1887

Abstract

Central to the development of new treatments for human immunodeficiency virus 1 (HIV-1) is a more thorough understanding of the viral life cycle and the cellular cofactors upon which this depends. Targeting cellular proteins and their interaction with HIV-1 has the potential to reduce the problem of emerging viral resistance to drugs as mutational escape is more difficult. We performed a short interfering RNA (siRNA) library screen targeting 59 cellular RNA helicases, assessing the effect on both viral capsid protein production and infectious virion formation. Five RNA helicases were identified which, when knocked down, reproducibly decreased infectious particle production: DDX5, DDX10, DDX17, DDX28 and DDX52. Two of these proteins (DDX5 and DDX17) have known roles in HIV-1 replication. A further helicase (DDX10) was a positive hit from a previous genome-wide siRNA screen; however, DDX28 and DDX52 have not previously been implicated as essential cofactors for HIV-1.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000092
2015-06-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/6/1484.html?itemId=/content/journal/jgv/10.1099/vir.0.000092&mimeType=html&fmt=ahah

References

  1. Bleichert F. , Baserga S. J. . ( 2007; ). The long unwinding road of RNA helicases. . Mol Cell 27:, 339–352. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bogenhagen D. F. , Rousseau D. , Burke S. . ( 2008; ). The layered structure of human mitochondrial DNA nucleoids. . J Biol Chem 283:, 3665–3675. [CrossRef] [PubMed]
    [Google Scholar]
  3. Brass A. L. , Dykxhoorn D. M. , Benita Y. , Yan N. , Engelman A. , Xavier R. J. , Lieberman J. , Elledge S. J. . ( 2008; ). Identification of host proteins required for HIV infection through a functional genomic screen. . Science 319:, 921–926. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bushman F. D. , Malani N. , Fernandes J. , D’Orso I. , Cagney G. , Diamond T. L. , Zhou H. , Hazuda D. J. , Espeseth A. S. et al. ( 2009; ). Host cell factors in HIV replication: meta-analysis of genome-wide studies. . PLoS Pathog 5:, e1000437. [CrossRef] [PubMed]
    [Google Scholar]
  5. Chen G. , Guo X. , Lv F. , Xu Y. , Gao G. . ( 2008; ). p72 DEAD box RNA helicase is required for optimal function of the zinc-finger antiviral protein. . Proc Natl Acad Sci U S A 105:, 4352–4357. [CrossRef] [PubMed]
    [Google Scholar]
  6. Chen C. Y. , Liu X. , Boris-Lawrie K. , Sharma A. , Jeang K. T. . ( 2013; ). Cellular RNA helicases and HIV-1: insights from genome-wide, proteomic, and molecular studies. . Virus Res 171:, 357–365. [CrossRef] [PubMed]
    [Google Scholar]
  7. Fuller-Pace F. V. . ( 2013; ). The DEAD box proteins DDX5 (p68) and DDX17 (p72): multi-tasking transcriptional regulators. . Biochim Biophys Acta 1829:, 756–763. [CrossRef] [PubMed]
    [Google Scholar]
  8. König R. , Zhou Y. , Elleder D. , Diamond T. L. , Bonamy G. M. , Irelan J. T. , Chiang C. Y. , Tu B. P. , De Jesus P. D. et al. ( 2008; ). Global analysis of host–pathogen interactions that regulate early-stage HIV-1 replication. . Cell 135:, 49–60. [CrossRef] [PubMed]
    [Google Scholar]
  9. Krishnan V. , Zeichner S. L. . ( 2004; ). Alterations in the expression of DEAD-box and other RNA binding proteins during HIV-1 replication. . Retrovirology 1:, 42. [CrossRef] [PubMed]
    [Google Scholar]
  10. Lamm G. M. , Nicol S. M. , Fuller-Pace F. V. , Lamond A. I. . ( 1996; ). p72: a human nuclear DEAD box protein highly related to p68. . Nucleic Acids Res 24:, 3739–3747. [CrossRef] [PubMed]
    [Google Scholar]
  11. Lin S. , Tian L. , Shen H. , Gu Y. , Li J.-L. , Chen Z. , Sun X. , You M. J. , Wu L. . ( 2013; ). DDX5 is a positive regulator of oncogenic NOTCH1 signaling in T cell acute lymphoblastic leukemia. . Oncogene 32:, 4845–4853. [CrossRef] [PubMed]
    [Google Scholar]
  12. Lorgeoux R. P. , Pan Q. , Le Duff Y. , Liang C. . ( 2013; ). DDX17 promotes the production of infectious HIV-1 particles through modulating viral RNA packaging and translation frameshift. . Virology 443:, 384–392. [CrossRef] [PubMed]
    [Google Scholar]
