1887

Abstract

One of the most powerful innate immune responses against viruses is mediated by type I IFN. In teleost fish, it is known that virus infection triggers the expression of and many IFN-stimulated genes, but the viral RNA sensors and mediators leading to IFN production are scarcely known. Thus, we have searched for the presence of these genes in gilt-head sea bream () and European sea bass (), and evaluated their expression after infection with viral nervous necrosis virus (VNNV) in the brain, the main viral target tissue, and the gonad, used to transmit the virus vertically. In sea bream, a fish species resistant to the VNNV strain used, we found an upregulation of the genes encoding MDA5 (melanoma differentiation-associated gene 5), TBK1 (TANK-binding kinase 1), IRF3 (IFN regulatory factor 3), IFN, Mx [myxovirus (influenza) resistance protein] and PKR (dsRNA-dependent protein kinase receptor) proteins in the brain, which were unaltered in the gonad and could favour the dissemination by gonad fluids or gametes. Strikingly, in European sea bass, a very susceptible species, we also identified, transcripts coding for LGP2 (Laboratory of Genetics and Physiology 2), MAVS (mitochondrial antiviral signalling), TRAF3 (TNF receptor-associated factor 3), TANK (TRAF family member-associated NFκB activator) and IRF7 (IFN regulatory factor 7), and found that all the genes analysed were upregulated in the gonad, but only , , , and were upregulated in the brain. These findings supported the notion that the European sea bass brain innate immune response is unable to clear the virus and pointed to the importance of gonad immunity to control the dissemination of VNNV to the progeny – an aspect that is worth investigating in aquatic animals.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000164
2015-08-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/8/2176.html?itemId=/content/journal/jgv/10.1099/vir.0.000164&mimeType=html&fmt=ahah

References

  1. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J.. ( 1990;). Basic local alignment search tool. J Mol Biol 215: 403–410 [CrossRef] [PubMed].
    [Google Scholar]
  2. Aoki T., Hikima J., Hwang S.D., Jung T.S.. ( 2013;). Innate immunity of finfish: primordial conservation and function of viral RNA sensors in teleosts. Fish Shellfish Immunol 35: 1689–1702 [CrossRef] [PubMed].
    [Google Scholar]
  3. Aranguren R., Tafalla C., Novoa B., Figueras A.. ( 2002;). Experimental transmission of encephalopathy and retinopathy induced by nodavirus to sea bream (Sparus aurata L.) using different infection models. J Fish Dis 25: 317–324 [CrossRef].
    [Google Scholar]
  4. Arimoto M., Mushiake K., Mizuta Y., Nakai T., Muroge K., Furusawa I.. ( 1992;). Detection of striped jack nervous necrosis virus (SJNNV) by enzyme-linked immunosorbent assay (ELISA). Fish Pathol 27: 191–195 [CrossRef].
    [Google Scholar]
  5. Bandín I., Olveira J.G., Borrego J.J., Dopazo C.P., Barja J.L.. ( 2006;). Susceptibility of the fish cell line SAF-1 to betanodavirus. J Fish Dis 29: 633–636 [CrossRef] [PubMed].
    [Google Scholar]
  6. Béjar J., Porta J., Borrego J.J., Álvarez M.C.. ( 2005;). The piscine SAF-1 cell line: genetic stability and labeling. Mar Biotechnol (NY) 7: 389–395 [CrossRef] [PubMed].
    [Google Scholar]
  7. Biacchesi S., LeBerre M., Lamoureux A., Louise Y., Lauret E., Boudinot P., Brémont M.. ( 2009;). Mitochondrial antiviral signaling protein plays a major role in induction of the fish innate immune response against RNA and DNA viruses. J Virol 83: 7815–7827 [CrossRef] [PubMed].
    [Google Scholar]
  8. Casani D., Randelli E., Costantini S., Facchiano A.M., Zou J., Martin S., Secombes C.J., Scapigliati G., Buonocore F.. ( 2009;). Molecular characterisation and structural analysis of an interferon homologue in sea bass (Dicentrarchus labrax L.). Mol Immunol 46: 943–952 [CrossRef] [PubMed].
