Adenoviruses have been studied intensively for over 50 years as models of virus–cell interactions and latterly as gene vectors. With the advent of more sophisticated structural analysis techniques the disposition of most of the 13 structural proteins have been defined to a reasonable level. This review seeks to describe the functional properties of these proteins and shows that they all have a part to play in deciding the outcome of an infection and act at every level of the virus's path through the host cell. They are primarily involved in the induction of the different arms of the immune system and a better understanding of their overall properties should lead to more effective ways of combating virus infections.


Article metrics loading...

Loading full text...

Full text loading...



  1. Abrescia, N. G., Cockburn, J. J., Grimes, J. M., Sutton, G. C., Diprose, J. M., Butcher, S. J., Fuller, S. D., San Martin, C., Burnett, R. M. & other authors(2004). Insights into assembly from structural analysis of bacteriophage PRD1. Nature 432, 68–74.[CrossRef] [Google Scholar]
  2. Ali, H., LeRoy, G., Bridge, G. & Flint, S. J.(2007). The adenovirus L4 33-kilodalton protein binds to intragenic sequences of the major late promoter required for late phase-specific stimulation of transcription. J Virol 81, 1327–1338.[CrossRef] [Google Scholar]
  3. Amstutz, B., Gastaldelli, M., Kalin, S., Imelli, N., Boucke, K., Wandeler, E., Mercer, J., Hemmi, S. & Greber, U. F.(2008). Subversion of CtBP1-controlled macropinocytosis by human adenovirus serotype 3. EMBO J 27, 956–969.[CrossRef] [Google Scholar]
  4. Anderson, C. W.(1990). The proteinase polypeptide of adenovirus serotype 2 virions. Virology 177, 259–272.[CrossRef] [Google Scholar]
  5. Angeletti, P. C. & Engler, J. A.(1998). Adenovirus preterminal protein binds to the CAD enzyme at active sites of viral DNA replication on the nuclear matrix. J Virol 72, 2896–2904. [Google Scholar]
  6. Arnberg, N., Kidd, A. H., Edlund, K., Nilsson, J., Pring-Akerblom, P. & Wadell, G.(2002). Adenovirus type 37 binds to cell surface sialic acid through a charge-dependent interaction. Virology 302, 33–43.[CrossRef] [Google Scholar]
  7. Bailey, C. J., Crystal, R. G. & Leopold, P. L.(2003). Association of adenovirus with the microtubule organizing center. J Virol 77, 13275–13287.[CrossRef] [Google Scholar]
  8. Baker, A. H., McVey, J. H., Waddington, S. N., Di Paolo, N. C. & Shayakhmetov, D. M.(2007). The influence of blood on in vivo adenovirus bio-distribution and transduction. Mol Ther 15, 1410–1416.[CrossRef] [Google Scholar]
  9. Basner-Tschakarjan, E., Gaffal, E., O'Keeffe, M., Tormo, D., Limmer, A., Wagner, H., Hochrein, H. & Tuting, T.(2006). Adenovirus efficiently transduces plasmacytoid dendritic cells resulting in TLR9-dependent maturation and IFN-α production. J Gene Med 8, 1300–1306.[CrossRef] [Google Scholar]
  10. Bayo-Puxan, N., Cascallo, M., Gros, A., Huch, M., Fillet, C. & Alemany, R.(2006). Role of the putative heparan sulfate glycosaminoglycan-binding site of the adenovirus type 5 fiber shaft on liver detargeting and knob-mediated retargeting. J Gen Virol 87, 2487–2495.[CrossRef] [Google Scholar]
  11. Béládi, I. & Pusztai, R.(1967). Interferon-like substance produced in chick fibroblast cells inoculated with human adenoviruses. Z Naturforsch B 22, 165–169. [Google Scholar]
  12. Benko, M., Harrach, B. & Russell, W. C.(2000). Family Adenoviridae. In Virus Taxonomy: Seventh Report of the International Committee on Taxonomy of Viruses, pp. 227–238. Edited by M. H. V. van Regenmortel, C. M. Fauquet, D. H. L. Bishop, E. B. Carstens, M. K. Estes, S. M. Lemon, J. Maniloff, M. A. Mayo, D. J. McGeoch, C. R. Pringle & R. B. Wickner. San Diego: Academic Press.
  13. Blair, G. E. & Russell, W. C.(1978). Identification of a protein kinase activity associated with human adenoviruses. Virology 86, 157–166.[CrossRef] [Google Scholar]
  14. Booth, J. L., Coggeshall, K. M., Gordon, B. E. & Metcalf, J. P.(2004). Adenovirus type 7 induces interleukin-8 in a lung slice model and requires activation of Erk. J Virol 78, 4156–4164.[CrossRef] [Google Scholar]
  15. Boudin, M. L., D'Halluin, J. C., Cousin, C. & Boulanger, P.(1980). Human adenovirus type 2 protein IIIa. II. Maturation and encapsidation. Virology 101, 144–156.[CrossRef] [Google Scholar]
  16. Boulanger, P., Lemay, P., Blair, G. E. & Russell, W. C.(1979). Characterization of adenovirus protein IX. J Gen Virol 44, 783–800.[CrossRef] [Google Scholar]
  17. Brown, M. T. & Mangel, W. F.(2004). Interaction of actin and its 11-amino acid C-terminal peptide as cofactors with the adenovirus proteinase. FEBS Lett 563, 213–218.[CrossRef] [Google Scholar]
  18. Burgert, H. G., Ruzsics, Z., Obermeier, S., Hilgendorf, A., Windheim, M. & Elsing, A.(2002). Subversion of host defence mechanisms by adenoviruses. Curr Top Microbiol Immunol 269, 273–318. [Google Scholar]
  19. Burmeister, W. P., Guilligay, D., Cusack, S., Wadell, G. & Arnberg, N.(2004). Crystal structure of species D adenovirus fiber knobs and their sialic acid binding sites. J Virol 78, 7727–7736.[CrossRef] [Google Scholar]
  20. Burnett, R. M.(1985). The structure of the adenovirus capsid. II. The packing symmetry of hexon and its implications for viral architecture. J Mol Biol 185, 125–143.[CrossRef] [Google Scholar]
  21. Cauet, G., Strub, J. M., Leize, E., Wagner, E., Van Dorsselaer, A. & Lusky, M.(2005). Identification of the glycosylation site of the adenovirus type 5 fiber protein. Biochemistry 44, 5453–5460.[CrossRef] [Google Scholar]
  22. Cerullo, V., Seiler, M. P., Mane, V., Brunetti-Pierri, N., Clarke, C., Bertin, T. K., Rodgers, J. R. & Lee, B.(2007). Toll-like receptor 9 triggers an innate immune response to helper-dependent adenoviral vectors. Mol Ther 15, 378–385.[CrossRef] [Google Scholar]
  23. Chatterjee, P. K. & Flint, S. J.(1987). Adenovirus type 2 endopeptidase: an unusual phosphoprotein enzyme matured by autocatalysis. Proc Natl Acad Sci U S A 84, 714–718.[CrossRef] [Google Scholar]
  24. Chatterjee, P. K., Vayda, M. E. & Flint, S. J.(1985). Interactions among the three adenovirus core proteins. J Virol 55, 379–386. [Google Scholar]
  25. Chatterjee, P. K., Vayda, M. E. & Flint, S. J.(1986). Adenoviral protein VII packages intracellular viral DNA throughout the early phase of infection. EMBO J 5, 1633–1644. [Google Scholar]
  26. Chelius, D., Huhmer, A. F., Shieh, C. H., Lehmberg, E., Traina, J. A., Slattery, T. K. & Pungor, E., Jr(2002). Analysis of the adenovirus type 5 proteome by liquid chromatography and tandem mass spectrometry methods. J Proteome Res 1, 501–513.[CrossRef] [Google Scholar]
  27. Chen, J., Morral, N. & Engel, D. A.(2007). Transcription releases protein VII from adenovirus chromatin. Virology 369, 411–422.[CrossRef] [Google Scholar]
  28. Chintakuntlawar, A. V., Astley, R. & Chodosh, J.(2007). Adenovirus type 37 keratitis in the C57BL/6J mouse. Invest Ophthalmol Vis Sci 48, 781–788.[CrossRef] [Google Scholar]
  29. Christensen, J. B., Byrd, S. A., Walker, A. K., Strahler, J. R., Andrews, P. C. & Imperiale, M. J.(2008). Presence of the adenovirus IVa2 protein at a single vertex of the mature virion. J Virol 82, 9086–9093.[CrossRef] [Google Scholar]
  30. Chroboczek, J., Ruigrok, R. W. & Cusack, S.(1995). Adenovirus fiber. Curr Top Microbiol Immunol 199, 163–200. [Google Scholar]
