1887

Abstract

Hepatitis C virus (HCV) entry is a sequential and multi-step process that includes receptor interactions followed by pH-dependent membrane fusion. Specific and conserved histidine residues on the viral envelope proteins are involved in most pH-induced virus entries. In the case of HCV, some conserved histidines on the E1 and E2 proteins have been investigated in HCV pseudotype particle (HCVpp) systems. However, the roles of these histidines in cell-culture-derived HCV particle (HCVcc) systems remain unclear due to the different aspects of the viral life cycle emphasized by the two systems. In this study, the role of two conserved histidines (His490 and His621, located in domains II and III of E2, respectively) in HCV infection was evaluated in the context of JFH-1-based HCVcc using alanine substitutions. The infectivity of the H490A mutant decreased in spite of comparable initial RNA replication, protein expression and assembly efficiency as WT virus. The H621A mutant did not affect viral protein expression, but exhibited no obvious infectivity; there were fewer core proteins in the culture supernatant compared with WT virus, indicating the partially deficient virus assembly. The HCV receptor CD81-binding ability of the two mutant E2s was assessed further using enzyme immunoassays. The CD81-binding activity of H490A-E2 was reduced, and H621A-E2 was unable to bind to CD81. These data revealed the crucial role played by His490 and His621 in HCV infection, particularly during CD81 binding in cell entry. These results also contributed to the mechanical identification of the histidines involved in pH-dependent HCV entry.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000091
2015-06-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/6/1389.html?itemId=/content/journal/jgv/10.1099/vir.0.000091&mimeType=html&fmt=ahah

References

  1. Agnello V., Abel G., Elfahal M., Knight G. B., Zhang Q. X.. ( 1999; ). Hepatitis C virus and other flaviviridae viruses enter cells via low density lipoprotein receptor. . Proc Natl Acad Sci U S A 96:, 12766–12771. [CrossRef] [PubMed]
    [Google Scholar]
  2. Alsaleh K., Delavalle P. Y., Pillez A., Duverlie G., Descamps V., Rouillé Y., Dubuisson J., Wychowski C.. ( 2010; ). Identification of basic amino acids at the N-terminal end of the core protein that are crucial for hepatitis C virus infectivity. . J Virol 84:, 12515–12528. [CrossRef] [PubMed]
    [Google Scholar]
  3. Blanchard E., Belouzard S., Goueslain L., Wakita T., Dubuisson J., Wychowski C., Rouillé Y.. ( 2006; ). Hepatitis C virus entry depends on clathrin-mediated endocytosis. . J Virol 80:, 6964–6972. [CrossRef] [PubMed]
    [Google Scholar]
  4. Boo I., teWierik K., Douam F., Lavillette D., Poumbourios P., Drummer H. E.. ( 2012; ). Distinct roles in folding, CD81 receptor binding and viral entry for conserved histidine residues of hepatitis C virus glycoprotein E1 and E2. . Biochem J 443:, 85–94. [CrossRef] [PubMed]
    [Google Scholar]
  5. Cao J., Liao X. L., Wu S. M., Zhao P., Zhao L. J., Wu W. B., Qi Z. T.. ( 2007; ). Selection of a phage-displayed peptide recognized by monoclonal antibody directed blocking the site of hepatitis C virus E2 for human CD81. . J Microbiol Methods 68:, 601–604. [CrossRef] [PubMed]
    [Google Scholar]
  6. Carneiro F. A., Stauffer F., Lima C. S., Juliano M. A., Juliano L., Da Poian A. T.. ( 2003; ). Membrane fusion induced by vesicular stomatitis virus depends on histidine protonation. . J Biol Chem 278:, 13789–13794. [CrossRef] [PubMed]
    [Google Scholar]
  7. Carrère-Kremer S., Montpellier C., Lorenzo L., Brulin B., Cocquerel L., Belouzard S., Penin F., Dubuisson J.. ( 2004; ). Regulation of hepatitis C virus polyprotein processing by signal peptidase involves structural determinants at the p7 sequence junctions. . J Biol Chem 279:, 41384–41392. [CrossRef] [PubMed]
    [Google Scholar]
  8. Drummer H. E., Wilson K. A., Poumbourios P.. ( 2002; ). Identification of the hepatitis C virus E2 glycoprotein binding site on the large extracellular loop of CD81. . J Virol 76:, 11143–11147. [CrossRef] [PubMed]
    [Google Scholar]
