholar]
  12. Fields, S. & Song, O. ( 1989; ). A novel genetic system to detect protein–protein interactions. Nature 340, 245–246.[CrossRef]
    [Google Scholar]
  13. Fuchs, W., Klupp, B. G., Granzow, H., Osterrieder, N. & Mettenleiter, T. C. ( 2002; ). The interacting UL31 and UL34 gene products of pseudorabies virus are involved in egress from the host-cell nucleus and represent components of primary enveloped but not mature virions. J Virol 76, 364–378.[CrossRef]
    [Google Scholar]
  14. Gruenbaum, Y., Margalit, A., Goldman, R. D., Shumaker, D. K. & Wilson, K. L. ( 2005; ). The nuclear lamina comes of age. Nat Rev Mol Cell Biol 6, 21–31.[CrossRef]
    [Google Scholar]
  15. Guermeur, Y., Geourjon, C., Gallinari, P. & Deléage, G. ( 1999; ). Improved performance in protein secondary structure prediction by inhomogeneous score combination. Bioinformatics 15, 413–421.[CrossRef]
    [Google Scholar]
  16. Jha, B. K., Salunke, D. M. & Datta, K. ( 2002; ). Disulfide bond formation through Cys186 facilitates functionally relevant dimerization of trimeric hyaluronan-binding protein 1 (HABP1)/p32/gC1qR. Eur J Biochem 269, 298–306.[CrossRef]
    [Google Scholar]
  17. Jiang, J., Zhang, Y., Krainer, A. R. & Xu, R. M. ( 1999; ). Crystal structure of human p32, a doughnut-shaped acidic mitochondrial matrix protein. Proc Natl Acad Sci U S A 96, 3572–3577.[CrossRef]
    [Google Scholar]
  18. Käll, L., Krogh, A. & Sonnhammer, E. L. ( 2004; ). A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338, 1027–1036.[CrossRef]
    [Google Scholar]
  19. Kato, A., Yamamoto, M., Ohno, T., Tanaka, M., Sata, T., Nishiyama, Y. & Kawaguchi, Y. ( 2006; ). Herpes simplex virus 1-encoded protein kinase UL13 phosphorylates viral Us3 protein kinase and regulates nuclear localization of viral envelopment factors UL34 and UL31. J Virol 80, 1476–1486.[CrossRef]
    [Google Scholar]
  20. Kim, P. W., Sun, Z. Y., Blacklow, S. C., Wagner, G. & Eck, M. J. ( 2003; ). A zinc clasp structure tethers Lck to T cell coreceptors CD4 and CD8. Science 301, 1725–1728.[CrossRef]
    [Google Scholar]
  21. King, R. D. & Sternberg, M. J. ( 1996; ). Identification and application of the concepts important for accurate and reliable protein secondary structure prediction. Protein Sci 5, 2298–2310.[CrossRef]
    [Google Scholar]
  22. Klupp, B. G., Granzow, H. & Mettenleiter, T. C. ( 2001; ). Effect of the pseudorabies virus US3 protein on nuclear membrane localization of the UL34 protein and virus egress from the nucleus. J Gen Virol 82, 2363–2371.
    [Google Scholar]
  23. Leach, N., Bjerke, S. L., Christenson, D. K., Bouchard, J. M., Mou, F., Park, R., Baines, J., Haraguchi, T. & Roller, R. J. ( 2007; ). Emerin is hyperphosphorylated and redistributed in herpes simplex virus type 1-infected cells in a manner dependent upon both UL34 and US3. J Virol 81, 10792–10803.[CrossRef]
    [Google Scholar]
  24. Linding, R., Russell, R. B., Neduva, V. & Gibson, T. J. ( 2003; ). GlobPlot: exploring protein sequences for globularity and disorder. Nucleic Acids Res 31, 3701–3708.[CrossRef]
    [Google Scholar]
  25. Lötzerich, M., Ruzsics, Z. & Koszinowski, U. H. ( 2006; ). Functional domains of murine cytomegalovirus nuclear egress protein M53/p38. J Virol 80, 73–84.[CrossRef]
    [Google Scholar]
  26. Marschall, M., Stein-Gerlach, M., Freitag, M., Kupfer, R., van Den Bogaard, M. & Stamminger, T. ( 2001; ). Inhibitors of human cytomegalovirus replication drastically reduce the activity of the viral protein kinase pUL97. J Gen Virol 82, 1439–1450.
    [Google Scholar]
  27. Marschall, M., Freitag, M., Suchy, P., Romaker, D., Kupfer, D., Hanke, M. & Stamminger, T. ( 2003; ). The protein kinase pUL97 of human cytomegalovirus interacts with and phosphorylates the DNA polymerase processivity factor pUL44. Virology 311, 60–71.[CrossRef]
    [Google Scholar]
  28. Marschall, M., Marzi, A., aus dem Siepen, P., Jochmann, R., Kalmer, M., Auerochs, S., Lischka, P., Leis, M. & Stamminger, T. ( 2005; ). Cellular p32 recruits cytomegalovirus kinase pUL97 to redistribute the nuclear lamina. J Biol Chem 280, 33357–33367.[CrossRef]
    [Google Scholar]
  29. Mettenleiter, T. C. ( 2004; ). Budding events in herpesvirus morphogenesis. Virus Res 106, 167–180.[CrossRef]
    [Google Scholar]
  30. Mettenleiter, T. C. ( 2006; ). Intriguing interplay between viral proteins during herpesvirus assembly or: the herpesvirus assembly puzzle. Vet Microbiol 113, 163–169.[CrossRef]
    [Google Scholar]
  31. Milbradt, J., Auerochs, S. & Marschall, M. ( 2007; ). Cytomegaloviral proteins pUL50 and pUL53 are associated with the nuclear lamina and interact with cellular protein kinase C. J Gen Virol 88, 2642–2650.[CrossRef]
    [Google Scholar]
  32. Mocarski, E. S., Jr, Shenk, T. & Pass, R. F. ( 2007; ). Cytomegaloviruses. Fields Virology, 5th edn, pp. 2701–2772. Edited by D. M. Knipe & P. M. Howley. Philadelphia, PA: Lippincott Williams & Wilkins.