  31. Chroboczek, J., Gout, E., Favier, A. L. & Galinier, R.(2003). Novel partner proteins of adenovirus penton. Curr Top Microbiol Immunol 272, 37–55. [Google Scholar]
  32. Colby, W. W. & Shenk, T.(1981). Adenovirus type 5 virions can be assembled in vivo in the absence of detectable polypeptide IX. J Virol 39, 977–980. [Google Scholar]
  33. Colina, R., Costa-Mattioli, M., Dowling, R. J., Jaramillo, M., Tai, L. H., Breitbach, C. J., Martineau, Y., Larsson, O., Rong, L. & other authors(2008). Translational control of the innate immune response through IRF-7. Nature 452, 323–328.[CrossRef] [Google Scholar]
  34. Coyne, C. B. & Bergelson, J. M.(2005). CAR: a virus receptor within the tight junction. Adv Drug Deliv Rev 57, 869–882.[CrossRef] [Google Scholar]
  35. Coyne, C. B. & Bergelson, J. M.(2006). Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions. Cell 124, 119–131.[CrossRef] [Google Scholar]
  36. Crawford-Miksza, L. & Schnurr, D. P.(1996). Analysis of 15 adenovirus hexon proteins reveals the location and structure of seven hypervariable regions containing serotype-specific residues. J Virol 70, 1836–1844. [Google Scholar]
  37. Dechecchi, M. C., Melotti, P., Bonizzato, A., Santacatterina, M., Chilosi, M. & Cabrini, G.(2001). Heparan sulfate glycosaminoglycans are receptors sufficient to mediate the initial binding of adenovirus types 2 and 5. J Virol 75, 8772–8780.[CrossRef] [Google Scholar]
  38. Devaux, C., Caillet-Boudin, M. L., Jacrot, B. & Boulanger, P.(1987). Crystallization, enzymatic cleavage, and the polarity of the adenovirus type 2 fiber. Virology 161, 121–128.[CrossRef] [Google Scholar]
  39. Durmort, C., Stehlin, C., Schoehn, G., Mitraki, A., Drouet, E., Cusack, S. & Burmeister, W. P.(2001). Structure of the fiber head of Ad3, a non-CAR-binding serotype of adenovirus. Virology 285, 302–312.[CrossRef] [Google Scholar]
  40. Ebner, K., Pinsker, W. & Lion, T.(2005). Comparative sequence analysis of the hexon gene in the entire spectrum of human adenovirus serotypes: phylogenetic, taxonomic, and clinical implications. J Virol 79, 12635–12642.[CrossRef] [Google Scholar]
  41. Eiz, B. & Pring-Akerblom, P.(1997). Molecular characterization of the type-specific γ-determinant located on the adenovirus fiber. J Virol 71, 6576–6581. [Google Scholar]
  42. Ewing, S. G., Byrd, S. A., Christensen, J. B., Tyler, R. E. & Imperiale, M. J.(2007). Ternary complex formation on the adenovirus packaging sequence by the IVa2 and L4 22-kilodalton proteins. J Virol 81, 12450–12457.[CrossRef] [Google Scholar]
  43. Fabry, C. M., Rosa-Calatrava, M., Conway, J. F., Zubieta, C., Cusack, S., Ruigrok, R. W. & Schoehn, G.(2005). A quasi-atomic model of human adenovirus type 5 capsid. EMBO J 24, 1645–1654.[CrossRef] [Google Scholar]
  44. Fauquet, C. M., Mayo, M. A., Maniloff, J., Desselberger, U. & Ball, L. A.(2005).Virus Taxonomy: Seventh Report of the International Committee of Viruses. San Diego: Academic Press.
  45. Favier, A. L., Schoehn, G., Jaquinod, M., Harsi, C. & Chroboczek, J.(2002). Structural studies of human enteric adenovirus type 41. Virology 293, 75–85.[CrossRef] [Google Scholar]
  46. Fechner, H., Haack, A., Wang, H., Wang, X., Eizema, K., Pauschinger, M., Schoemaker, R., Veghel, R., Houtsmuller, A. & other authors(1999). Expression of coxsackie adenovirus receptor and alphav-integrin does not correlate with adenovector targeting in vivo indicating anatomical vector barriers. Gene Ther 6, 1520–1535.[CrossRef] [Google Scholar]
  47. Fender, P., Boussaid, A., Mezin, P. & Chroboczek, J.(2005). Synthesis, cellular localization, and quantification of penton-dodecahedron in serotype 3 adenovirus-infected cells. Virology 340, 167–173.[CrossRef] [Google Scholar]
  48. Fender, P., Schoehn, G., Perron-Sierra, F., Tucker, G. C. & Lortat-Jacob, H.(2008). Adenovirus dodecahedron cell attachment and entry are mediated by heparan sulfate and integrins and vary along the cell cycle. Virology 371, 155–164.[CrossRef] [Google Scholar]
  49. Fleischli, C., Sirena, D., Lesage, G., Havenga, M. J., Cattaneo, R., Greber, U. F. & Hemmi, S.(2007). Species B adenovirus serotypes 3, 7, 11 and 35 share similar binding sites on the membrane cofactor protein CD46 receptor. J Gen Virol 88, 2925–2934.[CrossRef] [Google Scholar]
  50. Flomenberg, P., Piaskowski, V., Truitt, R. L. & Caspar, J. T.(1995). Characterisation of human T proliferative T cell response to adenovirus. J Infect Dis 171, 1090–1096.[CrossRef] [Google Scholar]
  51. Fuschiotti, P., Schoehn, G., Fender, P., Fabry, C. M., Hewat, E. A., Chroboczek, J., Ruigrok, R. W. & Conway, J. F.(2006). Structure of the dodecahedral penton particle from human adenovirus type 3. J Mol Biol 356, 510–520.[CrossRef] [Google Scholar]
  52. Gaggar, A., Shayakhmetov, D. M., Liszewski, M. K., Atkinson, J. P. & Lieber, A.(2005). Localization of regions in CD46 that interact with adenovirus. J Virol 79, 7503–7513.[CrossRef] [Google Scholar]
  53. Gaggar, A., Shayakhmetov, D. & Lieber, A.(2007). Identifying functional adenovirus-host interactions using tandem mass spectrometry. Methods Mol Med 131, 141–155. [Google Scholar]
  54. Gahery-Segard, H., Farace, F., Godfrin, D., Gaston, J., Lengagne, R., Tursz, T., Boulanger, P. & Guillet, J. G.(1998). Immune response to recombinant capsid proteins of adenovirus in humans: antifiber and anti-penton base antibodies have a synergistic effect on neutralizing activity. J Virol 72, 2388–2397. [Google Scholar]
  55. Gall, J. G., Crystal, R. G. & Falck-Pedersen, E.(1998). Construction and characterization of hexon-chimeric adenoviruses: specification of adenovirus serotype. J Virol 72, 10260–10264. [Google Scholar]
  56. Ginsberg, H. S.(1999). The life and times of adenoviruses. Adv Virus Res 54, 1–13. [Google Scholar]
  57. Ginsberg, H. S., Moldawer, L. L. & Prince, G. A.(1999). Role of the type 5 adenovirus gene encoding the early region 1B 55-kDa protein in pulmonary pathogenesis. Proc Natl Acad Sci U S A 96, 10409–10411.[CrossRef] [Google Scholar]
  58. Goding, C. R. & Russell, W. C.(1983a). Adenovirus cores can function as templates in in vitro DNA replication. EMBO J 2, 339–344. [Google Scholar]
  59. Goding, C. R. & Russell, W. C.(1983b). S1 sensitive sites in adenovirus DNA. Nucleic Acids Res 11, 21–36.[CrossRef] [Google Scholar]
  60. Gorman, J. J., Wallis, T. P., Whelan, D. A., Shaw, J. & Both, G. W.(2005). LH3, a “homologue” of the mastadenoviral E1B 55-kDa protein is a structural protein of atadenoviruses. Virology 342, 159–166.[CrossRef] [Google Scholar]
  61. Granberg, F., Svensson, C., Pettersson, U. & Zhao, H.(2005). Modulation of host cell gene expression during onset of the late phase of an adenovirus infection is focused on growth inhibition and cell architecture. Virology 343, 236–245.[CrossRef] [Google Scholar]
  62. Granberg, F., Svensson, C., Pettersson, U. & Zhao, H.(2006). Adenovirus-induced alterations in host cell gene expression prior to the onset of viral gene expression. Virology 353, 1–5.[CrossRef] [Google Scholar]
  63. Greber, U. F., Suomalainen, M., Stidwell, R. P., Boucke, K., Ebersold, M. W. & Helenius, A.(1997). The role of the nuclear complex in adenovirus DNA entry. EMBO J 16, 5998–6007.[CrossRef] [Google Scholar]