  9. Drummer H. E., Boo I., Maerz A. L., Poumbourios P.. ( 2006; ). A conserved Gly436-Trp-Leu-Ala-Gly-Leu-Phe-Tyr motif in hepatitis C virus glycoprotein E2 is a determinant of CD81 binding and viral entry. . J Virol 80:, 7844–7853. [CrossRef] [PubMed]
    [Google Scholar]
  10. Evans M. J., von Hahn T., Tscherne D. M., Syder A. J., Panis M., Wölk B., Hatziioannou T., McKeating J. A., Bieniasz P. D., Rice C. M.. ( 2007; ). Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. . Nature 446:, 801–805. [CrossRef] [PubMed]
    [Google Scholar]
  11. Fénéant L., Levy S., Cocquerel L.. ( 2014; ). CD81 and hepatitis C virus (HCV) infection. . Viruses 6:, 535–572. [CrossRef] [PubMed]
    [Google Scholar]
  12. Flint M., Maidens C., Loomis-Price L. D., Shotton C., Dubuisson J., Monk P., Higginbottom A., Levy S., McKeating J. A.. ( 1999; ). Characterization of hepatitis C virus E2 glycoprotein interaction with a putative cellular receptor, CD81. . J Virol 73:, 6235–6244.[PubMed]
    [Google Scholar]
  13. Fritz R., Stiasny K., Heinz F. X.. ( 2008; ). Identification of specific histidines as pH sensors in flavivirus membrane fusion. . J Cell Biol 183:, 353–361. [CrossRef] [PubMed]
    [Google Scholar]
  14. Gastaminza P., Cheng G., Wieland S., Zhong J., Liao W., Chisari F. V.. ( 2008; ). Cellular determinants of hepatitis C virus assembly, maturation, degradation, and secretion. . J Virol 82:, 2120–2129. [CrossRef] [PubMed]
    [Google Scholar]
  15. Haid S., Pietschmann T., Pécheur E. I.. ( 2009; ). Low pH-dependent hepatitis C virus membrane fusion depends on E2 integrity, target lipid composition, and density of virus particles. . J Biol Chem 284:, 17657–17667. [CrossRef] [PubMed]
    [Google Scholar]
  16. Harris H. J., Farquhar M. J., Mee C. J., Davis C., Reynolds G. M., Jennings A., Hu K., Yuan F., Deng H. et al. ( 2008; ). CD81 and claudin 1 coreceptor association: role in hepatitis C virus entry. . J Virol 82:, 5007–5020. [CrossRef] [PubMed]
    [Google Scholar]
  17. Heo T. H., Lee S. M., Bartosch B., Cosset F. L., Kang C. Y.. ( 2006; ). Hepatitis C virus E2 links soluble human CD81 and SR-B1 protein. . Virus Res 121:, 58–64. [CrossRef] [PubMed]
    [Google Scholar]
  18. Hsu M., Zhang J., Flint M., Logvinoff C., Cheng-Mayer C., Rice C. M., McKeating J. A.. ( 2003; ). Hepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retroviral particles. . Proc Natl Acad Sci U S A 100:, 7271–7276. [CrossRef] [PubMed]
    [Google Scholar]
  19. Jardim A. C., Yamasaki L. H., de Queiróz A. T., Bittar C., Pinho J. R., Carareto C. M., Rahal P., Mello I. M.. ( 2009; ). Quasispecies of hepatitis C virus genotype 1 and treatment outcome with peginterferon and ribavirin. . Infect Genet Evol 9:, 689–698. [CrossRef] [PubMed]
    [Google Scholar]
  20. Kampmann T., Mueller D. S., Mark A. E., Young P. R., Kobe B.. ( 2006; ). The role of histidine residues in low-pH-mediated viral membrane fusion. . Structure 14:, 1481–1487. [CrossRef] [PubMed]
    [Google Scholar]
  21. Kato T., Date T., Murayama A., Morikawa K., Akazawa D., Wakita T.. ( 2006; ). Cell culture and infection system for hepatitis C virus. . Nat Protoc 1:, 2334–2339. [CrossRef] [PubMed]
    [Google Scholar]
  22. Kong L., Giang E., Nieusma T., Kadam R. U., Cogburn K. E., Hua Y., Dai X., Stanfield R. L., Burton D. R. et al. ( 2013; ). Hepatitis C virus E2 envelope glycoprotein core structure. . Science 342:, 1090–1094. [CrossRef] [PubMed]
    [Google Scholar]
  23. Krey T., d’Alayer J., Kikuti C. M., Saulnier A., Damier-Piolle L., Petitpas I., Johansson D. X., Tawar R. G., Baron B. et al. ( 2010; ). The disulfide bonds in glycoprotein E2 of hepatitis C virus reveal the tertiary organization of the molecule. . PLoS Pathog 6:, e1000762. [CrossRef] [PubMed]
    [Google Scholar]
  24. Krieger S. E., Zeisel M. B., Davis C., Thumann C., Harris H. J., Schnober E. K., Mee C., Soulier E., Royer C. et al. ( 2010; ). Inhibition of hepatitis C virus infection by anti-claudin-1 antibodies is mediated by neutralization of E2–CD81–claudin-1 associations. . Hepatology 51:, 1144–1157. [CrossRef] [PubMed]
    [Google Scholar]
