1887

Abstract

Vaccinia viruses (VACVs) with distinct early promoters have been developed to enhance antigen expression and improve antigen-specific CD8 T-cell responses. It has not been demonstrated how the length of the spacer between the coding region of the gene and its regulatory early promoter motif influences antigen expression, and whether the timing of gene expression can modify the antigen-specific CD4 T-cell response. We generated several recombinant VACVs based on the attenuated modified vaccinia Ankara (MVA) strain, which express GFP or the LACK antigen under the control of an optimized promoter, using different spacer lengths. Longer spacer length increased GFP and LACK early expression, which correlated with an enhanced LACK-specific memory CD4 and CD8 T-cell response. These results show the importance of promoter spacer length for early antigen expression by VACV and provide alternative strategies for the design of poxvirus-based vaccines.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000183
2015-08-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/8/2360.html?itemId=/content/journal/jgv/10.1099/vir.0.000183&mimeType=html&fmt=ahah

References

  1. Ahn B.Y., Gershon P.D., Moss B.. ( 1994;). RNA polymerase-associated protein Rap94 confers promoter specificity for initiating transcription of vaccinia virus early stage genes. J Biol Chem 269: 7552–7557 [PubMed].
    [Google Scholar]
  2. Assarsson E., Greenbaum J.A., Sundström M., Schaffer L., Hammond J.A., Pasquetto V., Oseroff C., Hendrickson R.C., Lefkowitz E.J., other authors. ( 2008;). Kinetic analysis of a complete poxvirus transcriptome reveals an immediate-early class of genes. Proc Natl Acad Sci U S A 105: 2140–2145 [CrossRef] [PubMed].
    [Google Scholar]
  3. Baur K., Brinkmann K., Schweneker M., Pätzold J., Meisinger-Henschel C., Hermann J., Steigerwald R., Chaplin P., Suter M., Hausmann J.. ( 2010;). Immediate-early expression of a recombinant antigen by modified vaccinia virus ankara breaks the immunodominance of strong vector-specific B8R antigen in acute and memory CD8 T-cell responses. J Virol 84: 8743–8752 [CrossRef] [PubMed].
    [Google Scholar]
  4. Belnoue E., Costa F.T., Frankenberg T., Vigário A.M., Voza T., Leroy N., Rodrigues M.M., Landau I., Snounou G., Rénia L.. ( 2004;). Protective T cell immunity against malaria liver stage after vaccination with live sporozoites under chloroquine treatment. J Immunol 172: 2487–2495 [CrossRef] [PubMed].
    [Google Scholar]
  5. Brandler S., Lepelley A., Desdouits M., Guivel-Benhassine F., Ceccaldi P.E., Lévy Y., Schwartz O., Moris A.. ( 2010;). Preclinical studies of a modified vaccinia virus Ankara-based HIV candidate vaccine: antigen presentation and antiviral effect. J Virol 84: 5314–5328 [CrossRef] [PubMed].
    [Google Scholar]
  6. Bronte V., Carroll M.W., Goletz T.J., Wang M., Overwijk W.W., Marincola F., Rosenberg S.A., Moss B., Restifo N.P.. ( 1997;). Antigen expression by dendritic cells correlates with the therapeutic effectiveness of a model recombinant poxvirus tumor vaccine. Proc Natl Acad Sci U S A 94: 3183–3188 [CrossRef] [PubMed].
    [Google Scholar]
  7. Broyles S.S., Yuen L., Shuman S., Moss B.. ( 1988;). Purification of a factor required for transcription of vaccinia virus early genes. J Biol Chem 263: 10754–10760 [PubMed].
    [Google Scholar]
  8. Chakrabarti S., Sisler J.R., Moss B.. ( 1997;). Compact, synthetic, vaccinia virus early/late promoter for protein expression. Biotechniques 23: 1094–1097 [PubMed].
    [Google Scholar]
  9. Cochran M.A., Puckett C., Moss B.. ( 1985;). In vitro mutagenesis of the promoter region for a vaccinia virus gene: evidence for tandem early and late regulatory signals. J Virol 54: 30–37 [PubMed].
