1887

Abstract

The human papillomavirus (HPV) E2 protein is a multifunctional protein essential for the control of virus gene expression, genome replication and persistence. E2 is expressed throughout the differentiation-dependent virus life cycle and is functionally regulated by association with multiple viral and cellular proteins. Here, we show for the first time to our knowledge that HPV16 E2 directly associates with the major capsid protein L1, independently of other viral or cellular proteins. We have mapped the L1 binding region within E2 and show that the -2 helices within the E2 DNA-binding domain mediate L1 interaction. Using cell-based assays, we show that co-expression of L1 and E2 results in enhanced transcription and virus origin-dependent DNA replication. Upon co-expression in keratinocytes, L1 reduces nucleolar association of E2 protein, and when co-expressed with E1 and E2, L1 is partially recruited to viral replication factories. Furthermore, co-distribution of E2 and L1 was detected in the nuclei of upper suprabasal cells in stratified epithelia of HPV16 genome-containing primary human keratinocytes. Taken together, our findings suggest that the interaction between E2 and L1 is important for the regulation of E2 function during the late events of the HPV life cycle.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000162
2015-08-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/8/2274.html?itemId=/content/journal/jgv/10.1099/vir.0.000162&mimeType=html&fmt=ahah

References

  1. Bernard B.A., Bailly C., Lenoir M.C., Darmon M., Thierry F., Yaniv M.. ( 1989;). The human papillomavirus type 18 (HPV18) E2 gene product is a repressor of the HPV18 regulatory region in human keratinocytes. J Virol 63: 4317–4324 [PubMed].
    [Google Scholar]
  2. Bird G., O'Donnell M., Moroianu J., Garcea R.L.. ( 2008;). Possible role for cellular karyopherins in regulating polyomavirus and papillomavirus capsid assembly. J Virol 82: 9848–9857 [CrossRef] [PubMed].
    [Google Scholar]
  3. Bouvard V., Storey A., Pim D., Banks L.. ( 1994;). Characterization of the human papillomavirus E2 protein: evidence of trans-activation and trans-repression in cervical keratinocytes. EMBO J 13: 5451–5459 [PubMed].
    [Google Scholar]
  4. Buck C.B., Day P.M., Trus B.L.. ( 2013;). The papillomavirus major capsid protein L1. Virology 445: 169–174 [CrossRef] [PubMed].
    [Google Scholar]
  5. Comeau S.R., Gatchell D.W., Vajda S., Camacho C.J.. ( 2004;). ClusPro: a fully automated algorithm for protein–protein docking. Nucleic Acids Res 32: (Web Server), W96–W99 [CrossRef] [PubMed].
    [Google Scholar]
  6. Davy C., McIntosh P., Jackson D.J., Sorathia R., Miell M., Wang Q., Khan J., Soneji Y., Doorbar J.. ( 2009;). A novel interaction between the human papillomavirus type 16 E2 and E1^E4 proteins leads to stabilization of E2. Virology 394: 266–275 [CrossRef] [PubMed].
    [Google Scholar]
  7. Day P.M., Roden R.B., Lowy D.R., Schiller J.T.. ( 1998;). The papillomavirus minor capsid protein, L2, induces localization of the major capsid protein, L1, and the viral transcription/replication protein, E2, to PML oncogenic domains. J Virol 72: 142–150 [PubMed].
    [Google Scholar]
  8. Dell G., Wilkinson K.W., Tranter R., Parish J., Brady R.L., Gaston K.. ( 2003;). Comparison of the structure and DNA-binding properties of the E2 proteins from an oncogenic and a non-oncogenic human papillomavirus. J Mol Biol 334: 979–991 [CrossRef] [PubMed].
    [Google Scholar]
  9. Doorbar J., Quint W., Banks L., Bravo I.G., Stoler M., Broker T.R., Stanley M.A.. ( 2012;). The biology and life-cycle of human papillomaviruses. Vaccine 30: (Suppl. 5), F55–F70 [CrossRef] [PubMed].
    [Google Scholar]
  10. Feeney K.M., Saade A., Okrasa K., Parish J.L.. ( 2011;). In vivo analysis of the cell cycle dependent association of the bovine papillomavirus E2 protein and ChlR1. Virology 414: 1–9 [CrossRef] [PubMed].
    [Google Scholar]
  11. Finnen R.L., Erickson K.D., Chen X.S., Garcea R.L.. ( 2003;). Interactions between papillomavirus L1 and L2 capsid proteins. J Virol 77: 4818–4826 [CrossRef] [PubMed].
    [Google Scholar]
  12. Gammoh N., Grm H.S., Massimi P., Banks L.. ( 2006;). Regulation of human papillomavirus type 16 E7 activity through direct protein interaction with the E2 transcriptional activator. J Virol 80: 1787–1797 [CrossRef] [PubMed].
    [Google Scholar]
  13. Giri I., Yaniv M.. ( 1988;). Structural and mutational analysis of E2 trans-activating proteins of papillomaviruses reveals three distinct functional domains. EMBO J 7: 2823–2829 [PubMed].