  64. Green, N. M., Wrigley, N. G., Russell, W. C., Martin, S. R. & McLachlan, A. D.(1983). Evidence for a repeating cross-β sheet structure in the adenovirus fibre. EMBO J 2, 1357–1365. [Google Scholar]
  65. Gruber, W. C., Russell, D. J. & Tibbetts, C.(1993). Fiber gene and genomic origin of human adenovirus type 4. Virology 196, 603–611.[CrossRef] [Google Scholar]
  66. Gupta, S., Mangel, W. F., McGrath, W. J., Perek, J. L., Lee, D. W., Takamoto, K. & Chance, M. R.(2004). DNA binding provides a molecular strap activating the adenovirus proteinase. Mol Cell Proteomics 3, 950–959.[CrossRef] [Google Scholar]
  67. Gyurcsik, B., Haruki, H., Takahashi, T., Mihara, H. & Nagata, K.(2006). Binding modes of the precursor of adenovirus major core protein VII to DNA and template activating factor I: implication for the mechanism of remodeling of the adenovirus chromatin. Biochemistry 45, 303–313.[CrossRef] [Google Scholar]
  68. Harpst, J. A., Ennever, J. F. & Russell, W. C.(1977). Physical properties of nucleoprotein cores from adenovirus type 5. Nucleic Acids Res 4, 477–490.[CrossRef] [Google Scholar]
  69. Hartman, Z. C., Black, E. P. & Amalfitano, A.(2007a). Adenoviral infection induces a multi-faceted innate cellular immune response that is mediated by the toll-like receptor pathway in A549 cells. Virology 358, 357–372.[CrossRef] [Google Scholar]
  70. Hartman, Z. C., Kiang, A., Everett, R. S., Serra, D., Yang, X. Y., Clay, T. M. & Amalfitano, A.(2007b). Adenovirus infection triggers a rapid, MyD88-regulated transcriptome response critical to acute-phase and adaptive immune responses in vivo. J Virol 81, 1796–1812.[CrossRef] [Google Scholar]
  71. Hartman, Z. C., Appledorn, D. M. & Amalfitano, A.(2008). Adenovirus vector induced innate immune responses: impact upon efficacy and toxicity in gene therapy and vaccine applications. Virus Res 132, 1–14.[CrossRef] [Google Scholar]
  72. Haruki, H., Okuwaki, M., Miyagishi, M., Taira, K. & Nagata, K.(2006). Involvement of template-activating factor I/SET in transcription of adenovirus early genes as a positive-acting factor. J Virol 80, 794–801.[CrossRef] [Google Scholar]
  73. Hay, R. T., Freeman, A., Leith, I., Monaghan, A. & Webster, A.(1995). Molecular interactions during adenovirus DNA replication. Curr Top Microbiol Immunol 199, 31–48. [Google Scholar]
  74. Henning, P., Lundgren, E., Carlsson, M., Frykholm, K., Johannisson, J., Magnusson, M. K., Tang, E., Franqueville, L., Hong, S. S. & other authors(2006). Adenovirus type 5 fiber knob domain has a critical role in fiber protein synthesis and encapsidation. J Gen Virol 87, 3151–3160.[CrossRef] [Google Scholar]
  75. Hindley, C. E., Lawrence, F. J. & Matthews, D. A.(2007). A role for transportin in the nuclear import of adenovirus core proteins and DNA. Traffic 8, 1313–1322.[CrossRef] [Google Scholar]
  76. Ho, M. & Kohler, K.(1967). Studies on human adenoviruses as inducers of interferon in chick cells. Arch Gesamte Virusforsch 22, 69–78.[CrossRef] [Google Scholar]
  77. Hong, S. S., Habib, N. A., Franqueville, L., Jensen, S. & Boulanger, P. A.(2003). Identification of adenovirus (Ad) penton base neutralizing epitopes by use of sera from patients who had received conditionally replicative Ad (Addl1520) for treatment of liver tumors. J Virol 77, 10366–10375.[CrossRef] [Google Scholar]
  78. Honkavuori, K. S., Pollard, B. D., Rodriguez, M. S., Hay, R. T. & Kemp, G. D.(2004). Dual role of the adenovirus pVI C terminus as a nuclear localisation signal and activator of the viral protease. J Gen Virol 85, 3367–3376.[CrossRef] [Google Scholar]
  79. Howitt, J., Bewley, M. C., Graziano, V., Flanagan, J. M. & Freimuth, P.(2003). Structural basis for variation in adenovirus affinity for the cellular coxsackievirus and adenovirus receptor. J Biol Chem 278, 26208–26215.[CrossRef] [Google Scholar]
  80. Iacobelli-Martinez, M. & Nemerow, G. R.(2007). Preferential activation of Toll-like receptor nine by CD46-utilizing adenoviruses. J Virol 81, 1305–1312.[CrossRef] [Google Scholar]
  81. Jogler, C., Hoffmann, D., Theegarten, D., Grunwald, T., Uberla, K. & Wildner, O.(2006). Replication properties of human adenovirus in vivo and in cultures of primary cells from different animal species. J Virol 80, 3549–3558.[CrossRef] [Google Scholar]
  82. Johansson, C., Jonsson, M., Marttila, M., Persson, D., Fan, X. L., Skog, J., Frangsmyr, L., Wadell, G. & Arnberg, N.(2007). Adenoviruses use lactoferrin as a bridge for CAR-independent binding to and infection of epithelial cells. J Virol 81, 954–963.[CrossRef] [Google Scholar]
  83. Johnson, J. S., Osheim, Y. N., Xue, Y., Emanuel, M. R., Lewis, P. W., Bankovich, A., Beyer, A. L. & Engel, D. A.(2004). Adenovirus protein VII condenses DNA, represses transcription, and associates with transcriptional activator E1A. J Virol 78, 6459–6468.[CrossRef] [Google Scholar]
  84. Kalyuzhniy, O., Di Paulo, N. C., Silvestry, M., Hofherr, S. E., Barry, M. A., Stewart, P. L. & Shayakhmetov, D. M.(2008). Adenovirus serotype 5 hexon is critical for virus infection of hepatocytes in vivo. Proc Natl Acad Sci U S A 105, 5483–5488.[CrossRef] [Google Scholar]
  85. Kiang, A., Hartman, Z. C., Everett, R. S., Serra, D., Jiang, H., Frank, M. M. & Amalfitano, A.(2006). Multiple innate inflammatory responses induced after systemic adenovirus vector delivery depend on a functional complement system. Mol Ther 14, 588–598.[CrossRef] [Google Scholar]
  86. Kidd, A. H., Chroboczek, J., Cusack, S. & Ruigrok, R. W.(1993). Adenovirus type 40 virions contain two distinct fibres. Virology 192, 73–84.[CrossRef] [Google Scholar]
  87. Kim, Y. M., Brinkmann, M. M., Paquet, M. E. & Ploegh, H. L.(2008). UNC93B1 delivers nucleotide-sensing toll-like receptors to endolysosomes. Nature 452, 234–238.[CrossRef] [Google Scholar]
  88. Lawrence, F. J., McStay, B. & Matthews, D. A.(2006). Nucleolar protein upstream binding factor is sequestered into adenovirus DNA replication centres during infection without affecting RNA polymerase I location or ablating rRNA synthesis. J Cell Sci 119, 2621–2631.[CrossRef] [Google Scholar]
  89. Lecollinet, S., Gavard, F., Havenga, M. J., Spiller, O. B., Lemckert, A., Goudsmit, J., Eloit, M. & Richardson, J.(2006). Improved gene delivery to intestinal mucosa by adenoviral vectors bearing subgroup B and d fibers. J Virol 80, 2747–2759.[CrossRef] [Google Scholar]
  90. Lee, T. W., Blair, G. E. & Matthews, D. A.(2003). Adenovirus core protein VII contains distinct sequences that mediate targeting to the nucleus and nucleolus, and colocalization with human chromosomes. J Gen Virol 84, 3423–3428.[CrossRef] [Google Scholar]
  91. Lee, T. W., Lawrence, F. J., Dauksaite, V., Akusjarvi, G., Blair, G. E. & Matthews, D. A.(2004). Precursor of human adenovirus core polypeptide Mu targets the nucleolus and modulates the expression of E2 proteins. J Gen Virol 85, 185–196.[CrossRef] [Google Scholar]
  92. Leen, A. M., Sili, U., Vanin, E. F., Jewell, A. M., Xie, W., Vignali, D., Piedra, P. A., Brenner, M. K. & Rooney, C. M.(2004). Conserved CTL epitopes on the adenovirus hexon protein expand subgroup cross-reactive and subgroup-specific CD8+ T cells. Blood 104, 2432–2440.[CrossRef] [Google Scholar]
  93. Leen, A. M., Christin, A., Khalil, M., Weiss, H., Gee, A. P., Brenner, M. K., Heslop, H. E., Rooney, C. M. & Bollard, C. M.(2008). Identification of hexon-specific CD4 and CD8 T-cell epitopes for vaccine and immunotherapy. J Virol 82, 546–554.[CrossRef] [Google Scholar]
