1887

Abstract

Porcine epidemic diarrhea virus (PEDV) is a coronavirus that induces persistent diarrhoea in swine, resulting in severe economic losses in swine-producing countries. Insights into the interplay between PEDV infection and the innate immune system are necessary for understanding the associated mechanism of pathogenesis. The transcription factor NF-κB plays an important role in regulating host immune responses. Here, we elucidated for the first time to our knowledge the potential mechanism of PEDV-mediated NF-κB activation in porcine small intestinal epithelial cells (IECs). During PEDV infection, NF-κB p65 was found to translocate from the cytoplasm to the nucleus, and PEDV-dependent NF-κB activity was associated with viral dose and active replication. Using small interfering RNAs to screen different mRNA components of the Toll-like receptor (TLR) or RIG-I-like receptor signalling pathways, we demonstrated that TLR2, TLR3 and TLR9 contribute to NF-κB activation in response to PEDV infection, but not RIG-I. By screening PEDV structural proteins for their ability to induce NF-κB activities, we found that PEDV nucleocapsid protein (N) could activate NF-κB and that the central region of N was essential for NF-κB activation. Furthermore, TLR2 was involved in PEDV N-induced NF-κB activation in IECs. Collectively, these findings provide new avenues of investigation into the molecular mechanisms of NF-κB activation induced by PEDV infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000133
2015-07-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/7/1757.html?itemId=/content/journal/jgv/10.1099/vir.0.000133&mimeType=html&fmt=ahah

References

  1. Abujamra A.L. , Spanjaard R.A. , Akinsheye I. , Zhao X. , Faller D.V. , Ghosh S.K. . ( 2006;). Leukemia virus long terminal repeat activates NFkappaB pathway by a TLR3-dependent mechanism. Virology 345: 390–403 [CrossRef] [PubMed].
    [Google Scholar]
  2. Arce C. , Ramírez-Boo M. , Lucena C. , Garrido J.J. . ( 2010;). Innate immune activation of swine intestinal epithelial cell lines (IPEC-J2 and IPI-2I) in response to LPS from Salmonella typhimurium . Comp Immunol Microbiol Infect Dis 33: 161–174 [CrossRef] [PubMed].
    [Google Scholar]
  3. Berg R.K. , Melchjorsen J. , Rintahaka J. , Diget E. , Søby S. , Horan K.A. , Gorelick R.J. , Matikainen S. , Larsen C.S. , other authors . ( 2012;). Genomic HIV RNA induces innate immune responses through RIG-I-dependent sensing of secondary-structured RNA. PLoS One 7: e29291 [CrossRef] [PubMed].
    [Google Scholar]
  4. Bren G.D. , Trushin S.A. , Whitman J. , Shepard B. , Badley A.D. . ( 2009;). HIV gp120 induces. NF-kappaB dependent, HIV replication that requires procaspase 8.PLoS One 4: e4875 [CrossRef] [PubMed].
    [Google Scholar]
  5. da Silva L.F. , Jones C. . ( 2012;). Two microRNAs encoded within the bovine herpesvirus 1 latency-related gene promote cell survival by interacting with RIG-I and stimulating NF-κB-dependent transcription and beta interferon signaling pathways. J Virol 86: 1670–1682 [CrossRef] [PubMed].
    [Google Scholar]
  6. Debouck P. , Pensaert M. . ( 1980;). Experimental infection of pigs with a new porcine enteric coronavirus, CV 777. Am J Vet Res 41: 219–223 [PubMed].
    [Google Scholar]
  7. DeDiego M.L. , Nieto-Torres J.L. , Regla-Nava J.A. , Jimenez-Guardeño J.M. , Fernandez-Delgado R. , Fett C. , Castaño-Rodriguez C. , Perlman S. , Enjuanes L. . ( 2014;). Inhibition of NF-κB-mediated inflammation in severe acute respiratory syndrome coronavirus-infected mice increases survival. J Virol 88: 913–924 [CrossRef] [PubMed].
    [Google Scholar]
  8. Ding Z. , Fang L. , Jing H. , Zeng S. , Wang D. , Liu L. , Zhang H. , Luo R. , Chen H. , Xiao S. . ( 2014;). Porcine epidemic diarrhea virus nucleocapsid protein antagonizes beta interferon production by sequestering the interaction between IRF3 and TBK1. J Virol 88: 8936–8945 [CrossRef] [PubMed].