    [Google Scholar]
  14. Grm H.S., Massimi P., Gammoh N., Banks L.. ( 2005;). Crosstalk between the human papillomavirus E2 transcriptional activator and the E6 oncoprotein. Oncogene 24: 5149–5164 [CrossRef] [PubMed].
    [Google Scholar]
  15. Heino P., Zhou J., Lambert P.F.. ( 2000;). Interaction of the papillomavirus transcription/replication factor, E2, and the viral capsid protein, L2. Virology 276: 304–314 [CrossRef] [PubMed].
    [Google Scholar]
  16. Johansson C., Somberg M., Li X., Backström Winquist E., Fay J., Ryan F., Pim D., Banks L., Schwartz S.. ( 2012;). HPV-16 E2 contributes to induction of HPV-16 late gene expression by inhibiting early polyadenylation. EMBO J 31: 3212–3227 [CrossRef] [PubMed].
    [Google Scholar]
  17. King L.E., Dornan E.S., Donaldson M.M., Morgan I.M.. ( 2011;). Human papillomavirus 16 E2 stability and transcriptional activation is enhanced by E1 via a direct protein–protein interaction. Virology 414: 26–33 [CrossRef] [PubMed].
    [Google Scholar]
  18. Kovelman R., Bilter G.K., Glezer E., Tsou A.Y., Barbosa M.S.. ( 1996;). Enhanced transcriptional activation by E2 proteins from the oncogenic human papillomaviruses. J Virol 70: 7549–7560 [PubMed].
    [Google Scholar]
  19. Leder C., Kleinschmidt J.A., Wiethe C., Müller M.. ( 2001;). Enhancement of capsid gene expression: preparing the human papillomavirus type 16 major structural gene L1 for DNA vaccination purposes. J Virol 75: 9201–9209 [CrossRef] [PubMed].
    [Google Scholar]
  20. Li M., Cripe T.P., Estes P.A., Lyon M.K., Rose R.C., Garcea R.L.. ( 1997;). Expression of the human papillomavirus type 11 L1 capsid protein in Escherichia coli: characterization of protein domains involved in DNA binding and capsid assembly. J Virol 71: 2988–2995 [PubMed].
    [Google Scholar]
  21. Li J., Li Q., Diaz J., You J.. ( 2014;). Brd4-mediated nuclear retention of the papillomavirus E2 protein contributes to its stabilization in host cells. Viruses 6: 319–335 [CrossRef] [PubMed].
    [Google Scholar]
  22. Lowe J., Panda D., Rose S., Jensen T., Hughes W.A., Tso F.Y., Angeletti P.C.. ( 2008;). Evolutionary and structural analyses of alpha-papillomavirus capsid proteins yields novel insights into L2 structure and interaction with L1. Virol J 5: 150 [CrossRef] [PubMed].
    [Google Scholar]
  23. Lyskov S., Gray J.J.. ( 2008;). The RosettaDock server for local protein–protein docking. Nucleic Acids Res 36: (Web Server), W233–W238 [CrossRef] [PubMed].
    [Google Scholar]
  24. McBride A.A.. ( 2013;). The papillomavirus E2 proteins. Virology 445: 57–79 [CrossRef] [PubMed].
    [Google Scholar]
  25. Merle E., Rose R.C., LeRoux L., Moroianu J.. ( 1999;). Nuclear import of HPV11 L1 capsid protein is mediated by karyopherin α2β1 heterodimers. J Cell Biochem 74: 628–637 [CrossRef] [PubMed].
    [Google Scholar]
  26. Modis Y., Trus B.L., Harrison S.C.. ( 2002;). Atomic model of the papillomavirus capsid. EMBO J 21: 4754–4762 [CrossRef] [PubMed].
    [Google Scholar]
  27. Mohr I.J., Clark R., Sun S., Androphy E.J., MacPherson P., Botchan M.R.. ( 1990;). Targeting the E1 replication protein to the papillomavirus origin of replication by complex formation with the E2 transactivator. Science 250: 1694–1699 [CrossRef] [PubMed].
    [Google Scholar]
  28. Parish J.L., Rosa J., Wang X., Lahti J.M., Doxsey S.J., Androphy E.J., The D.N.A.. ( 2006a;). Helicase ChlR1 is required for sister chromatid cohesion in mammalian cells. J Cell Sci 119: 4857–4865 [CrossRef] [PubMed].
    [Google Scholar]
  29. Parish J.L., Bean A.M., Park R.B., Androphy E.J.. ( 2006b;). ChlR1 is required for loading papillomavirus E2 onto mitotic chromosomes and viral genome maintenance. Mol Cell 24: 867–876 [CrossRef] [PubMed].
    [Google Scholar]
  30. Pierce B.G., Wiehe K., Hwang H., Kim B.H., Vreven T., Weng Z.. ( 2014;). ZDOCK server: interactive docking prediction of protein–protein complexes and symmetric multimers. Bioinformatics 30: 1771–1773 [CrossRef] [PubMed].