  94. Lehmberg, E., Traina, J. A., Chakel, J. A., Chang, R. J., Parkman, M., McCaman, M. T., Murakami, P. K., Lahidji, V., Nelson, J. W. & other authors(1999). Reversed-phase high-performance liquid chromatographic assay for the adenovirus type 5 proteome. J Chromatogr B Biomed Sci Appl 732, 411–423.[CrossRef] [Google Scholar]
  95. Leopold, P. L. & Crystal, R. G.(2007). Intracellular trafficking: many means to many ends. Adv Drug Deliv Rev 59, 810–821.[CrossRef] [Google Scholar]
  96. Leopold, P. L., Kreitzer, G., Miyazawa, N., Rempel, S., Pfister, K. K., Rodriguez-Boulan, E. & Crystal, R. G.(2000). Dynein- and microtubule-mediated translocation of adenovirus serotype 5 occurs after endosomal lysis. Hum Gene Ther 11, 151–165.[CrossRef] [Google Scholar]
  97. Li, E., Stupack, D., Bokoch, G. M. & Nemerow, G. R.(1998a). Adenovirus endocytosis requires actin cytoskeleton reorganization mediated by Rho family GTPases. J Virol 72, 8806–8812. [Google Scholar]
  98. Li, E., Stupack, D., Klemke, R., Cheresh, D. A. & Nemerow, G. R.(1998b). Adenovirus endocytosis via αv integrins requires phosphoinositide-3-OH kinase. J Virol 72, 2055–2061. [Google Scholar]
  99. Li, J., Lad, S., Yang, G., Luo, Y., Iacobelli-Martinez, M., Primus, F. J., Reisfeld, R. A. & Li, E.(2006). Adenovirus fiber shaft contains a trimerization element that supports peptide fusion for targeted gene delivery. J Virol 80, 12324–12331.[CrossRef] [Google Scholar]
  100. Lichtenstein, D. L. & Wold, W. S.(2004). Experimental infections of humans with wild-type adenoviruses and with replication-competent adenovirus vectors: replication, safety, and transmission. Cancer Gene Ther 11, 819–829.[CrossRef] [Google Scholar]
  101. Liu, G. Q., Babiss, L. E., Volkert, F. C., Young, C. S. & Ginsberg, H. S.(1985). A thermolabile mutant of adenovirus 5 resulting from a substitution mutation in the protein VIII gene. J Virol 53, 920–925. [Google Scholar]
  102. Liu, H., Naismith, J. H. & Hay, R. T.(2003). Adenovirus DNA replication. Curr Top Microbiol Immunol 272, 131–164. [Google Scholar]
  103. Lukashev, A. N., Ivanova, O. E., Eremeeva, T. P. & Iggo, R. D.(2008). Evidence of frequent recombination among human adenoviruses. J Gen Virol 89, 380–388.[CrossRef] [Google Scholar]
  104. Madisch, I., Harste, G., Pommer, H. & Heim, A.(2005). Phylogenetic analysis of the main neutralization and hemagglutination determinants of all human adenovirus prototypes as a basis for molecular classification and taxonomy. J Virol 79, 15265–15276.[CrossRef] [Google Scholar]
  105. Madisch, I., Hofmayer, S., Moritz, C., Grintzalis, A., Hainmueller, J., Pring-Akerblom, P. & Heim, A.(2007). Phylogenetic analysis and structural predictions of human adenovirus penton proteins as a basis for tissue-specific adenovirus vector design. J Virol 81, 8270–8281.[CrossRef] [Google Scholar]
  106. Mangel, W. F., McGrath, W. J., Toledo, D. L. & Anderson, C. W.(1993). Viral DNA and a viral peptide can act as cofactors of adenovirus virion proteinase activity. Nature 361, 274–275.[CrossRef] [Google Scholar]
  107. Mangel, W. F., Baniecki, M. L. & McGrath, W. J.(2003). Specific interactions of the adenovirus proteinase with the viral DNA, an 11-amino-acid viral peptide, and the cellular protein actin. Cell Mol Life Sci 60, 2347–2355.[CrossRef] [Google Scholar]
  108. Marsh, M. P., Campos, S. K., Baker, M. L., Chen, C. Y., Chiu, W. & Barry, M. A.(2006). Cryoelectron microscopy of protein IX-modified adenoviruses suggests a new position for the C terminus of protein IX. J Virol 80, 11881–11886.[CrossRef] [Google Scholar]
  109. Marttila, M., Persson, D., Gustafsson, D., Liszewski, M. K., Atkinson, J. P., Wadell, G. & Arnberg, N.(2005). CD46 is a cellular receptor for all species B adenoviruses except types 3 and 7. J Virol 79, 14429–14436.[CrossRef] [Google Scholar]
  110. Mathias, P., Wickham, T., Moore, M. & Nemerow, G.(1994). Multiple adenovirus serotypes use αv integrins for infection. J Virol 68, 6811–6814. [Google Scholar]
  111. Matthews, D. A.(2001). Adenovirus protein V induces redistribution of nucleolin and B23 from nucleolus to cytoplasm. J Virol 75, 1031–1038.[CrossRef] [Google Scholar]
  112. Matthews, D. A. & Russell, W. C.(1994). Adenovirus protein–protein interactions: hexon and protein VI. J Gen Virol 75, 3365–3374.[CrossRef] [Google Scholar]
  113. Matthews, D. A. & Russell, W. C.(1995). Adenovirus protein–protein interactions: molecular parameters governing the binding of protein VI to hexon and the activation of the adenovirus 23K protease. J Gen Virol 76, 1959–1969.[CrossRef] [Google Scholar]
  114. Matthews, D. A. & Russell, W. C.(1998a). Adenovirus core protein V interacts with p32 – a protein which is associated with both the mitochondria and the nucleus. J Gen Virol 79, 1677–1685. [Google Scholar]
  115. Matthews, D. A. & Russell, W. C.(1998b). Adenovirus core protein V is delivered by the invading virus to the nucleus of the infected cell and later in infection is associated with nucleoli. J Gen Virol 79, 1671–1675. [Google Scholar]
  116. McGrath, W. J., Ding, J., Didwania, A., Sweet, R. M. & Mangel, W. F.(2003). Crystallographic structure at 1.6 Å resolution of the human adenovirus proteinase in a covalent complex with its 11-amino-acid peptide cofactor: insights on a new fold. Biochim Biophys Acta 1648, 1–11.[CrossRef] [Google Scholar]
  117. McSharry, B. P., Burgert, H. G., Owen, D. P., Stanton, R. J., Prod'homme, V., Sester, M., Koebernick, K., Groh, V., Spies, T. & other authors(2008). Adenovirus E3/19K promotes evasion of NK cell recognition by intracellular sequestration of the NKG2D ligands major histocompatibility complex class I chain-related proteins A and B. J Virol 82, 4585–4594.[CrossRef] [Google Scholar]
  118. Meier, O. & Greber, U. F.(2004). Adenovirus endocytosis. J Gene Med 6 (Suppl. 1), S152–S163.[CrossRef] [Google Scholar]
  119. Meulenbroek, R. A., Sargent, K. L., Lunde, J., Jasmin, B. J. & Parks, R. J.(2004). Use of adenovirus protein IX (pIX) to display large polypeptides on the virion – generation of fluorescent virus through the incorporation of pIX-GFP. Mol Ther 9, 617–624.[CrossRef] [Google Scholar]
  120. Miller, D. L., Myers, C. L., Rickards, B., Coller, H. A. & Flint, S. J.(2007). Adenovirus type 5 exerts genome-wide control over cellular programs governing proliferation, quiescence, and survival. Genome Biol 8, R58[CrossRef] [Google Scholar]
  121. Molinier-Frenkel, V., Lengagne, R., Gaden, F., Hong, S. S., Choppin, J., Gahery-Segard, H., Boulanger, P. & Guillet, J. G.(2002). Adenovirus hexon protein is a potent adjuvant for activation of a cellular immune response. J Virol 76, 127–135.[CrossRef] [Google Scholar]
  122. Muruve, D. A.(2004). The innate immune response to adenovirus vectors. Hum Gene Ther 15, 1157–1166.[CrossRef] [Google Scholar]
  123. Nakano, M. Y., Boucke, K., Suomalainen, M., Stidwill, R. P. & Greber, U. F.(2000). The first step of adenovirus type 2 disassembly occurs at the cell surface, independently of endocytosis and escape to the cytosol. J Virol 74, 7085–7095.[CrossRef] [Google Scholar]
  124. Nemerow, G. R.(2002). Biology of adenovirus cell entry. In Adenovirus Vectors for Gene Therapy, pp. 19–38. Edited by D. T. Curiel & J. T. Douglas. San Diego: Academic Press.