    [Google Scholar]
  9. Dosch S.F. , Mahajan S.D. , Collins A.R. . ( 2009;). SARS coronavirus spike protein-induced innate immune response occurs via activation of the NF-kappaB pathway in human monocyte macrophages in vitro . Virus Res 142: 19–27 [CrossRef] [PubMed].
    [Google Scholar]
  10. Egberink H.F. , Ederveen J. , Callebaut P. , Horzinek M.C. . ( 1988;). Characterization of the structural proteins of porcine epizootic diarrhea virus, strain CV777. Am J Vet Res 49: 1320–1324 [PubMed].
    [Google Scholar]
  11. Eleouet J.F. , Chilmonczyk S. , Besnardeau L. , Laude H. . ( 1998;). Transmissible gastroenteritis coronavirus induces programmed cell death in infected cells through a caspase-dependent pathway. J Virol 72: 4918–4924 [PubMed].
    [Google Scholar]
  12. Fang Y. , Fang L. , Wang Y. , Lei Y. , Luo R. , Wang D. , Chen H. , Xiao S. . ( 2012;). Porcine reproductive and respiratory syndrome virus nonstructural protein 2 contributes to NF-κB activation. Virol J 9: 83 [CrossRef] [PubMed].
    [Google Scholar]
  13. Frieman M. , Heise M. , Baric R. . ( 2008;). SARS coronavirus and innate immunity. Virus Res 133: 101–112 [CrossRef] [PubMed].
    [Google Scholar]
  14. Fu Y. , Quan R. , Zhang H. , Hou J. , Tang J. , Feng W.H. . ( 2012;). Porcine reproductive and respiratory syndrome virus induces interleukin-15 through the NF-κB signaling pathway. J Virol 86: 7625–7636 [CrossRef] [PubMed].
    [Google Scholar]
  15. Haas F. , Yamauchi K. , Murat M. , Bernasconi M. , Yamanaka N. , Speck R.F. , Nadal D. . ( 2014;). Activation of NF-κB via endosomal Toll-like receptor 7 (TLR7) or TLR9 suppresses murine herpesvirus 68 reactivation. J Virol 88: 10002–10012 [CrossRef] [PubMed].
    [Google Scholar]
  16. Hofmann M. , Wyler R. . ( 1988;). Propagation of the virus of porcine epidemic diarrhea in cell culture. J Clin Microbiol 26: 2235–2239 [PubMed].
    [Google Scholar]
  17. Kocherhans R. , Bridgen A. , Ackermann M. , Tobler K. . ( 2001;). Completion of the porcine epidemic diarrhoea coronavirus (PEDV) genome sequence. Virus Genes 23: 137–144 [CrossRef] [PubMed].
    [Google Scholar]
  18. Lee S.M. , Kleiboeker S.B. . ( 2005;). Porcine arterivirus activates the NF-kappaB pathway through IkappaB degradation. Virology 342: 47–59 [CrossRef] [PubMed].
    [Google Scholar]
  19. Leoni V. , Gianni T. , Salvioli S. , Campadelli-Fiume G. . ( 2012;). Herpes simplex virus glycoproteins gH/gL and gB bind Toll-like receptor 2, and soluble gH/gL is sufficient to activate NF-κB. J Virol 86: 6555–6562 [CrossRef] [PubMed].
    [Google Scholar]
  20. Liao Q.J. , Ye L.B. , Timani K.A. , Zeng Y.C. , She Y.L. , Ye L. , Wu Z.H. . ( 2005;). Activation of NF-kappaB by the full-length nucleocapsid protein of the SARS coronavirus. Acta Biochim Biophys Sin (Shanghai) 37: 607–612 [CrossRef] [PubMed].
    [Google Scholar]
  21. Lin C.N. , Chung W.B. , Chang S.W. , Wen C.C. , Liu H. , Chien C.H. , Chiou M.T. . ( 2014;). US-like strain of porcine epidemic diarrhea virus outbreaks in Taiwan, 2013–2014. J Vet Med Sci 76: 1297–1299.[CrossRef]
    [Google Scholar]
  22. Liu X. , Fitzgerald K. , Kurt-Jones E. , Finberg R. , Knipe D.M. . ( 2008;). Herpesvirus tegument protein activates NF-κB signaling through the TRAF6 adaptor protein. Proc Natl Acad Sci U S A 105: 11335–11339 [CrossRef] [PubMed].