    [Google Scholar]
  10. Crowe S.R., Turner S.J., Miller S.C., Roberts A.D., Rappolo R.A., Doherty P.C., Ely K.H., Woodland D.L.. ( 2003;). Differential antigen presentation regulates the changing patterns of CD8+T cell immunodominance in primary and secondary influenza virus infections. J Exp Med 198: 399–410 [CrossRef] [PubMed].
    [Google Scholar]
  11. Darrah P.A., Patel D.T., De Luca P.M., Lindsay R.W., Davey D.F., Flynn B.J., Hoff S.T., Andersen P., Reed S.G., other authors. ( 2007;). Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat Med 13: 843–850 [CrossRef] [PubMed].
    [Google Scholar]
  12. Darrah P.A., Hegde S.T., Patel D.T., Lindsay R.W., Chen L., Roederer M., Seder R.A.. ( 2010;). IL-10 production differentially influences the magnitude, quality, and protective capacity of Th1 responses depending on the vaccine platform. J Exp Med 207: 1421–1433 [CrossRef] [PubMed].
    [Google Scholar]
  13. Di Pilato M., Mejías-Pérez E., Gómez C.E., Perdiguero B., Sorzano C.O., Esteban M.. ( 2013;). New vaccinia virus promoter as a potential candidate for future vaccines. J Gen Virol 94: 2771–2776 [CrossRef] [PubMed].
    [Google Scholar]
  14. García-Arriaza J., Esteban M.. ( 2014;). Enhancing poxvirus vectors vaccine immunogenicity. Hum Vaccin Immunother 10: 2235–2244 [CrossRef] [PubMed].
    [Google Scholar]
  15. Gómez C.E., Nájera J.L., Jiménez E.P., Jiménez V., Wagner R., Graf M., Frachette M.J., Liljeström P., Pantaleo G., Esteban M.. ( 2007a;). Head-to-head comparison on the immunogenicity of two HIV/AIDS vaccine candidates based on the attenuated poxvirus strains MVA and NYVAC co-expressing in a single locus the HIV-1BX08 gp120 and HIV-1(IIIB) Gag-Pol-Nef proteins of clade B. Vaccine 25: 2863–2885 [CrossRef] [PubMed].
    [Google Scholar]
  16. Gómez C.E., Nájera J.L., Jiménez V., Bieler K., Wild J., Kostic L., Heidari S., Chen M., Frachette M.J., other authors. ( 2007b;). Generation and immunogenicity of novel HIV/AIDS vaccine candidates targeting HIV-1 Env/Gag-Pol-Nef antigens of clade C. Vaccine 25: 1969–1992 [CrossRef] [PubMed].
    [Google Scholar]
  17. Gómez C.E., Nájera J.L., Krupa M., Perdiguero B., Esteban M.. ( 2011;). MVA and YVAC as vaccines against emergent infectious diseases and cancer. Curr Gene Ther 11: 189–217 [CrossRef] [PubMed].
    [Google Scholar]
  18. Gómez C.E., Perdiguero B., Garcia-Arriaza J., Esteban M.. ( 2012;). Poxvirus vectors as HIV/AIDS vaccines in humans. Hum Vaccin Immunother 8: 1192–1207 [CrossRef] [PubMed].
    [Google Scholar]
  19. Gómez C.E., Perdiguero B., García-Arriaza J., Esteban M.. ( 2013;). Clinical applications of attenuated MVA poxvirus strain. Expert Rev Vaccines 12: 1395–1416 [CrossRef] [PubMed].
    [Google Scholar]
  20. Gonzalez-Aseguinolaza G., Taladriz S., Marquet A., Larraga V.. ( 1999;). Molecular cloning, cell localization and binding affinity to DNA replication proteins of the p36/LACK protective antigen from Leishmania infantum. Eur J Biochem 259: 909–916 [CrossRef] [PubMed].
    [Google Scholar]
  21. Gurunathan S., Stobie L., Prussin C., Sacks D.L., Glaichenhaus N., Iwasaki A., Fowell D.J., Locksley R.M., Chang J.T., other authors. ( 2000;). Requirements for the maintenance of Th1 immunity in vivo following DNA vaccination: a potential immunoregulatory role for CD8+T cells. J Immunol 165: 915–924 [CrossRef] [PubMed].