  33. Morris, J. B., Hofemeister, H. & O'Hare, P. ( 2007; ). Herpes simplex virus infection induces phosphorylation and delocalization of emerin, a key inner nuclear membrane protein. J Virol 81, 4429–4437.[CrossRef]
    [Google Scholar]
  34. Muranyi, W., Haas, J., Wagner, M., Krohne, G. & Koszinowski, U. H. ( 2002; ). Cytomegalovirus recruitment of cellular kinases to dissolve the nuclear lamina. Science 297, 854–857.[CrossRef]
    [Google Scholar]
  35. Mylonis, I., Drosou, V., Brancorsini, S., Nikolakaki, E., Sassone-Corsi, P. & Giannakouros, T. ( 2004; ). Temporal association of protamine 1 with the inner nuclear membrane protein lamin B receptor during spermiogenesis. J Biol Chem 279, 11626–11631.[CrossRef]
    [Google Scholar]
  36. Neduva, V. & Russell, R. B. ( 2006; ). DILIMOT: discovery of linear motifs in proteins. Nucleic Acids Res 34, W350–W355.[CrossRef]
    [Google Scholar]
  37. Panté, N. & Kann, M. ( 2002; ). Nuclear pore complex is able to transport macromolecules with diameters of about 39 nm. Mol Biol Cell 13, 425–434.[CrossRef]
    [Google Scholar]
  38. Park, R. & Baines, J. D. ( 2006; ). Herpes simplex virus type 1 infection induces activation and recruitment of protein kinase C to the nuclear membrane and increased phosphorylation of lamin B. J Virol 80, 494–504.[CrossRef]
    [Google Scholar]
  39. Peter, M., Nakagawa, J., Dorée, M., Labbé, J. C. & Nigg, E. A. ( 1990; ). In vitro disassembly of the nuclear lamina and M phase-specific phosphorylation of lamins by cdc2 kinase. Cell 61, 591–602.[CrossRef]
    [Google Scholar]
  40. Reynolds, A. E., Ryckman, B. J., Baines, J. D., Zhou, Y., Liang, L. & Roller, R. J. ( 2001; ). UL31 and UL34 proteins of herpes simplex virus type 1 form a complex that accumulates at the nuclear rim and is required for envelopment of nucleocapsids. J Virol 75, 8803–8817.[CrossRef]
    [Google Scholar]
  41. Reynolds, A. E., Wills, E. G., Roller, R. J., Ryckman, B. J. & Baines, J. D. ( 2002; ). Ultrastructural localization of the herpes simplex virus type 1 UL31, UL34, and US3 proteins suggests specific roles in primary envelopment and egress of nucleocapsids. J Virol 76, 8939–8952.[CrossRef]
    [Google Scholar]
  42. Reynolds, A. E., Liang, L. & Baines, J. D. ( 2004; ). Conformational changes in the nuclear lamina induced by herpes simplex virus type 1 require genes UL31 and UL34. J Virol 78, 5564–5575.[CrossRef]
    [Google Scholar]
  43. Robles-Flores, M., Rendón-Huerta, E., González-Aguilar, H., Mendoza-Hernández, G., Islas, S., Mendoza, V., Ponce-Castañeda, M. V., González-Mariscal, L. & López-Casillas, F. ( 2002; ). p32 (gC1qBP) is a general protein kinase C (PKC)-binding protein. J Biol Chem 277, 5247–5255.[CrossRef]
    [Google Scholar]
  44. Rost, B. & Sander, C. ( 1993; ). Prediction of protein secondary structure at better than 70 % accuracy. J Mol Biol 232, 584–599.[CrossRef]
    [Google Scholar]
  45. Rupp, B., Ruzsics, Z., Buser, C., Adler, B., Walther, P. & Koszinowski, U. H. ( 2007; ). Random screening for dominant-negative mutants of the cytomegalovirus nuclear egress protein M50. J Virol 81, 5508–5517.[CrossRef]
    [Google Scholar]
  46. Sampaio, K., Cavignac, Y., Stierhof, Y.-D. & Sinzger, C. ( 2005; ). Human cytomegalovirus labeled with green fluorescent protein for live analysis of intracellular particle movement. J Virol 79, 2754–2767.[CrossRef]
    [Google Scholar]
  47. Sanchez, V. & Spector, D. H. ( 2002; ). CMV makes a timely exit. Science 297, 778–779.[CrossRef]
    [Google Scholar]
  48. Schregel, V., Auerochs, S., Jochmann, R., Maurer, K., Stamminger, T. & Marschall, M. ( 2007; ). Mapping of a self-interaction domain of the cytomegalovirus protein kinase pUL97. J Gen Virol 88, 395–404.[CrossRef]
    [Google Scholar]
  49. Storz, P., Hausser, A., Link, G., Dedio, J., Ghebrehiwet, B., Pfizenmaier, K. & Johannes, F. J. ( 2000; ). Protein kinase  μ is regulated by the multifunctional chaperon protein p32. J Biol Chem 275, 24601–24607.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.005231-0
Loading
/content/journal/jgv/10.1099/vir.0.005231-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error