    [Google Scholar]
  23. Liu F. , Li G. , Wen K. , Bui T. , Cao D. , Zhang Y. , Yuan L. . ( 2010;). Porcine small intestinal epithelial cell line (IPEC-J2) of rotavirus infection as a new model for the study of innate immune responses to rotaviruses and probiotics. Viral Immunol 23: 135–149 [CrossRef] [PubMed].
    [Google Scholar]
  24. Livak K.J. , Schmittgen T.D. . ( 2001;). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25: 402–408 [CrossRef] [PubMed].
    [Google Scholar]
  25. Luo R. , Xiao S. , Jiang Y. , Jin H. , Wang D. , Liu M. , Chen H. , Fang L. . ( 2008;). Porcine reproductive and respiratory syndrome virus (PRRSV) suppresses interferon-beta production by interfering with the RIG-I signaling pathway. Mol Immunol 45: 2839–2846 [CrossRef] [PubMed].
    [Google Scholar]
  26. Matthews K.L. , Coleman C.M. , van der Meer Y. , Snijder E.J. , Frieman M.B. . ( 2014;). The ORF4b-encoded accessory proteins of Middle East respiratory syndrome coronavirus and two related bat coronaviruses localize to the nucleus and inhibit innate immune signalling. J Gen Virol 95: 874–882 [CrossRef] [PubMed].
    [Google Scholar]
  27. May M.J. , Ghosh S. . ( 1998;). Signal transduction through NF-kappa B. Immunol Today 19: 80–88 [CrossRef] [PubMed].
    [Google Scholar]
  28. Moynagh P.N. . ( 2005;). The NF-κB pathway. Cell Sci 118: 4589–4592 [CrossRef] [PubMed].
    [Google Scholar]
  29. Oem J.K. , Jackel-Cram C. , Li Y.P. , Kang H.N. , Zhou Y. , Babiuk L.A. , Liu Q. . ( 2008;). Hepatitis C virus non-structural protein-2 activates CXCL-8 transcription through NF-kappaB. Arch Virol 153: 293–301 [CrossRef] [PubMed].
    [Google Scholar]
  30. Ojkic D. , Hazlett M. , Fairles J. , Marom A. , Slavic D. , Maxie G. , Alexandersen S. , Pasick J. , Alsop J. , Burlatschenko S. . ( 2015;). The first case of porcine epidemic diarrhea in Canada. Can Vet J 56: 149–152 [PubMed].
    [Google Scholar]
  31. Park S. , Kim S. , Song D. , Park B. . ( 2014;). Novel porcine epidemic diarrhea virus variant with large genomic deletion, South Korea. Emerg Infect Dis 20: 2089–2092 [CrossRef] [PubMed].
    [Google Scholar]
  32. Pitman R.S. , Blumberg R.S. . ( 2000;). First line of defense: the role of the intestinal epithelium as an active component of the mucosal immune system. J Gastroenterol 35: 805–814 [CrossRef] [PubMed].
    [Google Scholar]
  33. Samanta M. , Iwakiri D. , Kanda T. , Imaizumi T. , Takada K. . ( 2006;). EB virus-encoded RNAs are recognized by RIG-I and activate signaling to induce type I IFN. EMBO J 25: 4207–4214 [CrossRef] [PubMed].
    [Google Scholar]
  34. Schierack P. , Nordhoff M. , Pollmann M. , Weyrauch K.D. , Amasheh S. , Lodemann U. , Jores J. , Tachu B. , Kleta S. , other authors . ( 2006;). Characterization of a porcine intestinal epithelial cell line for in vitro studies of microbial pathogenesis in swine. Histochem Cell Biol 125: 293–305 [CrossRef] [PubMed].
    [Google Scholar]
  35. Shi D. , Lv M. , Chen J. , Shi H. , Zhang S. , Zhang X. , Feng L. . ( 2014;). Molecular characterizations of subcellular localization signals in the nucleocapsid protein of porcine epidemic diarrhea virus. Viruses 6: 1253–1273 [CrossRef] [PubMed].