    [Google Scholar]
  9. Castric J., Thiéry R., Jeffroy J., de Kinkelin P., Raymond J.C.. ( 2001;). Sea bream Sparus aurata, an asymptomatic contagious fish host for nodavirus. Dis Aquat Organ 47: 33–38 [CrossRef] [PubMed].
    [Google Scholar]
  10. Chaves-Pozo E., Mulero V., Meseguer J., García Ayala A.. ( 2005;). An overview of cell renewal in the testis throughout the reproductive cycle of a seasonal breeding teleost, the gilthead seabream (Sparus aurata L). Biol Reprod 72: 593–601 [CrossRef] [PubMed].
    [Google Scholar]
  11. Chaves-Pozo E., Zou J., Secombes C.J., Cuesta A., Tafalla C.. ( 2010;). The rainbow trout (Oncorhynchus mykiss) interferon response in the ovary. Mol Immunol 47: 1757–1764 [CrossRef] [PubMed].
    [Google Scholar]
  12. Chaves-Pozo E., Guardiola F.A., Meseguer J., Esteban M.A., Cuesta A.. ( 2012;). Nodavirus infection induces a great innate cell-mediated cytotoxic activity in resistant, gilthead seabream, and susceptible, European sea bass, teleost fish. Fish Shellfish Immunol 33: 1159–1166 [CrossRef] [PubMed].
    [Google Scholar]
  13. Chen Y.M., Kuo C.E., Chen G.R., Kao Y.T., Zou J., Secombes C.J., Chen T.Y.. ( 2014;). Functional analysis of an orange-spotted grouper (Epinephelus coioides) interferon gene and characterisation of its expression in response to nodavirus infection. Dev Comp Immunol 46: 117–128 [CrossRef] [PubMed].
    [Google Scholar]
  14. Chen H.Y., Liu W., Wu S.Y., Chiou P.P., Li Y.H., Chen Y.C., Lin G.H., Lu M.W., Wu J.L.. ( 2015;). RIG-I specifically mediates group II type I IFN activation in nervous necrosis virus infected zebrafish cells. Fish Shellfish Immunol 43: 427–435 [CrossRef] [PubMed].
    [Google Scholar]
  15. Chi H., Zhang Z., Bøgwald J., Zhan W., Dalmo R.A.. ( 2011;). Cloning, expression analysis and promoter structure of TBK1 (TANK-binding kinase 1) in Atlantic cod (Gadus morhua L.). Fish Shellfish Immunol 30: 1055–1063 [CrossRef] [PubMed].
    [Google Scholar]
  16. Crozat K., Beutler B.. ( 2004;). TLR7: a new sensor of viral infection. Proc Natl Acad Sci U S A 101: 6835–6836 [CrossRef] [PubMed].
    [Google Scholar]
  17. Dios S., Poisa-Beiro L., Figueras A., Novoa B.. ( 2007;). Suppression subtraction hybridization (SSH) and macroarray techniques reveal differential gene expression profiles in brain of sea bream infected with nodavirus. Mol Immunol 44: 2195–2204 [CrossRef] [PubMed].
    [Google Scholar]
  18. Ellis A.E.. ( 2001;). Innate host defense mechanisms of fish against viruses and bacteria. Dev Comp Immunol 25: 827–839 [CrossRef] [PubMed].
    [Google Scholar]
  19. Feng H., Liu H., Kong R., Wang L., Wang Y., Hu W., Guo Q.. ( 2011;). Expression profiles of carp IRF-3/-7 correlate with the up-regulation of RIG-I/MAVS/TRAF3/TBK1, four pivotal molecules in RIG-I signaling pathway. Fish Shellfish Immunol 30: 1159–1169 [CrossRef] [PubMed].