    [Google Scholar]
  22. Ha S.J., West E.E., Araki K., Smith K.A., Ahmed R.. ( 2008;). Manipulating both the inhibitory and stimulatory immune system towards the success of therapeutic vaccination against chronic viral infections. Immunol Rev 223: 317–333 [CrossRef] [PubMed].
    [Google Scholar]
  23. Hagensee M.E., Carter J.J., Wipf G.C., Galloway D.A.. ( 1995;). Immunization of mice with HPV vaccinia virus recombinants generates serum IgG, IgM, and mucosal IgA antibodies. Virology 206: 174–182 [CrossRef] [PubMed].
    [Google Scholar]
  24. Hagler J., Shuman S.. ( 1992;). Structural analysis of ternary complexes of vaccinia RNA polymerase. Proc Natl Acad Sci U S A 89: 10099–10103 [CrossRef] [PubMed].
    [Google Scholar]
  25. Hansen S.G., Vieville C., Whizin N., Coyne-Johnson L., Siess D.C., Drummond D.D., Legasse A.W., Axthelm M.K., Oswald K., other authors. ( 2009;). Effector memory T cell responses are associated with protection of rhesus monkeys from mucosal simian immunodeficiency virus challenge. Nat Med 15: 293–299 [CrossRef] [PubMed].
    [Google Scholar]
  26. Hansen S.G., Ford J.C., Lewis M.S., Ventura A.B., Hughes C.M., Coyne-Johnson L., Whizin N., Oswald K., Shoemaker R., other authors. ( 2011;). Profound early control of highly pathogenic SIV by an effector memory T-cell vaccine. Nature 473: 523–527 [CrossRef] [PubMed].
    [Google Scholar]
  27. Isshiki M., Zhang X., Sato H., Ohashi T., Inoue M., Shida H.. ( 2014;). Effects of different promoters on the virulence and immunogenicity of a HIV-1 Env-expressing recombinant vaccinia vaccine. Vaccine 32: 839–845 [CrossRef] [PubMed].
    [Google Scholar]
  28. Kastenmuller W., Gasteiger G., Gronau J.H., Baier R., Ljapoci R., Busch D.H., Drexler I.. ( 2007;). Cross-competition of CD8+T cells shapes the immunodominance hierarchy during boost vaccination. J Exp Med 204: 2187–2198 [CrossRef] [PubMed].
    [Google Scholar]
  29. Launois P., Pingel S., Himmelrich H., Locksley R., Louis J.. ( 2007;). Different epitopes of the LACK protein are recognized by V beta 4 V alpha 8 CD4+T cells in H-2b and H-2d mice susceptible to Leishmania major. Microbes Infect 9: 1260–1266 [CrossRef] [PubMed].
    [Google Scholar]
  30. Macedo A.B., Sánchez-Arcila J.C., Schubach A.O., Mendonça S.C., Marins-Dos-Santos A., de Fatima Madeira M., Gagini T., Pimentel M.I., De Luca P.M.. ( 2012;). Multifunctional CD4+ T cells in patients with American cutaneous leishmaniasis. Clin Exp Immunol 167: 505–513 [CrossRef] [PubMed].
    [Google Scholar]
  31. Mougneau E., Altare F., Wakil A.E., Zheng S., Coppola T., Wang Z.E., Waldmann R., Locksley R.M., Glaichenhaus N.. ( 1995;). Expression cloning of a protective Leishmania antigen. Science 268: 563–566 [CrossRef] [PubMed].
    [Google Scholar]
  32. Moutaftsi M., Salek-Ardakani S., Croft M., Peters B., Sidney J., Grey H., Sette A.. ( 2009;). Correlates of protection efficacy induced by vaccinia virus-specific CD8+T-cell epitopes in the murine intranasal challenge model. Eur J Immunol 39: 717–722 [CrossRef] [PubMed].
    [Google Scholar]
  33. Nájera J.L., Gómez C.E., García-Arriaza J., Sorzano C.O., Esteban M.. ( 2010;). Insertion of vaccinia virus C7L host range gene into NYVAC-B genome potentiates immune responses against HIV-1 antigens. PLoS One 5: e11406 [CrossRef] [PubMed].