  125. Nermut, M. V., Harpst, J. A. & Russell, W. C.(1975). Electron microscopy of adenovirus cores. J Gen Virol 28, 49–58.[CrossRef] [Google Scholar]
  126. Nicklin, S. A., Wu, E., Nemerow, G. R. & Baker, A. H.(2005). The influence of adenovirus fiber structure and function on vector development for gene therapy. Mol Ther 12, 384–393.[CrossRef] [Google Scholar]
  127. Nociari, M., Ocheretina, O., Schoggins, J. W. & Falck-Pedersen, E.(2007). Sensing infection by adenovirus: TLR-independent viral DNA recognition signals activation of the IRF3 master regulator. J Virol 81, 4145–4157.[CrossRef] [Google Scholar]
  128. Olive, M., Eisenlohr, L., Flomenberg, N., Hsu, S. & Flomenberg, P.(2002). The adenovirus capsid protein hexon contains a highly conserved human CD4+ T-cell epitope. Hum Gene Ther 13, 1167–1178.[CrossRef] [Google Scholar]
  129. Onion, D., Crompton, L. J., Milligan, D. W., Moss, P. A., Lee, S. P. & Mautner, V.(2007). The CD4+ T-cell response to adenovirus is focused against conserved residues within the hexon protein. J Gen Virol 88, 2417–2425.[CrossRef] [Google Scholar]
  130. Ostapchuk, P. & Hearing, P.(2008). Adenovirus IVa2 protein binds ATP. J Virol 82, 10290–10294.[CrossRef] [Google Scholar]
  131. Ostapchuk, P., Yang, J., Auffarth, E. & Hearing, P.(2005). Functional interaction of the adenovirus IVa2 protein with adenovirus type 5 packaging sequences. J Virol 79, 2831–2838.[CrossRef] [Google Scholar]
  132. Ostapchuk, P., Anderson, M. E., Chandrasekhar, S. & Hearing, P.(2006). The L4 22-kilodalton protein plays a role in packaging of the adenovirus genome. J Virol 80, 6973–6981.[CrossRef] [Google Scholar]
  133. Pantelic, R. S., Lockett, L. J., Rothnagel, R., Hankamer, B. & Both, G. W.(2008). Cryoelectron microscopy map of atadenovirus reveals cross-genus structural differences from human adenovirus. J Virol 82, 7346–7356.[CrossRef] [Google Scholar]
  134. Pardo-Mateos, A. & Young, C. S.(2004). Adenovirus IVa2 protein plays an important role in transcription from the major late promoter in vivo. Virology 327, 50–59.[CrossRef] [Google Scholar]
  135. Patterson, S. & Russell, W. C.(1983). Ultrastructural and immunofluorescence studies of early events in adenovirus–HeLa cell interactions. J Gen Virol 64, 1091–1099.[CrossRef] [Google Scholar]
  136. Pehler-Harrington, K., Khanna, M., Waters, C. R. & Henrickson, K. J.(2004). Rapid detection and identification of human adenovirus species by adenoplex, a multiplex PCR–enzyme hybridization assay. J Clin Microbiol 42, 4072–4076.[CrossRef] [Google Scholar]
  137. Pereira, H. G.(1958). A protein factor responsible for the early cytopathic effect of adenoviruses. Virology 6, 601–611.[CrossRef] [Google Scholar]
  138. Perez-Romero, P., Tyler, R. E., Abend, J. R., Dus, M. & Imperiale, M. J.(2005). Analysis of the interaction of the adenovirus L1 52/55-kilodalton and IVa2 proteins with the packaging sequence in vivo and in vitro. J Virol 79, 2366–2374.[CrossRef] [Google Scholar]
  139. Perreau, M. & Kremer, E. J.(2005). Frequency, proliferation, and activation of human memory T cells induced by a nonhuman adenovirus. J Virol 79, 14595–14605.[CrossRef] [Google Scholar]
  140. Persson, B. D., Reiter, D. M., Marttila, M., Mei, Y. F., Casasnovas, J. M., Arnberg, N. & Stehle, T.(2007). Adenovirus type 11 binding alters the conformation of its receptor CD46. Nat Struct Mol Biol 14, 164–166.[CrossRef] [Google Scholar]
  141. Philipson, L. & Pettersson, R. F.(2004). The coxsackie-adenovirus receptor – a new receptor in the immunoglobulin family involved in cell adhesion. Curr Top Microbiol Immunol 273, 87–111. [Google Scholar]
  142. Pichla-Gollon, S. L., Drinker, M., Zhou, X., Xue, F., Rux, J. J., Gao, G. P., Wilson, J. M., Ertl, H. C., Burnett, R. M. & Bergelson, J. M.(2006). Structure-based identification of a major neutralizing site in an adenovirus hexon. J Virol 81, 1680–1689. [Google Scholar]
  143. Randall, R. E. & Goodbourn, S.(2008). Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol 89, 1–47.[CrossRef] [Google Scholar]
  144. Rekosh, D. M., Russell, W. C., Bellet, A. J. & Robinson, A. J.(1977). Identification of a protein linked to the ends of adenovirus DNA. Cell 11, 283–295.[CrossRef] [Google Scholar]
  145. Rentsendorj, A., Xie, J., Macveigh, M., Agadjanian, H., Bass, S., Kim, D. H., Rossi, J., Hamm-Alvarez, S. F. & Medina-Kauwe, L. K.(2006). Typical and atypical trafficking pathways of Ad5 penton base recombinant protein: implications for gene transfer. Gene Ther 13, 821–836. [Google Scholar]
  146. Rexroad, J., Evans, R. K. & Middaugh, C. R.(2006a). Effect of pH and ionic strength on the physical stability of adenovirus type 5. J Pharm Sci 95, 237–247.[CrossRef] [Google Scholar]
  147. Rexroad, J., Martin, T. T., McNeilly, D., Godwin, S. & Middaugh, C. R.(2006b). Thermal stability of adenovirus type 2 as a function of pH. J Pharm Sci 95, 1469–1479.[CrossRef] [Google Scholar]
  148. Roberts, D. M., Nanda, A., Havenga, M. J., Abbink, P., Lynch, D. M., Ewald, B. A., Liu, J., Thorner, A. R., Swanson, P. E. & other authors(2006). Hexon-chimaeric adenovirus serotype 5 vectors circumvent pre-existing anti-vector immunity. Nature 441, 239–243.[CrossRef] [Google Scholar]
  149. Routes, J. M., Ryan, S., Morris, K., Takaki, R., Cerwenka, A. & Lanier, L. L.(2005). Adenovirus serotype 5 E1A sensitizes tumor cells to NKG2D-dependent NK cell lysis and tumor rejection. J Exp Med 202, 1477–1482.[CrossRef] [Google Scholar]
  150. Ruben, M., Bacchetti, S. & Graham, F.(1983). Covalently closed circles of adenovirus 5 DNA. Nature 301, 172–174.[CrossRef] [Google Scholar]
  151. Russell, W. C.(2000). Update on adenovirus and its vectors. J Gen Virol 81, 2573–2604. [Google Scholar]
  152. Russell, W. C.(2005). Adenoviruses. In Topley and Wilson's Microbiology and Microbial Infections, 9th edn, pp. 439–447. Edited by B. W. J. Mahy & V. ter Meulen. London: Hodder Arnold.
  153. Russell, W. C. & Blair, G. E.(1977). Polypeptide phosphorylation in adenovirus-infected cells. J Gen Virol 34, 19–35.[CrossRef] [Google Scholar]
  154. Russell, W. C. & Kemp, G. D.(1995). The role of adenovirus structural proteins in the regulation of adenovirus infection. In Molecular Repertoire of Adenoviruses, pp. 81–98. Edited by W. Doerfler & P. Bohm. Berlin, Heidelberg: Springer Verlag.
