1887

Abstract

It has recently been demonstrated that a recombinant replication-deficient human adenovirus 5 (Ad5) vector expressing lymphocytic choriomeningitis virus (LCMV) glycoprotein (GP) fused to the p31 invariant (Ii) chain confers broad, long-lasting T-cell immunity that completely protects C57BL/6 mice against lethal peripheral challenge. The current study questioned whether the same strategy, i.e. linkage of GP to an Ii chain, could be applied to a naked DNA vaccine. Following gene-gun immunization with the linked construct (DNA–IiGP), GP-specific CD4 T cells could not be detected by flow cytometry. However, inclusion of the Ii chain augmented the priming of GP-specific CD8 T cells directed towards both immunodominant (GP) and subdominant (GP and GP) epitopes, and vaccination with DNA–IiGP conferred significantly improved protection against systemic LCMV infection compared with the unlinked construct. In contrast, substantial protection against peripheral challenge was not observed. Additional experiments with T-cell subset-depleted or perforin-deficient mice revealed that virus control in vaccinated mice depends critically on cytotoxic CD8 T cells. Finally, priming with the naked DNA vaccine was shown to augment the immune response raised by subsequent immunization with the Ad5 vector. In conclusion, this study showed that the immunoenhancing effect of Ii chain linkage is not limited to the Ad5 vector, but is also relevant with a DNA platform. Furthermore, given the fact that the Ii chain enhances the presentation of more than one epitope, this suggests that Ii-chain-based DNA vaccines may be promising candidates for various heterologous prime–boost regimes.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.002105-0
2009-02-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/2/414.html?itemId=/content/journal/jgv/10.1099/vir.0.002105-0&mimeType=html&fmt=ahah

References

  1. Andreasen, S. O., Christensen, J. E., Marker, O. & Thomsen, A. R. ( 2000; ). Role of CD40 ligand and CD28 in induction and maintenance of antiviral CD8+ effector T cell responses. J Immunol 164, 3689–3697.[CrossRef]
    [Google Scholar]
  2. Bartholdy, C., Stryhn, A., Hansen, N. J., Buus, S. & Thomsen, A. R. ( 2003; ). Incomplete effector/memory differentiation of antigen-primed CD8+ T cells in gene gun DNA-vaccinated mice. Eur J Immunol 33, 1941–1948.[CrossRef]
    [Google Scholar]
  3. Bartholdy, C., Stryhn, A., Christensen, J. P. & Thomsen, A. R. ( 2004; ). Single-epitope DNA vaccination prevents exhaustion and facilitates a broad antiviral CD8+ T cell response during chronic viral infection. J Immunol 173, 6284–6293.[CrossRef]
    [Google Scholar]
  4. Battegay, M., Cooper, S., Althage, A., Banziger, J., Hengartner, H. & Zinkernagel, R. M. ( 1991; ). Quantification of lymphocytic choriomeningitis virus with an immunological focus assay in 24- or 96-well plates. J Virol Methods 33, 191–198.[CrossRef]
    [Google Scholar]
  5. Christensen, J. P., Marker, O. & Thomsen, A. R. ( 1994; ). The role of CD4+ T cells in cell-mediated immunity to LCMV: studies in MHC class I and class II deficient mice. Scand J Immunol 40, 373–382.[CrossRef]
    [Google Scholar]
  6. Christensen, J. P., Kauffmann, S. O. & Thomsen, A. R. ( 2003; ). Deficient CD4+ T cell priming and regression of CD8+ T cell functionality in virus-infected mice lacking a normal B cell compartment. J Immunol 171, 4733–4741.[CrossRef]