    [Google Scholar]
  31. Prescott E.L., Brimacombe C.L., Hartley M., Bell I., Graham S., Roberts S.. ( 2014;). Human papillomavirus type 1 E1^E4 protein is a potent inhibitor of the serine-arginine (SR) protein kinase SRPK1 and inhibits phosphorylation of host SR proteins and of the viral transcription and replication regulator E2. J Virol 88: 12599–12611 [CrossRef] [PubMed].
    [Google Scholar]
  32. Sakakibara N., Mitra R., McBride A.A.. ( 2011;). The papillomavirus E1 helicase activates a cellular DNA damage response in viral replication foci. J Virol 85: 8981–8995 [CrossRef] [PubMed].
    [Google Scholar]
  33. Sakakibara N., Chen D., Jang M.K., Kang D.W., Luecke H.F., Wu S.-Y., Chiang C.-M., McBride A.A.. ( 2013;). Brd4 is displaced from HPV replication factories as they expand and amplify viral DNA. PLoS Pathog 9: e1003777 [CrossRef] [PubMed].
    [Google Scholar]
  34. Sanders C.M., Stenlund A.. ( 2001;). Mechanism and requirements for bovine papillomavirus, type 1, E1 initiator complex assembly promoted by the E2 transcription factor bound to distal sites. J Biol Chem 276: 23689–23699 [CrossRef] [PubMed].
    [Google Scholar]
  35. Schäfer F., Florin L., Sapp M.. ( 2002;). DNA binding of L1 is required for human papillomavirus morphogenesis in vivo. Virology 295: 172–181 [CrossRef] [PubMed].
    [Google Scholar]
  36. Shire K., Kapoor P., Jiang K., Hing M.N.T., Sivachandran N., Nguyen T., Frappier L.. ( 2006;). Regulation of the EBNA1 Epstein-Barr virus protein by serine phosphorylation and arginine methylation. J Virol 80: 5261–5272 [CrossRef] [PubMed].
    [Google Scholar]
  37. Steger G., Corbach S.. ( 1997;). Dose-dependent regulation of the early promoter of human papillomavirus type 18 by the viral E2 protein. J Virol 71: 50–58 [PubMed].
    [Google Scholar]
  38. Taylor E.R., Morgan I.M.. ( 2003;). A novel technique with enhanced detection and quantitation of HPV-16 E1- and E2-mediated DNA replication. Virology 315: 103–109 [CrossRef] [PubMed].
    [Google Scholar]
  39. Thierry F.. ( 2009;). Transcriptional regulation of the papillomavirus oncogenes by cellular and viral transcription factors in cervical carcinoma. Virology 384: 375–379 [CrossRef] [PubMed].
    [Google Scholar]
  40. Thierry F., Yaniv M.. ( 1987;). The BPV1-E2 trans-acting protein can be either an activator or a repressor of the HPV18 regulatory region. EMBO J 6: 3391–3397 [PubMed].
    [Google Scholar]
  41. Thönes N., Herreiner A., Schädlich L., Piuko K., Müller M.. ( 2008;). A direct comparison of human papillomavirus type 16 L1 particles reveals a lower immunogenicity of capsomeres than viruslike particles with respect to the induced antibody response. J Virol 82: 5472–5485 [CrossRef] [PubMed].
    [Google Scholar]
  42. Vance K.W., Campo M.S., Morgan I.M.. ( 1999;). An enhanced epithelial response of a papillomavirus promoter to transcriptional activators. J Biol Chem 274: 27839–27844 [CrossRef] [PubMed].
    [Google Scholar]
  43. Watson R.A., Rollason T.P., Reynolds G.M., Murray P.G., Banks L., Roberts S.. ( 2002;). Changes in expression of the human homologue of the Drosophila discs large tumour suppressor protein in high-grade premalignant cervical neoplasias. Carcinogenesis 23: 1791–1796 [CrossRef] [PubMed].
    [Google Scholar]
  44. Wilson R., Laimins L.A.. ( 2005;). Differentiation of HPV-containing cells using organotypic “raft” culture or methylcellulose. Methods Mol Med 119: 157–169 [PubMed].
    [Google Scholar]
  45. Wilson R., Ryan G.B., Knight G.L., Laimins L.A., Roberts S.. ( 2007;). The full-length E1^E4 protein of human papillomavirus type 18 modulates differentiation-dependent viral DNA amplification and late gene expression. Virology 362: 453–460 [CrossRef] [PubMed].
    [Google Scholar]
  46. Xue Y., Bellanger S., Zhang W., Lim D., Low J., Lunny D., Thierry F.. ( 2010;). HPV16 E2 is an immediate early marker of viral infection, preceding E7 expression in precursor structures of cervical carcinoma. Cancer Res 70: 5316–5325 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000162
Loading
/content/journal/jgv/10.1099/vir.0.000162
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error