Grass carp reovirus (GCRV) is a member of the genus in the family , and contains five core proteins (VP1–VP4 and VP6) and two outer-capsid proteins (VP5 and VP7) in its particle. Previous studies have revealed that the outer-capsid proteins of reovirus are responsible for initiating infection, but the mechanism is poorly understood. Using baculovirus-expressed VP5 and VP7 to recoat purified cores, assembly of GCRV was achieved in this study. Recoated GCRV (R-GCRV) closely resembled native GCRV (N-GCRV) in particle morphology, protein composition and infectivity. Similar to N-GCRV, the infectivity of R-GCRV could be inhibited by treating cells with the weak base NHCl. In addition, recoated particles carrying an Asn→Ala substitution at residue 42 of VP5 (VP5/VP7 R-GCRV) were no longer infectious. These results provide strong evidence that autocleavage of VP5 is critical for aquareovirus to initiate efficient infection.


Article metrics loading...

Loading full text...

Full text loading...



  1. Chandran K., Nibert M. L.(1998). Protease cleavage of reovirus capsid protein μ1/μ1C is blocked by alkyl sulfate detergents, yielding a new type of infectious subvirion particle. J Virol 72, 467475.[PubMed] [Google Scholar]
  2. Chandran K., Walker S. B., Chen Y., Contreras C. M., Schiff L. A., Baker T. S., Nibert M. L.(1999). In vitro recoating of reovirus cores with baculovirus-expressed outer-capsid proteins μ1 and σ3. J Virol 73, 39413950.[PubMed] [Google Scholar]
  3. Cheng L., Fang Q., Shah S., Atanasov I. C., Zhou Z. H.(2008). Subnanometer-resolution structures of the grass carp reovirus core and virion. J Mol Biol 382, 213222. [View Article][PubMed] [Google Scholar]
  4. Cheng L., Zhu J., Hui W. H., Zhang X., Honig B., Fang Q., Zhou Z. H.(2010). Backbone model of an aquareovirus virion by cryo-electron microscopy and bioinformatics. J Mol Biol 397, 852863. [View Article][PubMed] [Google Scholar]
  5. Fang Q., Ke L. H., Cai Y. Q.(1989). Growth characterization and high titre culture of GCHV. Virol Sin 4, 315319. [Google Scholar]
  6. Fang Q., Shah S., Liang Y. Y., Zhou Z. H.(2005). 3D reconstruction and capsid protein characterization of grass carp reovirus. Sci China C Life Sci 48, 593600. [View Article][PubMed] [Google Scholar]
  7. Fang Q., Seng E. K., Ding Q. Q., Zhang L. L.(2008). Characterization of infectious particles of grass carp reovirus by treatment with proteases. Arch Virol 153, 675682. [View Article][PubMed] [Google Scholar]
  8. Jané-Valbuena J., Nibert M. L., Spencer S. M., Walker S. B., Baker T. S., Chen Y., Centonze V. E., Schiff L. A.(1999). Reovirus virion-like particles obtained by recoating infectious subvirion particles with baculovirus-expressed σ3 protein: an approach for analyzing σ3 functions during virus entry. J Virol 73, 29632973.[PubMed] [Google Scholar]
  9. Ke L. H., Fang Q., Cai Y. Q.(1990). Characteristics of a novel isolate of grass carp hemorrhage virus. Acta Hydrobiol Sin 14, 153159. [Google Scholar]
  10. King A. M. Q., Adams M. J., Carstens E. B., Lefkowitz E. J.(editors) (2011).Virus Taxonomy. Ninth Report of the International Committee on Taxonomy of Viruses. San Diego: Elsevier. [Google Scholar]
  11. Kothandaraman S., Hebert M. C., Raines R. T., Nibert M. L.(1998). No role for pepstatin-A-sensitive acidic proteinases in reovirus infections of L or MDCK cells. Virology 251, 264272. [View Article][PubMed] [Google Scholar]
  12. Liemann S., Chandran K., Baker T. S., Nibert M. L., Harrison S. C.(2002). Structure of the reovirus membrane-penetration protein, μ1, in a complex with is protector protein, σ3. Cell 108, 283295. [View Article][PubMed] [Google Scholar]
  13. Mohd Jaafar F., Goodwin A. E., Belhouchet M., Merry G., Fang Q., Cantaloube J. F., Biagini P., de Micco P., Mertens P. P. C., Attoui H.(2008). Complete characterisation of the American grass carp reovirus genome (genus Aquareovirus: family Reoviridae) reveals an evolutionary link between aquareoviruses and coltiviruses. Virology 373, 310321. [View Article][PubMed] [Google Scholar]
  14. Nibert M. L., Schiff L. A., Fields B. N.(1991). Mammalian reoviruses contain a myristoylated structural protein. J Virol 65, 19601967.[PubMed] [Google Scholar]
  15. Nibert M. L., Odegard A. L., Agosto M. A., Chandran K., Schiff L. A.(2005). Putative autocleavage of reovirus μ1 protein in concert with outer-capsid disassembly and activation for membrane permeabilization. J Mol Biol 345, 461474. [View Article][PubMed] [Google Scholar]
  16. Odegard A. L., Chandran K., Zhang X., Parker J. S., Baker T. S., Nibert M. L.(2004). Putative autocleavage of outer capsid protein μ1, allowing release of myristoylated peptide μ1N during particle uncoating, is critical for cell entry by reovirus. J Virol 78, 87328745. [View Article][PubMed] [Google Scholar]
  17. Rangel A. A. C., Rockemann D. D., Hetrick F. M., Samal S. K.(1999). Identification of grass carp haemorrhage virus as a new genogroup of aquareovirus. J Gen Virol 80, 23992402.[PubMed] [Google Scholar]
  18. Sturzenbecker L. J., Nibert M., Furlong D., Fields B. N.(1987). Intracellular digestion of reovirus particles requires a low pH and is an essential step in the viral infectious cycle. J Virol 61, 23512361.[PubMed] [Google Scholar]
  19. Zhang X., Jin L., Fang Q., Hui W. H., Zhou Z. H.(2010). 3.3 Å Cryo-EM structure of a nonenveloped virus reveals a priming mechanism for cell entry. Cell 141, 472482. [View Article][PubMed] [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error