    [Google Scholar]
  7. Cohen, J. ( 2005; ). Is an effective HIV vaccine feasible? Science 309, 99 [CrossRef]
    [Google Scholar]
  8. Dahl, L., Jensen, T. H., Gottschalck, E., Karlskov-Mortensen, P., Jensen, T. D., Nielsen, L., Andersen, M. K., Buckland, R., Wild, T. F. & Blixenkrone-Moller, M. ( 2004; ). Immunization with plasmid DNA encoding the hemagglutinin and the nucleoprotein confers robust protection against a lethal canine distemper virus challenge. Vaccine 22, 3642–3648.[CrossRef]
    [Google Scholar]
  9. Diebold, S. S., Cotten, M., Koch, N. & Zenke, M. ( 2001; ). MHC class II presentation of endogenously expressed antigens by transfected dendritic cells. Gene Ther 8, 487–493.[CrossRef]
    [Google Scholar]
  10. Frahm, N., Kiepiela, P., Adams, S., Linde, C. H., Hewitt, H. S., Sango, K., Feeney, M. E., Addo, M. M., Lichterfeld, M. & other authors ( 2006; ). Control of human immunodeficiency virus replication by cytotoxic T lymphocytes targeting subdominant epitopes. Nat Immunol 7, 173–178.[CrossRef]
    [Google Scholar]
  11. Graham, B. S., Koup, R. A., Roederer, M., Bailer, R. T., Enama, M. E., Moodie, Z., Martin, J. E., McCluskey, M. M., Chakrabarti, B. K. & other authors ( 2006; ). Phase 1 safety and immunogenicity evaluation of a multiclade HIV-1 DNA candidate vaccine. J Infect Dis 194, 1650–1660.[CrossRef]
    [Google Scholar]
  12. Grakoui, A., Shoukry, N. H., Woollard, D. J., Han, J. H., Hanson, H. L., Ghrayeb, J., Murthy, K. K., Rice, C. M. & Walker, C. M. ( 2003; ). HCV persistence and immune evasion in the absence of memory T cell help. Science 302, 659–662.[CrossRef]
    [Google Scholar]
  13. Gurunathan, S., Klinman, D. M. & Seder, R. A. ( 2000; ). DNA vaccines: immunology, application, and optimization. Annu Rev Immunol 18, 927–974.[CrossRef]
    [Google Scholar]
  14. Hany, M., Oehen, S., Schulz, M., Hengartner, H., Mackett, M., Bishop, D. H., Overton, H. & Zinkernagel, R. M. ( 1989; ). Anti-viral protection and prevention of lymphocytic choriomeningitis or of the local footpad swelling reaction in mice by immunization with vaccinia-recombinant virus expressing LCMV-WE nucleoprotein or glycoprotein. Eur J Immunol 19, 417–424.[CrossRef]
    [Google Scholar]
  15. Hassett, D. E., Slifka, M. K., Zhang, J. & Whitton, J. L. ( 2000; ). Direct ex vivo kinetic and phenotypic analyses of CD8+ T-cell responses induced by DNA immunization. J Virol 74, 8286–8291.[CrossRef]
    [Google Scholar]
  16. Holst, P. J., Sorensen, M. R., Mandrup Jensen, C. M., Orskov, C., Thomsen, A. R. & Christensen, J. P. ( 2008; ). MHC class II-associated invariant chain linkage of antigen dramatically improves cell-mediated immunity induced by adenovirus vaccines. J Immunol 180, 3339–3346.[CrossRef]
    [Google Scholar]
  17. Janssen, E. M., Lemmens, E. E., Wolfe, T., Christen, U., von Herrath, M. G. & Schoenberger, S. P. ( 2003; ). CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 421, 852–856.[CrossRef]
    [Google Scholar]
  18. Kalams, S. A. & Walker, B. D. ( 1998; ). The critical need for CD4 help in maintaining effective cytotoxic T lymphocyte responses. J Exp Med 188, 2199–2204.[CrossRef]
    [Google Scholar]
  19. Kristensen, N. N., Christensen, J. P. & Thomsen, A. R. ( 2002; ). High numbers of IL-2-producing CD8+ T cells during viral infection: correlation with stable memory development. J Gen Virol 83, 2123–2133.