    [Google Scholar]
  20. Feng X., Su J., Yang C., Yan N., Rao Y., Chen X.. ( 2014;). Molecular characterizations of grass carp (Ctenopharyngodon idella) TBK1 gene and its roles in regulating IFN-I pathway. Dev Comp Immunol 45: 278–290 [CrossRef] [PubMed].
    [Google Scholar]
  21. Fernández-Trujillo M.A., Novel P., Manchado M., Sepulcre M.P., Mulero V., Borrego J.J., Álvarez M.C., Béjar J.. ( 2011;). Three Mx genes with differential response to VNNV infection have been identified in Gilthead seabream (Sparus aurata). Mol Immunol 48: 1216–1223 [CrossRef] [PubMed].
    [Google Scholar]
  22. Frerichs G.N., Rodger H.D., Peric Z.. ( 1996;). Cell culture isolation of piscine neuropathy nodavirus from juvenile sea bass, Dicentrarchus labrax. J Gen Virol 77: 2067–2071 [CrossRef] [PubMed].
    [Google Scholar]
  23. Hamming O.J., Lutfalla G., Levraud J.P., Hartmann R.. ( 2011;). Crystal structure of zebrafish interferons I and II reveals conservation of type I interferon structure in vertebrates. J Virol 85: 8181–8187 [CrossRef] [PubMed].
    [Google Scholar]
  24. Hansen J.D., Vojtech L.N., Laing K.J.. ( 2011;). Sensing disease and danger: a survey of vertebrate PRRs and their origins. Dev Comp Immunol 35: 886–897 [CrossRef] [PubMed].
    [Google Scholar]
  25. Hedger M.P.. ( 2002;). Macrophages and the immune responsiveness of the testis. J Reprod Immunol 57: 19–34 [CrossRef] [PubMed].
    [Google Scholar]
  26. Komuro A., Horvath C.M.. ( 2006;). RNA- and virus-independent inhibition of antiviral signaling by RNA helicase LGP2. J Virol 80: 12332–12342 [CrossRef] [PubMed].
    [Google Scholar]
  27. Kuo H.C., Wang T.Y., Hsu H.H., Chen P.P., Lee S.H., Chen Y.M., Tsai T.J., Wang C.K., Ku H.T., other authors. ( 2012;). Nervous necrosis virus replicates following the embryo development and dual infection with iridovirus at juvenile stage in grouper. PLoS One 7: e36183 [CrossRef] [PubMed].
    [Google Scholar]
  28. Langevin C., Aleksejeva E., Passoni G., Palha N., Levraud J.P., Boudinot P.. ( 2013;). The antiviral innate immune response in fish: evolution and conservation of the IFN system. J Mol Biol 425: 4904–4920 [CrossRef] [PubMed].
    [Google Scholar]
  29. Levraud J.P., Boudinot P., Colin I., Benmansour A., Peyrieras N., Herbomel P., Lutfalla G.. ( 2007;). Identification of the zebrafish IFN receptor: implications for the origin of the vertebrate IFN system. J Immunol 178: 4385–4394 [CrossRef] [PubMed].
    [Google Scholar]
  30. López-Jimena B., García-Rosado E., Thompson K.D., Adams A., Infante C., Borrego J.J., Alonso M.C.. ( 2012;). Distribution of red-spotted grouper nervous necrosis virus (RGNNV) antigens in nervous and non-nervous organs of European seabass (Dicentrarchus labrax) during the course of an experimental challenge. J Vet Sci 13: 355–362 [CrossRef] [PubMed].
    [Google Scholar]
  31. López-Muñoz A., Sepulcre M.P., García-Moreno D., Fuentes I., Béjar J., Manchado M., Álvarez M.C., Meseguer J., Mulero V.. ( 2012;). Viral nervous necrosis virus persistently replicates in the central nervous system of asymptomatic gilthead seabream and promotes a transient inflammatory response followed by the infiltration of IgM+B lymphocytes. Dev Comp Immunol 37: 429–437 [CrossRef] [PubMed].