    [Google Scholar]
  36. Smirnova K.V. , Diduk S.V. , Gurtsevich V.E. . ( 2011;). [Functional analysis of Epstein-Barr virus latent membrane proteins (LMP1) in patients with lymphoproliferative disorders]. Biomed Khim 57: 114–126 (in Russian). [PubMed].[CrossRef]
    [Google Scholar]
  37. Song D. , Park B. . ( 2012;). Porcine epidemic diarrhoea virus: a comprehensive review of molecular epidemiology, diagnosis, and vaccines. Virus Genes 44: 167–175 [CrossRef] [PubMed].
    [Google Scholar]
  38. Song S. , Bi J. , Wang D. , Fang L. , Zhang L. , Li F. , Chen H. , Xiao S. . ( 2013;). Porcine reproductive and respiratory syndrome virus infection activates IL-10 production through NF-κB and p38 MAPK pathways in porcine alveolar macrophages. Dev Comp Immunol 39: 265–272 [CrossRef] [PubMed].
    [Google Scholar]
  39. Takeda S. , Miyazaki D. , Sasaki S. , Yamamoto Y. , Terasaka Y. , Yakura K. , Yamagami S. , Ebihara N. , Inoue Y. . ( 2011;). Roles played by toll-like receptor-9 in corneal endothelial cells after herpes simplex virus type 1 infection. Invest Ophthalmol Vis Sci 52: 6729–6736 [CrossRef] [PubMed].
    [Google Scholar]
  40. Thompson A.J. , Locarnini S.A. . ( 2007;). Toll-like receptors, RIG-I-like RNA helicases and the antiviral innate immune response. Immunol Cell Biol 85: 435–445 [CrossRef] [PubMed].
    [Google Scholar]
  41. Uddin M.J. , Kaewmala K. , Tesfaye D. , Tholen E. , Looft C. , Hoelker M. , Schellander K. , Cinar M.U. . ( 2013;). Expression patterns of porcine Toll-like receptors family set of genes (TLR1-10) in gut-associated lymphoid tissues alter with age. Res Vet Sci 95: 92–102 [CrossRef] [PubMed].
    [Google Scholar]
  42. Vlasova A.N. , Marthaler D. , Wang Q. , Culhane M.R. , Rossow K.D. , Rovira A. , Collins J. , Saif L.J. . ( 2014;). Distinct characteristics and complex evolution of PEDV strains, North America, May 2013-February 2014. Emerg Infect Dis 20: 1620–1628 [CrossRef] [PubMed].
    [Google Scholar]
  43. Xing Y. , Chen J. , Tu J. , Zhang B. , Chen X. , Shi H. , Baker S.C. , Feng L. , Chen Z. . ( 2013;). The papain-like protease of porcine epidemic diarrhea virus negatively regulates type I interferon pathway by acting as a viral deubiquitinase. J Gen Virol 94: 1554–1567 [CrossRef] [PubMed].
    [Google Scholar]
  44. Xu X. , Zhang H. , Zhang Q. , Dong J. , Liang Y. , Huang Y. , Liu H.J. , Tong D. . ( 2013a;). Porcine epidemic diarrhea virus E protein causes endoplasmic reticulum stress and up-regulates interleukin-8 expression. Virol J 10: 26 [CrossRef] [PubMed].
    [Google Scholar]
  45. Xu X. , Zhang H. , Zhang Q. , Huang Y. , Dong J. , Liang Y. , Liu H.J. , Tong D. . ( 2013b;). Porcine epidemic diarrhea virus N protein prolongs S-phase cell cycle, induces endoplasmic reticulum stress, and up-regulates interleukin-8 expression. Vet Microbiol 164: 212–221 [CrossRef] [PubMed].
    [Google Scholar]
  46. Yamamoto Y. , Gaynor R.B. . ( 2001;). Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer. J Clin Invest 107: 135–142 [CrossRef] [PubMed].
    [Google Scholar]
  47. Zhao S. , Gao J. , Zhu L. , Yang Q. . ( 2014;). Transmissible gastroenteritis virus and porcine epidemic diarrhoea virus infection induces dramatic changes in the tight junctions and microfilaments of polarized IPEC-J2 cells. Virus Res 192: 34–45 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000133
Loading
/content/journal/jgv/10.1099/vir.0.000133
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error