    [Google Scholar]
  20. Kwissa, M., Amara, R. R., Robinson, H. L., Moss, B., Alkan, S., Jabbar, A., Villinger, F. & Pulendran, B. ( 2007; ). Adjuvanting a DNA vaccine with a TLR9 ligand plus Flt3 ligand results in enhanced cellular immunity against the simian immunodeficiency virus. J Exp Med 204, 2733–2746.[CrossRef]
    [Google Scholar]
  21. MacGregor, R. R., Boyer, J. D., Ugen, K. E., Lacy, K. E., Gluckman, S. J., Bagarazzi, M. L., Chattergoon, M. A., Baine, Y., Higgins, T. J. & other authors ( 1998; ). First human trial of a DNA-based vaccine for treatment of human immunodeficiency virus type 1 infection: safety and host response. J Infect Dis 178, 92–100.[CrossRef]
    [Google Scholar]
  22. MacGregor, R. R., Ginsberg, R., Ugen, K. E., Baine, Y., Kang, C. U., Tu, X. M., Higgins, T., Weiner, D. B. & Boyer, J. D. ( 2002; ). T-cell responses induced in normal volunteers immunized with a DNA-based vaccine containing HIV-1 env and rev. AIDS 16, 2137–2143.[CrossRef]
    [Google Scholar]
  23. Ramshaw, I. A. & Ramsay, A. J. ( 2000; ). The prime–boost strategy: exciting prospects for improved vaccination. Immunol Today 21, 163–165.[CrossRef]
    [Google Scholar]
  24. Rowe, H. M., Lopes, L., Ikeda, Y., Bailey, R., Barde, I., Zenke, M., Chain, B. M. & Collins, M. K. ( 2006; ). Immunization with a lentiviral vector stimulates both CD4 and CD8 T cell responses to an ovalbumin transgene. Mol Ther 13, 310–319.[CrossRef]
    [Google Scholar]
  25. Roy, M. J., Wu, M. S., Barr, L. J., Fuller, J. T., Tussey, L. G., Speller, S., Culp, J., Burkholder, J. K., Swain, W. F. & other authors ( 2000; ). Induction of antigen-specific CD8+ T cells, T helper cells, and protective levels of antibody in humans by particle-mediated administration of a hepatitis B virus DNA vaccine. Vaccine 19, 764–778.[CrossRef]
    [Google Scholar]
  26. Sun, J. C., Williams, M. A. & Bevan, M. J. ( 2004; ). CD4+ T cells are required for the maintenance, not programming, of memory CD8+ T cells after acute infection. Nat Immunol 5, 927–933.[CrossRef]
    [Google Scholar]
  27. Thomsen, A. R., Volkert, M. & Marker, O. ( 1979; ). The timing of the immune response in relation to virus growth determines the outcome of the LCM infection. Acta Pathol Microbiol Scand [C] 87C, 47–54.
    [Google Scholar]
  28. Thomsen, A. R., Johansen, J., Marker, O. & Christensen, J. P. ( 1996; ). Exhaustion of CTL memory and recrudescence of viremia in lymphocytic choriomeningitis virus-infected MHC class II-deficient mice and B cell-deficient mice. J Immunol 157, 3074–3080.
    [Google Scholar]
  29. Turnbull, E. L., Lopes, A. R., Jones, N. A., Cornforth, D., Newton, P., Aldam, D., Pellegrino, P., Turner, J., Williams, I. & other authors ( 2006; ). HIV-1 epitope-specific CD8+ T cell responses strongly associated with delayed disease progression cross-recognize epitope variants efficiently. J Immunol 176, 6130–6146.[CrossRef]
    [Google Scholar]
  30. Ulmer, J. B., Donnelly, J. J., Deck, R. R., DeWitt, C. M. & Liu, M. A. ( 1995; ). Immunization against viral proteins with naked DNA. Ann N Y Acad Sci 772, 117–125.[CrossRef]
    [Google Scholar]
  31. Vanniasinkam, T. & Ertl, H. C. ( 2005; ). Adenoviral gene delivery for HIV-1 vaccination. Curr Gene Ther 5, 203–212.[CrossRef]
    [Google Scholar]
  32. Zinkernagel, R. M. & Hengartner, H. ( 2006; ). Protective ‘immunity’ by pre-existent neutralizing antibody titers and preactivated T cells but not by so-called ‘immunological memory’. Immunol Rev 211, 310–319.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.002105-0
Loading
/content/journal/jgv/10.1099/vir.0.002105-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error