  155. Russell, W. C. & Matthews, D. A.(2003). Nuclear perturbations following adenovirus infection. In Adenoviruses, pp. 399–413. Edited by W. Doerfler & P. Bohm. Berlin, Heidelberg: Springer Verlag.
  156. Russell, W. C. & Precious, B.(1982). Nucleic acid-binding properties of adenovirus structural polypeptides. J Gen Virol 63, 69–79.[CrossRef] [Google Scholar]
  157. Russell, W. C., Hayashi, K., Sanderson, P. J. & Pereira, H. G.(1967a). Adenovirus antigens – a study of their properties and sequential development in infection. J Gen Virol 1, 495–507.[CrossRef] [Google Scholar]
  158. Russell, W. C., Valentine, R. C. & Pereira, H. G.(1967b). The effect of heat on the anatomy of the adenovirus. J Gen Virol 1, 509–522.[CrossRef] [Google Scholar]
  159. Russell, W. C., McIntosh, K. & Skehel, J. J.(1971). The preparation and properties of adenovirus cores. J Gen Virol 11, 35–46.[CrossRef] [Google Scholar]
  160. Rux, J. J. & Burnett, R. M.(2004). Adenovirus structure. Hum Gene Ther 15, 1167–1176.[CrossRef] [Google Scholar]
  161. Rux, J. J., Kuser, P. R. & Burnett, R. M.(2003). Structural and phylogenetic analysis of adenovirus hexons by use of high-resolution X-ray crystallographic, molecular modeling, and sequence-based methods. J Virol 77, 9553–9566.[CrossRef] [Google Scholar]
  162. Ruzek, M. C., Kavanagh, B. F., Scaria, A., Richards, S. M. & Garman, R. D.(2002). Adenoviral vectors stimulate murine natural killer cell responses and demonstrate antitumor activities in the absence of transgene expression. Mol Ther 5, 115–124.[CrossRef] [Google Scholar]
  163. Saban, S. D., Nepomuceno, R. R., Gritton, L. D., Nemerow, G. R. & Stewart, P. L.(2005). CryoEM structure at 9 Å resolution of an adenovirus vector targeted to hematopoietic cells. J Mol Biol 349, 526–537.[CrossRef] [Google Scholar]
  164. Saban, S. D., Silvestry, M., Nemerow, G. R. & Stewart, P. L.(2006). Visualization of α-helices in a 6 Ångstrom resolution cryoelectron microscopy structure of adenovirus allows refinement of capsid protein assignments. J Virol 80, 12049–12059.[CrossRef] [Google Scholar]
  165. Samad, M. A., Okuwaki, M., Haruki, H. & Nagata, K.(2007). Physical and functional interaction between a nucleolar protein nucleophosmin/B23 and adenovirus basic core proteins. FEBS Lett 581, 3283–3288.[CrossRef] [Google Scholar]
  166. Saphire, A. C., Guan, T., Schirmer, E. C., Nemerow, G. R. & Gerace, L.(2000). Nuclear import of adenovirus DNA in vitro involves the nuclear protein import pathway and hsc70. J Biol Chem 275, 4298–4304.[CrossRef] [Google Scholar]
  167. Schoehn, G., El Bakkouri, M., Fabry, C. M., Billet, O., Estrozi, L. F., Le, L., Curiel, D. T., Kajava, A. V., Ruigrok, R. W. & Kremer, E. J.(2008). 3D structure of canine adenovirus serotype 2 capsid. J Virol 82, 3192–3203.[CrossRef] [Google Scholar]
  168. Segerman, A., Arnberg, N., Erikson, A., Lindman, K. & Wadell, G.(2003a). There are two different species B adenovirus receptors: sBAR, common to species B1 and B2 adenoviruses, and sB2AR, exclusively used by species B2 adenoviruses. J Virol 77, 1157–1162.[CrossRef] [Google Scholar]
  169. Segerman, A., Atkinson, J. P., Marttila, M., Dennerquist, V., Wadell, G. & Arnberg, N.(2003b). Adenovirus type 11 uses CD46 as a cellular receptor. J Virol 77, 9183–9191.[CrossRef] [Google Scholar]
  170. Seiradake, E. & Cusack, S.(2005). Crystal structure of enteric adenovirus serotype 41 short fiber head. J Virol 79, 14088–14094.[CrossRef] [Google Scholar]
  171. Shayakhmetov, D. M., Li, Z. Y., Ni, S. & Lieber, A.(2004). Analysis of adenovirus sequestration in the liver, transduction of hepatic cells, and innate toxicity after injection of fiber-modified vectors. J Virol 78, 5368–5381.[CrossRef] [Google Scholar]
  172. Shayakhmetov, D. M., Eberly, A. M., Li, Z. Y. & Lieber, A.(2005a). Deletion of penton RGD motifs affects the efficiency of both the internalization and the endosome escape of viral particles containing adenovirus serotype 5 or 35 fiber knobs. J Virol 79, 1053–1061.[CrossRef] [Google Scholar]
  173. Shayakhmetov, D. M., Gaggar, A., Ni, S., Li, Z. Y. & Lieber, A.(2005b). Adenovirus binding to blood factors results in liver cell infection and hepatotoxicity. J Virol 79, 7478–7491.[CrossRef] [Google Scholar]
  174. Short, J. J., Pereboev, A. V., Kawakami, Y., Vasu, C., Holterman, M. J. & Curiel, D. T.(2004). Adenovirus serotype 3 utilizes CD80 (B7.1) and CD86 (B7.2) as cellular attachment receptors. Virology 322, 349–359.[CrossRef] [Google Scholar]
  175. Short, J. J., Vasu, C., Holterman, M. J., Curiel, D. T. & Pereboev, A.(2006). Members of adenovirus species B utilize CD80 and CD86 as cellular attachment receptors. Virus Res 122, 144–153.[CrossRef] [Google Scholar]
  176. Singh, M., Shmulevitz, M. & Tikoo, S. K.(2005). A newly identified interaction between IVa2 and pVIII proteins during porcine adenovirus type 3 infection. Virology 336, 60–69.[CrossRef] [Google Scholar]
  177. Sirena, D., Lilienfeld, B., Eisenhut, M., Kalin, S., Boucke, K., Beerli, R. R., Vogt, L., Ruedl, C., Bachmann, M. F. & other authors(2004). The human membrane cofactor CD46 is a receptor for species B adenovirus serotype 3. J Virol 78, 4454–4462.[CrossRef] [Google Scholar]
  178. Smith, J. G. & Nemerow, G. R.(2008). Mechanism of adenovirus neutralisation by human α-defensins. Cell Host Microbe 3, 11–19.[CrossRef] [Google Scholar]
  179. Smith, J. G., Cassany, A., Gerace, L., Ralston, R. & Nemerow, G. R.(2008). Neutralising antibody blocks adenovirus infection by arresting microtubule dependent cytoplasmic transport. J Virol 82, 6492–6500.[CrossRef] [Google Scholar]
  180. Smith, T. A., Idamakanti, N., Marshall-Neff, J., Rollence, M. L., Wright, P., Kaloss, M., King, L., Mech, C., Dinges, L. & other authors(2003). Receptor interactions involved in adenoviral-mediated gene delivery after systemic administration in non-human primates. Hum Gene Ther 14, 1595–1604.[CrossRef] [Google Scholar]
  181. Souberbielle, B. E. & Russell, W. C.(1995). Human T cell proliferative response to polypeptides from adenovirus type 2. J Infect Dis 172, 1421–1422. (letter; comment) [Google Scholar]
  182. Spector, D. J.(2007). Default assembly of early adenovirus chromatin. Virology 359, 116–125.[CrossRef] [Google Scholar]
  183. Stallwood, Y., Fisher, K. D., Gallimore, P. H. & Mautner, V.(2000). Neutralisation of adenovirus infectivity by ascitic fluid from ovarian cancer patients. Gene Ther 7, 637–643.[CrossRef] [Google Scholar]
  184. Stewart, P. L., Fuller, S. D. & Burnett, R. M.(1993). Difference imaging of adenovirus: bridging the resolution gap between X-ray crystallography and electron microscopy. EMBO J 12, 2589–2599. [Google Scholar]
  185. Stilwell, J. L. & Samulski, R. J.(2004). Role of viral vectors and virion shells in cellular gene expression. Mol Ther 9, 337–346. [Google Scholar]
  186. Stone, D., Liu, Y., Li, Z. Y., Tuve, S., Strauss, R. & Lieber, A.(2007a). Comparison of Adenoviruses from species B, C, E, and F after intravenous delivery. Mol Ther 15, 2146–2153.[CrossRef] [Google Scholar]