    [Google Scholar]
  32. Matsuo A., Oshiumi H., Tsujita T., Mitani H., Kasai H., Yoshimizu M., Matsumoto M., Seya T.. ( 2008;). Teleost TLR22 recognizes RNA duplex to induce IFN and protect cells from birnaviruses. J Immunol 181: 3474–3485 [CrossRef] [PubMed].
    [Google Scholar]
  33. Nuñez Ortiz N., Gerdol M., Stocchi V., Marozzi C., Randelli E., Bernini C., Buonocore F., Picchietti S., Papeschi C., other authors. ( 2014;). T cell transcripts and T cell activities in the gills of the teleost fish sea bass (Dicentrarchus labrax). Dev Comp Immunol 47: 309–318 [CrossRef][PubMed].
    [Google Scholar]
  34. Ohtani M., Hikima J., Hwang S.D., Morita T., Suzuki Y., Kato G., Kondo H., Hirono I., Jung T.S., Aoki T.. ( 2012;). Transcriptional regulation of type I interferon gene expression by interferon regulatory factor-3 in Japanese flounder, Paralichthys olivaceus. Dev Comp Immunol 36: 697–706 [CrossRef] [PubMed].
    [Google Scholar]
  35. Overgård A.C., Nerland A.H., Fiksdal I.U., Patel S.. ( 2012;). Atlantic halibut experimentally infected with nodavirus shows increased levels of T-cell marker and IFNγ transcripts. Dev Comp Immunol 37: 139–150 [CrossRef] [PubMed].
    [Google Scholar]
  36. Poisa-Beiro L., Dios S., Montes A., Aranguren R., Figueras A., Novoa B.. ( 2008;). Nodavirus increases the expression of Mx and inflammatory cytokines in fish brain. Mol Immunol 45: 218–225 [CrossRef] [PubMed].
    [Google Scholar]
  37. Reed L.J., Muench A.. ( 1938;). A simple method of estimating fifty percent end points. Am J Hyg 27: 493–497.
    [Google Scholar]
  38. Rise M.L., Hall J., Rise M., Hori T., Gamperl A.K., Kimball J., Hubert S., Bowman S., Johnson S.C.. ( 2008;). Functional genomic analysis of the response of Atlantic cod (Gadus morhua) spleen to the viral mimic polyriboinosinic polyribocytidylic acid (pIC). Dev Comp Immunol 32: 916–931 [CrossRef] [PubMed].
    [Google Scholar]
  39. Rise M.L., Hall J.R., Rise M., Hori T.S., Browne M.J., Gamperl A.K., Hubert S., Kimball J., Bowman S., Johnson S.C.. ( 2010;). Impact of asymptomatic nodavirus carrier state and intraperitoneal viral mimic injection on brain transcript expression in Atlantic cod (Gadus morhua). Physiol Genomics 42: 266–280 [CrossRef] [PubMed].
    [Google Scholar]
  40. Sadler A.J., Williams B.R.. ( 2008;). Interferon-inducible antiviral effectors. Nat Rev Immunol 8: 559–568 [CrossRef] [PubMed].
    [Google Scholar]
  41. Scapigliati G., Buonocore F., Randelli E., Casani D., Meloni S., Zarletti G., Tiberi M., Pietretti D., Boschi I., Manchado M.. ( 2010;). Cellular and molecular immune responses of the sea bass (Dicentrarchus labrax) experimentally infected with betanodavirus. Fish Shellfish Immunol 28: 303–311 [CrossRef] [PubMed].
    [Google Scholar]
  42. Skjesol A., Skjæveland I., Elnæs M., Timmerhaus G., Fredriksen B.N., Jørgensen S.M., Krasnov A., Jørgensen J.B.. ( 2011;). IPNV with high and low virulence: host immune responses and viral mutations during infection. Virol J 8: 396 [CrossRef] [PubMed].
    [Google Scholar]
  43. Su J., Huang T., Dong J., Heng J., Zhang R., Peng L.. ( 2010;). Molecular cloning and immune responsive expression of MDA5 gene, a pivotal member of the RLR gene family from grass carp Ctenopharyngodon idella. Fish Shellfish Immunol 28: 712–718 [CrossRef] [PubMed].