    [Google Scholar]
  34. Perdiguero B., Gómez C.E., Di Pilato M., Sorzano C.O., Delaloye J., Roger T., Calandra T., Pantaleo G., Esteban M.. ( 2013;). Deletion of the vaccinia virus gene A46R, encoding for an inhibitor of TLR signalling, is an effective approach to enhance the immunogenicity in mice of the HIV/AIDS vaccine candidate NYVAC-C. PLoS One 8: e74831 [CrossRef] [PubMed].
    [Google Scholar]
  35. Peters N.C., Pagán A.J., Lawyer P.G., Hand T.W., Henrique Roma E., Stamper L.W., Romano A., Sacks D.L.. ( 2014;). Chronic parasitic infection maintains high frequencies of short-lived Ly6C+CD4+ effector T cells that are required for protection against re-infection. PLoS Pathog 10: e1004538 [CrossRef] [PubMed].
    [Google Scholar]
  36. Ramírez J.C., Gherardi M.M., Esteban M.. ( 2000;). Biology of attenuated modified vaccinia virus Ankara recombinant vector in mice: virus fate and activation of B- and T-cell immune responses in comparison with the Western Reserve strain and advantages as a vaccine. J Virol 74: 923–933 [CrossRef] [PubMed].
    [Google Scholar]
  37. Ray A., Dittel B.N.. ( 2010;). Isolation of mouse peritoneal cavity cells. J Vis Exp 35: 1488 [PubMed].
    [Google Scholar]
  38. Reece W.H., Pinder M., Gothard P.K., Milligan P., Bojang K., Doherty T., Plebanski M., Akinwunmi P., Everaere S., other authors. ( 2004;). A CD4(+) T-cell immune response to a conserved epitope in the circumsporozoite protein correlates with protection from natural Plasmodium falciparum infection and disease. Nat Med 10: 406–410 [CrossRef] [PubMed].
    [Google Scholar]
  39. Reyes-Sandoval A., Wyllie D.H., Bauza K., Milicic A., Forbes E.K., Rollier C.S., Hill A.V.. ( 2011;). CD8+T effector memory cells protect against liver-stage malaria. J Immunol 187: 1347–1357 [CrossRef] [PubMed].
    [Google Scholar]
  40. Rigato P.O., de Alencar B.C., de Vasconcelos J.R., Dominguez M.R., Araújo A.F., Machado A.V., Gazzinelli R.T., Bruna-Romero O., Rodrigues M.M.. ( 2011;). Heterologous plasmid DNA prime-recombinant human adenovirus 5 boost vaccination generates a stable pool of protective long-lived CD8(+) T effector memory cells specific for a human parasite, Trypanosoma cruzi. Infect Immun 79: 2120–2130 [CrossRef] [PubMed].
    [Google Scholar]
  41. Román E., Miller E., Harmsen A., Wiley J., Von Andrian U.H., Huston G., Swain S.L.. ( 2002;). CD4 effector T cell subsets in the response to influenza: heterogeneity, migration, and function. J Exp Med 196: 957–968 [CrossRef] [PubMed].
    [Google Scholar]
  42. Sánchez-Sampedro L., Gómez C.E., Mejías-Pérez E., Sorzano C.O., Esteban M.. ( 2012;). High quality long-term CD4+ and CD8+ effector memory populations stimulated by DNA-LACK/MVA-LACK regimen in Leishmania major BALB/c model of infection. PLoS One 7: e38859 [CrossRef] [PubMed].
    [Google Scholar]
  43. Sato H., Jing C., Isshiki M., Matsuo K., Kidokoro M., Takamura S., Zhang X., Ohashi T., Shida H.. ( 2013;). Immunogenicity and safety of the vaccinia virus LC16m8Δ vector expressing SIV Gag under a strong or moderate promoter in a recombinant BCG prime-recombinant vaccinia virus boost protocol. Vaccine 31: 3549–3557 [CrossRef] [PubMed].
    [Google Scholar]
  44. Schmidt N.W., Podyminogin R.L., Butler N.S., Badovinac V.P., Tucker B.J., Bahjat K.S., Lauer P., Reyes-Sandoval A., Hutchings C.L., other authors. ( 2008;). Memory CD8 T cell responses exceeding a large but definable threshold provide long-term immunity to malaria. Proc Natl Acad Sci U S A 105: 14017–14022 [CrossRef] [PubMed].