  187. Stone, D., Liu, Y., Shayakhmetov, D., Li, Z. Y., Ni, S. & Lieber, A.(2007b). Adenovirus-platelet interaction in blood causes virus sequestration to the reticulo-endothelial system of liver. J Virol 81, 4866–4871.[CrossRef] [Google Scholar]
  188. Stonebraker, J. R., Wagner, D., Lefensty, R. W., Burns, K., Gendler, S. J., Bergelson, J. M., Boucher, R. C., O'Neal, W. K. & Pickles, R. J.(2004). Glycocalyx restricts adenoviral vector access to apical receptors expressed on respiratory epithelium in vitro and in vivo: role for tethered mucins as barriers to lumenal infection. J Virol 78, 13755–13768.[CrossRef] [Google Scholar]
  189. Strunze, S., Trotman, L. C., Boucke, K. & Greber, U. F.(2005). Nuclear targeting of adenovirus type 2 requires CRM1-mediated nuclear export. Mol Biol Cell 16, 2999–3009.[CrossRef] [Google Scholar]
  190. Sumida, S. M., Truitt, D. M., Lemckert, A. A., Vogels, R., Custers, J. H., Addo, M. M., Lockman, S., Peter, T., Peyerl, F. W. & other authors(2005). Neutralizing antibodies to adenovirus serotype 5 vaccine vectors are directed primarily against the adenovirus hexon protein. J Immunol 174, 7179–7185.[CrossRef] [Google Scholar]
  191. Sung, M. T., Cao, T. M., Coleman, R. T. & Budelier, K. A.(1983). Gene and protein sequences of adenovirus protein VII, a hybrid basic chromosomal protein. Proc Natl Acad Sci U S A 80, 2902–2906.[CrossRef] [Google Scholar]
  192. Suomalainen, M., Nakano, M. Y., Keller, S., Boucke, K., Stidwill, R. P. & Greber, U. F.(1999). Microtubule-dependent plus- and minus end-directed motilities are competing processes for nuclear targeting of adenovirus. J Cell Biol 144, 657–672.[CrossRef] [Google Scholar]
  193. Takaoka, A., Wang, Z., Choi, M. K., Yanai, H., Negishi, H., Ban, T., Lu, Y., Miyagishi, M., Kodama, T. & other authors(2007). DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448, 501–505.[CrossRef] [Google Scholar]
  194. Takeuchi, S., Itoh, N., Uchio, E., Aoki, K. & Ohno, S.(1999). Serotyping of adenoviruses on conjunctival scrapings by PCR and sequence analysis. J Clin Microbiol 37, 1839–1845. [Google Scholar]
  195. Tamanini, A., Nicolis, E., Bonizzato, A., Bezzerri, V., Melotti, P., Assael, B. M. & Cabrini, G.(2006). Interaction of adenovirus type 5 fiber with the coxsackievirus and adenovirus receptor activates inflammatory response in human respiratory cells. J Virol 80, 11241–11254.[CrossRef] [Google Scholar]
  196. Tang, J., Olive, M., Champagne, K., Flomenberg, N., Eisenlohr, L., Hsu, S. & Flomenberg, P.(2004). Adenovirus hexon T-cell epitope is recognized by most adults and is restricted by HLA DP4, the most common class II allele. Gene Ther 11, 1408–1415.[CrossRef] [Google Scholar]
  197. Tang, J., Olive, M., Pulmanausahakul, R., Schnell, M., Flomenberg, N., Eisenlohr, L. & Flomenberg, P.(2006). Human CD8+ cytotoxic T cell responses to adenovirus capsid proteins. Virology 350, 312–322.[CrossRef] [Google Scholar]
  198. Tang, Y., Le, L. P., Matthews, Q. L., Han, T., Wu, H. & Curiel, D. T.(2008). Derivation of a triple mosaic adenovirus based on modification of the minor capsid protein IX. Virology 377, 391–400.[CrossRef] [Google Scholar]
  199. Tarassishin, L., Szawlowski, P., Kidd, A. H. & Russell, W. C.(2000). An epitope on the adenovirus fibre tail is common to all human subgroups. Arch Virol 145, 805–811.[CrossRef] [Google Scholar]
  200. Tarodi, B., Blair, G. E., Rekosh, D. M. & Russell, W. C.(1979). Characterization of two temperature-sensitive mutants of adenovirus type 5. J Gen Virol 43, 531–540.[CrossRef] [Google Scholar]
  201. Ternovoi, V. V., Le, L. P., Belousova, N., Smith, B. F., Siegal, G. P. & Curiel, D. T.(2005). Productive replication of human adenovirus type 5 in canine cells. J Virol 79, 1308–1311.[CrossRef] [Google Scholar]
  202. Thomas, M. A., Spencer, J. F., La Regina, M. C., Dhar, D., Tollefson, A. E., Toth, K. & Wold, W. S.(2006). Syrian hamster as a permissive immunocompetent animal model for the study of oncolytic adenovirus vectors. Cancer Res 66, 1270–1276.[CrossRef] [Google Scholar]
  203. Tomasec, P., Wang, E. C., Groh, V., Spies, T., McSharry, B. P., Aicheler, R. J., Stanton, R. J. & Wilkinson, G. W.(2007). Adenovirus vector delivery stimulates natural killer cell recognition. J Gen Virol 88, 1103–1108.[CrossRef] [Google Scholar]
  204. Toogood, C. I., Crompton, J. & Hay, R. T.(1992). Antipeptide antisera define neutralizing epitopes on the adenovirus hexon. J Gen Virol 73, 1429–1435.[CrossRef] [Google Scholar]
  205. Toth, K., Spencer, J. F., Tollefson, A. E., Kuppuswamy, M., Doronin, K., Lichtenstein, D. L., Regina, M. C., Prince, G. A. & Wold, W. S.(2005). Cotton rat tumor model for the evaluation of oncolytic adenoviruses. Hum Gene Ther 16, 139–146.[CrossRef] [Google Scholar]
  206. Trotman, L. C., Mosberger, N., Fornerod, M., Stidwill, R. P. & Greber, U. F.(2001). Import of adenovirus DNA involves the nuclear pore complex receptor CAN/Nup214 and histone H1. Nat Cell Biol 3, 1092–1100.[CrossRef] [Google Scholar]
  207. Tsuzuki, J. & Luftig, R. B.(1983). The adenovirus type 5 capsid protein IIIa is phosphorylated during an early stage of infection of HeLa cells. Virology 129, 529–533.[CrossRef] [Google Scholar]
  208. Tsuzuki, J. & Luftig, R. B.(1985a). Evidence for the ubiquitous presence of a protein kinase in human adenoviruses capable of preferentially phosphorylating capsid protein IIIa. Intervirology 23, 90–96.[CrossRef] [Google Scholar]
  209. Tsuzuki, J. & Luftig, R. B.(1985b). An unexpected effect of divalent cations on the adenovirus endogenous protein kinase: alteration in the specificity of phosphorylation. Virus Res 2, 95–105.[CrossRef] [Google Scholar]
  210. Tyler, R. E., Ewing, S. G. & Imperiale, M. J.(2007). Formation of a multiple protein complex on the adenovirus packaging sequence by the IVa2 protein. J Virol 81, 3447–3454.[CrossRef] [Google Scholar]
  211. Ugai, H., Borovjagin, A. V., Le, L. P., Wang, M. & Curiel, D. T.(2007). Thermostability/infectivity defect caused by deletion of the core protein V gene in human adenovirus type 5 is rescued by thermo-selectable mutations in the core protein X precursor. J Mol Biol 366, 1142–1160.[CrossRef] [Google Scholar]
  212. Ustacelebi, S. & Williams, J. F.(1972). Temperature-sensitive mutants of adenovirus defective in interferon induction at non-permissive temperature. Nature 235, 52–53.[CrossRef] [Google Scholar]
  213. van Raaij, M. J., Mitraki, A., Lavigne, G. & Cusack, S.(1999). A triple β-spiral in the adenovirus fibre shaft reveals a new structural motif for a fibrous protein. Nature 401, 935–938.[CrossRef] [Google Scholar]
  214. Varghese, R., Mikyas, Y., Stewart, P. L. & Ralston, R.(2004). Postentry neutralization of adenovirus type 5 by an antihexon antibody. J Virol 78, 12320–12332.[CrossRef] [Google Scholar]