    [Google Scholar]
  44. Sun B., Robertsen B., Wang Z., Liu B.. ( 2009;). Identification of an Atlantic salmon IFN multigene cluster encoding three IFN subtypes with very different expression properties. Dev Comp Immunol 33: 547–558 [CrossRef] [PubMed].
    [Google Scholar]
  45. Sun F., Zhang Y.B., Liu T.K., Shi J., Wang B., Gui J.F.. ( 2011;). Fish MITA serves as a mediator for distinct fish IFN gene activation dependent on IRF3 or IRF7. J Immunol 187: 2531–2539 [CrossRef] [PubMed].
    [Google Scholar]
  46. Takeuchi O., Akira S.. ( 2008;). MDA5/RIG-I and virus recognition. Curr Opin Immunol 20: 17–22 [CrossRef] [PubMed].
    [Google Scholar]
  47. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  48. Valero Y., Arizcun M., Esteban M.A., Bandín I., Olveira J.G., Patel S., Cuesta A., Chaves-Pozo E.. ( 2014;). Nodavirus replicates in the gonad of European sea bass and gilthead seabream and alters the reproductive and immune functions. Presented at the 9th International Symposium on Viruses of Lower Vertebrates, Málaga, Spain..
  49. Valero Y., García-Alcázar A., Esteban M.A., Cuesta A., Chaves-Pozo E.. ( 2015;). Antimicrobial response is increased in the testis of European sea bass, but not in gilthead seabream, upon nodavirus infection. Fish Shellfish Immunol 44: 203–213 [CrossRef] [PubMed].
    [Google Scholar]
  50. Verrier E.R., Langevin C., Benmansour A., Boudinot P.. ( 2011;). Early antiviral response and virus-induced genes in fish. Dev Comp Immunol 35: 1204–1214 [CrossRef] [PubMed].
    [Google Scholar]
  51. Xiang Z., Qi L., Chen W., Dong C., Liu Z., Liu D., Huang M., Li W., Yang G., other authors. ( 2011;). Characterization of a TnMAVS protein from Tetraodon nigroviridis. Dev Comp Immunol 35: 1103–1115 [CrossRef] [PubMed].
    [Google Scholar]
  52. Yang C., Su J., Huang T., Zhang R., Peng L.. ( 2011;). Identification of a retinoic acid-inducible gene I from grass carp (Ctenopharyngodon idella) and expression analysis in vivo in vitro. Fish Shellfish Immunol 30: 936–943 [CrossRef] [PubMed].
    [Google Scholar]
  53. Zhang Y.B., Gui J.F.. ( 2012;). Molecular regulation of interferon antiviral response in fish. Dev Comp Immunol 38: 193–202 [CrossRef] [PubMed].
    [Google Scholar]
  54. Zhang J., Zhang Y.B., Wu M., Wang B., Chen C., Gui J.F.. ( 2014;). Fish MAVS is involved in RLR pathway-mediated IFN response. Fish Shellfish Immunol 41: 222–230 [CrossRef] [PubMed].
    [Google Scholar]
  55. Zou J., Secombes C.J.. ( 2011;). Teleost fish interferons and their role in immunity. Dev Comp Immunol 35: 1376–1387 [CrossRef] [PubMed].
    [Google Scholar]
  56. Zou J., Tafalla C., Truckle J., Secombes C.J.. ( 2007;). Identification of a second group of type I IFNs in fish sheds light on IFN evolution in vertebrates. J Immunol 179: 3859–3871 [CrossRef] [PubMed].
    [Google Scholar]
  57. Zou J., Chang M., Nie P., Secombes C.J.. ( 2009;). Origin and evolution of the RIG-I like RNA helicase gene family. BMC Evol Biol 9: 85 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000164
Loading
/content/journal/jgv/10.1099/vir.0.000164
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error