    [Google Scholar]
  45. Sette A., Grey H., Oseroff C., Peters B., Moutaftsi M., Crotty S., Assarsson E., Greenbaum J., Kim Y., other authors. ( 2009;). Definition of epitopes and antigens recognized by vaccinia specific immune responses: their conservation in variola virus sequences, and use as a model system to study complex pathogens. Vaccine 27: (Suppl 6), G21–G26 [CrossRef] [PubMed].
    [Google Scholar]
  46. Terahara K., Ishii H., Nomura T., Takahashi N., Takeda A., Shiino T., Tsunetsugu-Yokota Y., Matano T.. ( 2014;). Vaccine-induced CD107a+ CD4+T cells are resistant to depletion following AIDS virus infection. J Virol 88: 14232–14240 [CrossRef] [PubMed].
    [Google Scholar]
  47. Uzonna J.E., Späth G.F., Beverley S.M., Scott P.. ( 2004;). Vaccination with phosphoglycan-deficient Leishmania major protects highly susceptible mice from virulent challenge without inducing a strong Th1 response. J Immunol 172: 3793–3797 [CrossRef] [PubMed].
    [Google Scholar]
  48. Wennier S.T., Brinkmann K., Steinhäußer C., Mayländer N., Mnich C., Wielert U., Dirmeier U., Hausmann J., Chaplin P., Steigerwald R.. ( 2013;). A novel naturally occurring tandem promoter in modified vaccinia virus Ankara drives very early gene expression and potent immune responses. PLoS One 8: e73511 [CrossRef] [PubMed].
    [Google Scholar]
  49. Wilson E.H., Hunter C.A.. ( 2008;). Immunodominance and recognition of intracellular pathogens. J Infect Dis 198: 1579–1581 [CrossRef] [PubMed].
    [Google Scholar]
  50. Wyatt L.S., Earl P.L., Vogt J., Eller L.A., Chandran D., Liu J., Robinson H.L., Moss B.. ( 2008;). Correlation of immunogenicities and in vitro expression levels of recombinant modified vaccinia virus Ankara HIV vaccines. Vaccine 26: 486–493 [CrossRef] [PubMed].
    [Google Scholar]
  51. Yang Z., Bruno D.P., Martens C.A., Porcella S.F., Moss B.. ( 2010;). Simultaneous high-resolution analysis of vaccinia virus and host cell transcriptomes by deep RNA sequencing. Proc Natl Acad Sci U S A 107: 11513–11518 [CrossRef] [PubMed].
    [Google Scholar]
  52. Yang Z., Bruno D.P., Martens C.A., Porcella S.F., Moss B.. ( 2011a;). Genome-wide analysis of the 5′ and 3′ ends of vaccinia virus early mRNAs delineates regulatory sequences of annotated and anomalous transcripts. J Virol 85: 5897–5909 [CrossRef] [PubMed].
    [Google Scholar]
  53. Yang Z., Reynolds S.E., Martens C.A., Bruno D.P., Porcella S.F., Moss B.. ( 2011b;). Expression profiling of the intermediate and late stages of poxvirus replication. J Virol 85: 9899–9908 [CrossRef] [PubMed].
    [Google Scholar]
  54. Yang Z., Maruri-Avidal L., Sisler J., Stuart C.A., Moss B.. ( 2013;). Cascade regulation of vaccinia virus gene expression is modulated by multistage promoters. Virology 447: 213–220 [CrossRef] [PubMed].
    [Google Scholar]
  55. Yewdell J.W., Bennink J.R.. ( 1999;). Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Annu Rev Immunol 17: 51–88 [CrossRef] [PubMed].
    [Google Scholar]
  56. Younes S.A., Yassine-Diab B., Dumont A.R., Boulassel M.R., Grossman Z., Routy J.P., Sekaly R.P.. ( 2003;). HIV-1 viremia prevents the establishment of interleukin 2-producing HIV-specific memory CD4+T cells endowed with proliferative capacity. J Exp Med 198: 1909–1922 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000183
Loading
/content/journal/jgv/10.1099/vir.0.000183
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error