  215. Vellinga, J., Rabelink, M. J., Cramer, S. J., van den Wollenberg, D. J., Van der Meulen, H., Leppard, K. N., Fallaux, F. J. & Hoeben, R. C.(2004). Spacers increase the accessibility of peptide ligands linked to the carboxyl terminus of adenovirus minor capsid protein IX. J Virol 78, 3470–3479.[CrossRef] [Google Scholar]
  216. Vellinga, J., Van der Heijdt, S. & Hoeben, R. C.(2005). The adenovirus capsid: major progress in minor proteins. J Gen Virol 86, 1581–1588.[CrossRef] [Google Scholar]
  217. Vives, R. R., Lortat-Jacob, H., Chroboczek, J. & Fender, P.(2004). Heparan sulfate proteoglycan mediates the selective attachment and internalization of serotype 3 human adenovirus dodecahedron. Virology 321, 332–340.[CrossRef] [Google Scholar]
  218. Waddington, S. N., Parker, A. L., Havenga, M., Nicklin, S. A., Buckley, S. M., McVey, J. H. & Baker, A. H.(2007). Targeting of adenovirus serotype 5 (Ad5) and 5/47 pseudotyped vectors in vivo: a fundamental involvement of coagulation factors and redundancy of CAR binding by Ad5. J Virol 81, 9568–9571.[CrossRef] [Google Scholar]
  219. Waddington, S. N., McVey, J. H., Bhella, D., Parker, A. L., Barker, K., Atoda, H., Pink, R., Buckley, S. M., Greig, J. A. & other authors(2008). Adenovirus serotype 5 hexon mediates liver gene transfer. Cell 132, 397–409.[CrossRef] [Google Scholar]
  220. Walters, R. W., Freimuth, P., Moninger, T. O., Ganske, I., Zabner, J. & Welsh, M. J.(2002). Adenovirus fiber disrupts CAR-mediated intercellular adhesion allowing virus escape. Cell 110, 789–799.[CrossRef] [Google Scholar]
  221. Wang, H., Liaw, Y.-C., Stone, D., Kalyuzhniy, O., Amiraslanov, I., Tuve, S., Verlinde, C. L. M. J., Shayakhmetov, D., Stehle, T. & other authors(2007). Identification of CD46 binding sites within the adenovirus serotype 35 fiber knob. J Virol 81, 12785–12792.[CrossRef] [Google Scholar]
  222. Weber, J.(1976). Genetic analysis of adenovirus type 2. III. Temperature sensitivity of processing viral proteins. J Virol 17, 462–471. [Google Scholar]
  223. Webster, A. & Kemp, G.(1993). The active adenovirus protease is the intact L3 23K protein. J Gen Virol 74, 1415–1420.[CrossRef] [Google Scholar]
  224. Webster, A., Russell, S., Talbot, P., Russell, W. C. & Kemp, G. D.(1989). Characterization of the adenovirus proteinase: substrate specificity. J Gen Virol 70, 3225–3234.[CrossRef] [Google Scholar]
  225. Webster, A., Hay, R. T. & Kemp, G.(1993). The adenovirus protease is activated by a virus-coded disulphide-linked peptide. Cell 72, 97–104.[CrossRef] [Google Scholar]
  226. Webster, A., Leith, I. R. & Hay, R. T.(1997a). Domain organization of the adenovirus preterminal protein. J Virol 71, 539–547. [Google Scholar]
  227. Webster, A., Leith, I. R., Nicholson, J., Hounsell, J. & Hay, R. T.(1997b). Role of preterminal protein processing in adenovirus replication. J Virol 71, 6381–6389. [Google Scholar]
  228. Weinberg, J. B., Stempfle, G. S., Wilkinson, J. E., Younger, J. G. & Spindler, K. R.(2005). Acute respiratory infection with mouse adenovirus type 1. Virology 340, 245–254.[CrossRef] [Google Scholar]
  229. Welton, A. R., Gralinski, L. E. & Spindler, K. R.(2008). Mouse adenovirus type 1 infection of natural killer cell-deficient mice. Virology 373, 163–170.[CrossRef] [Google Scholar]
  230. Wiethoff, C. M., Wodrich, H., Gerace, L. & Nemerow, G. R.(2005). Adenovirus protein VI mediates membrane disruption following capsid disassembly. J Virol 79, 1992–2000.[CrossRef] [Google Scholar]
  231. Windheim, M., Hilgendorf, A. & Burgert, H. G.(2004). Immune evasion by adenovirus E3 proteins: exploitation of intracellular trafficking pathways. Curr Top Microbiol Immunol 273, 29–85. [Google Scholar]
  232. Wodrich, H., Guan, T., Cingolani, G., Von Seggern, D., Nemerow, G. & Gerace, L.(2003). Switch from capsid protein import to adenovirus assembly by cleavage of nuclear transport signals. EMBO J 22, 6245–6255.[CrossRef] [Google Scholar]
  233. Wodrich, H., Cassany, A., D'Angelo, M. A., Guan, T., Nemerow, G. & Gerace, L.(2006). Adenovirus core protein pVII is translocated into the nucleus by multiple import receptor pathways. J Virol 80, 9608–9618.[CrossRef] [Google Scholar]
  234. Wong, M. L. & Hsu, M. T.(1989). Linear adenovirus DNA is organized into supercoiled domains in virus particles. Nucleic Acids Res 17, 3535–3550.[CrossRef] [Google Scholar]
  235. Worgall, S., Krause, A., Rivara, M., Hee, K. K., Vintayen, E. V., Hackett, N. R., Roelvink, P. W., Bruder, J. T., Wickham, T. J. & other authors(2005). Protection against P. aeruginosa with an adenovirus vector containing an OprF epitope in the capsid. J Clin Invest 115, 1281–1289.[CrossRef] [Google Scholar]
  236. Wu, E., Pache, L., Von Seggern, D. J., Mullen, T. M., Mikyas, Y., Stewart, P. L. & Nemerow, G. R.(2003). Flexibility of the adenovirus fiber is required for efficient receptor interaction. J Virol 77, 7225–7235.[CrossRef] [Google Scholar]
  237. Wu, H., Han, T., Belousova, N., Krasnykh, V., Kashentseva, E., Dmitriev, I., Kataram, M., Mahasreshti, P. J. & Curiel, D. T.(2005). Identification of sites in adenovirus hexon for foreign peptide incorporation. J Virol 79, 3382–3390.[CrossRef] [Google Scholar]
  238. Xia, D., Henry, L. J., Gerard, R. D. & Deisenhofer, J.(1994). Crystal structure of the receptor-binding domain of adenovirus type 5 fiber protein at 1.7 Å resolution. Structure 2, 1259–1270.[CrossRef] [Google Scholar]
  239. Xie, J., Chiang, L., Contreras, J., Wu, K., Garner, J. A., Medina-Kauwe, L. & Hamm-Alvarez, S. F.(2006). Novel fiber-dependent entry mechanism for adenovirus serotype 5 in lacrimal acini. J Virol 80, 11833–11851.[CrossRef] [Google Scholar]
  240. Xue, Y., Johnson, J. S., Ornelles, D. A., Lieberman, J. & Engel, D. A.(2005). Adenovirus protein VII functions throughout early phase and interacts with cellular proteins SET and pp32. J Virol 79, 2474–2483.[CrossRef] [Google Scholar]
  241. Yamaguchi, T., Kawabata, K., Koizumi, N., Sakurai, F., Nakashima, K., Sakurai, H., Sasaki, T., Okada, N., Yamanishi, K. & Mizuguchi, H.(2007). Role of MyD88 and TLR9 in the innate immune response elicited by serotype 5 adenoviral vectors. Hum Gene Ther 18, 753–762.[CrossRef] [Google Scholar]
  242. Yea, C., Dembowy, J., Pacione, L. & Brown, M.(2007). Microtubule-mediated and microtubule-independent transport of adenovirus type 5 in HEK293 cells. J Virol 81, 6899–6908.[CrossRef] [Google Scholar]
  243. Zhang, W. & Arcos, R.(2005). Interaction of the adenovirus major core protein precursor, pVII, with the viral DNA packaging machinery. Virology 334, 194–202.[CrossRef] [Google Scholar]
  244. Zhang, Y. & Bergelson, J. M.(2005). Adenovirus receptors. J Virol 79, 12125–12131.[CrossRef] [Google Scholar]
  245. Zhu, J., Huang, X. & Yang, Y.(2007). Innate immune response to adenoviral vectors is mediated by both Toll-like receptor-dependent and -independent pathways. J Virol 81, 3170–3180.[CrossRef] [Google Scholar]
  246. Zubieta, C., Schoehn, G., Chroboczek, J. & Cusack, S.(2005). The structure of the human adenovirus 2 penton. Mol Cell 17, 121–135.[CrossRef] [Google Scholar]

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error