  13. Maga G. , Falchi F. , Garbelli A. , Belfiore A. , Witvrouw M. , Manetti F. , Botta M. . ( 2008; ). Pharmacophore modeling and molecular docking led to the discovery of inhibitors of human immunodeficiency virus-1 replication targeting the human cellular aspartic acid–glutamic acid–alanine–aspartic acid box polypeptide 3. . J Med Chem 51:, 6635–6638. [CrossRef] [PubMed]
    [Google Scholar]
  14. Maga G. , Falchi F. , Radi M. , Botta L. , Casaluce G. , Bernardini M. , Irannejad H. , Manetti F. , Garbelli A. et al. ( 2011; ). Toward the discovery of novel anti-HIV drugs. Second-generation inhibitors of the cellular ATPase DDX3 with improved anti-HIV activity: synthesis, structure–activity relationship analysis, cytotoxicity studies, and target validation. . ChemMedChem 6:, 1371–1389. [CrossRef] [PubMed]
    [Google Scholar]
  15. Naji S. , Ambrus G. , Cimermančič P. , Reyes J. R. , Johnson J. R. , Filbrandt R. , Huber M. D. , Vesely P. , Krogan N. J. et al. ( 2012; ). Host cell interactome of HIV-1 Rev includes RNA helicases involved in multiple facets of virus production. . Mol Cell Proteomics 11:, M111.015313. [CrossRef] [PubMed]
    [Google Scholar]
  16. Ogilvie V. C. , Wilson B. J. , Nicol S. M. , Morrice N. A. , Saunders L. R. , Barber G. N. , Fuller-Pace F. V. . ( 2003; ). The highly related DEAD box RNA helicases p68 and p72 exist as heterodimers in cells. . Nucleic Acids Res 31:, 1470–1480. [CrossRef] [PubMed]
    [Google Scholar]
  17. Pennings P. S. . ( 2013; ). HIV drug resistance: problems and perspectives. . Infect Dis Rep 5: (Suppl 1), e5. [CrossRef] [PubMed]
    [Google Scholar]
  18. Savitsky K. , Ziv Y. , Bar-Shira A. , Gilad S. , Tagle D. A. , Smith S. , Uziel T. , Sfez S. , Nahmias J. et al. ( 1996; ). A human gene (DDX10) encoding a putative DEAD-box RNA helicase at 11q22–q23. . Genomics 33:, 199–206. [CrossRef] [PubMed]
    [Google Scholar]
  19. Shin S. , Rossow K. L. , Grande J. P. , Janknecht R. . ( 2007; ). Involvement of RNA helicases p68 and p72 in colon cancer. . Cancer Res 67:, 7572–7578. [CrossRef] [PubMed]
    [Google Scholar]
  20. Valgardsdottir R. , Brede G. , Eide L. G. , Frengen E. , Prydz H. . ( 2001; ). Cloning and characterization of MDDX28, a putative dead-box helicase with mitochondrial and nuclear localization. . J Biol Chem 276:, 32056–32063. [CrossRef] [PubMed]
    [Google Scholar]
  21. Venema J. , Bousquet-Antonelli C. , Gelugne J. P. , Caizergues-Ferrer M. , Tollervey D. . ( 1997; ). Rok1p is a putative RNA helicase required for rRNA processing. . Mol Cell Biol 17:, 3398–3407.[PubMed] [CrossRef]
    [Google Scholar]
  22. Whitney A. R. , Diehn M. , Popper S. J. , Alizadeh A. A. , Boldrick J. C. , Relman D. A. , Brown P. O. . ( 2003; ). Individuality and variation in gene expression patterns in human blood. . Proc Natl Acad Sci U S A 100:, 1896–1901. [CrossRef] [PubMed]
    [Google Scholar]
  23. Yasuda-Inoue M. , Kuroki M. , Ariumi Y. . ( 2013; ). Distinct DDX DEAD-box RNA helicases cooperate to modulate the HIV-1 Rev function. . Biochem Biophys Res Commun 434:, 803–808. [CrossRef] [PubMed]
    [Google Scholar]
  24. Yedavalli V. S. , Zhang N. , Cai H. , Zhang P. , Starost M. F. , Hosmane R. S. , Jeang K. T. . ( 2008; ). Ring expanded nucleoside analogues inhibit RNA helicase and intracellular human immunodeficiency virus type 1 replication. . J Med Chem 51:, 5043–5051. [CrossRef] [PubMed]
    [Google Scholar]
  25. Zhou H. , Xu M. , Huang Q. , Gates A. T. , Zhang X. D. , Castle J. C. , Stec E. , Ferrer M. , Strulovici B. et al. ( 2008; ). Genome-scale RNAi screen for host factors required for HIV replication. . Cell Host Microbe 4:, 495–504. [CrossRef] [PubMed]
    [Google Scholar]
  26. Zhou X. , Luo J. , Mills L. , Wu S. , Pan T. , Geng G. , Zhang J. , Luo H. , Liu C. , Zhang H. . ( 2013; ). DDX5 facilitates HIV-1 replication as a cellular co-factor of Rev. . PLoS ONE 8:, e65040. [CrossRef] [PubMed]
    [Google Scholar]
  27. Zhu Y. , Chen G. , Lv F. , Wang X. , Ji X. , Xu Y. , Sun J. , Wu L. , Zheng Y. T. , Gao G. . ( 2011; ). Zinc-finger antiviral protein inhibits HIV-1 infection by selectively targeting multiply spliced viral mRNAs for degradation. . Proc Natl Acad Sci U S A 108:, 15834–15839. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000092
Loading
/content/journal/jgv/10.1099/vir.0.000092
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error