  25. Lavillette D., Bartosch B., Nourrisson D., Verney G., Cosset F. L., Penin F., Pécheur E. I.. ( 2006; ). Hepatitis C virus glycoproteins mediate low pH-dependent membrane fusion with liposomes. . J Biol Chem 281:, 3909–3917. [CrossRef] [PubMed]
    [Google Scholar]
  26. Lindenbach B. D., Rice C. M.. ( 2005; ). Unravelling hepatitis C virus replication from genome to function. . Nature 436:, 933–938. [CrossRef] [PubMed]
    [Google Scholar]
  27. Lindenbach B. D., Evans M. J., Syder A. J., Wölk B., Tellinghuisen T. L., Liu C. C., Maruyama T., Hynes R. O., Burton D. R. et al. ( 2005; ). Complete replication of hepatitis C virus in cell culture. . Science 309:, 623–626. [CrossRef] [PubMed]
    [Google Scholar]
  28. Merz A., Long G., Hiet M. S., Brügger B., Chlanda P., Andre P., Wieland F., Krijnse-Locker J., Bartenschlager R.. ( 2011; ). Biochemical and morphological properties of hepatitis C virus particles and determination of their lipidome. . J Biol Chem 286:, 3018–3032. [CrossRef] [PubMed]
    [Google Scholar]
  29. Monazahian M., Böhme I., Bonk S., Koch A., Scholz C., Grethe S., Thomssen R.. ( 1999; ). Low density lipoprotein receptor as a candidate receptor for hepatitis C virus. . J Med Virol 57:, 223–229. [CrossRef] [PubMed]
    [Google Scholar]
  30. Moradpour D., Penin F., Rice C. M.. ( 2007; ). Replication of hepatitis C virus. . Nat Rev Microbiol 5:, 453–463. [CrossRef] [PubMed]
    [Google Scholar]
  31. Mueller D. S., Kampmann T., Yennamalli R., Young P. R., Kobe B., Mark A. E.. ( 2008; ). Histidine protonation and the activation of viral fusion proteins. . Biochem Soc Trans 36:, 43–45. [CrossRef] [PubMed]
    [Google Scholar]
  32. Nelson S., Poddar S., Lin T. Y., Pierson T. C.. ( 2009; ). Protonation of individual histidine residues is not required for the pH-dependent entry of West Nile virus: evaluation of the “histidine switch” hypothesis. . J Virol 83:, 12631–12635. [CrossRef] [PubMed]
    [Google Scholar]
  33. Op De Beeck A., Montserret R., Duvet S., Cocquerel L., Cacan R., Barberot B., Le Maire M., Penin F., Dubuisson J.. ( 2000; ). The transmembrane domains of hepatitis C virus envelope glycoproteins E1 and E2 play a major role in heterodimerization. . J Biol Chem 275:, 31428–31437. [CrossRef] [PubMed]
    [Google Scholar]
  34. Op De Beeck A., Voisset C., Bartosch B., Ciczora Y., Cocquerel L., Keck Z., Foung S., Cosset F. L., Dubuisson J.. ( 2004; ). Characterization of functional hepatitis C virus envelope glycoproteins. . J Virol 78:, 2994–3002. [CrossRef] [PubMed]
    [Google Scholar]
  35. Owsianka A. M., Timms J. M., Tarr A. W., Brown R. J., Hickling T. P., Szwejk A., Bienkowska-Szewczyk K., Thomson B. J., Patel A. H., Ball J. K.. ( 2006; ). Identification of conserved residues in the E2 envelope glycoprotein of the hepatitis C virus that are critical for CD81 binding. . J Virol 80:, 8695–8704. [CrossRef] [PubMed]
    [Google Scholar]
  36. Petracca R., Falugi F., Galli G., Norais N., Rosa D., Campagnoli S., Burgio V., Di Stasio E., Giardina B. et al. ( 2000; ). Structure–function analysis of hepatitis C virus envelope-CD81 binding. . J Virol 74:, 4824–4830. [CrossRef] [PubMed]
    [Google Scholar]
  37. Ploss A., Evans M. J., Gaysinskaya V. A., Panis M., You H., de Jong Y. P., Rice C. M.. ( 2009; ). Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. . Nature 457:, 882–886. [CrossRef] [PubMed]
    [Google Scholar]
  38. Prakash M. K., Barducci A., Parrinello M.. ( 2010; ). Probing the mechanism of pH-induced large-scale conformational changes in dengue virus envelope protein using atomistic simulations. . Biophys J 99:, 588–594. [CrossRef] [PubMed]
    [Google Scholar]
  39. Qin Z. L., Zhao P., Zhang X. L., Yu J. G., Cao M. M., Zhao L. J., Luan J., Qi Z. T.. ( 2004; ). Silencing of SARS-CoV spike gene by small interfering RNA in HEK 293T cells. . Biochem Biophys Res Commun 324:, 1186–1193. [CrossRef] [PubMed]
    [Google Scholar]
  40. Qin Z. L., Zhao P., Cao M. M., Qi Z. T.. ( 2007; ). siRNAs targeting terminal sequences of the SARS-associated coronavirus membrane gene inhibit M protein expression through degradation of M mRNA. . J Virol Methods 145:, 146–154. [CrossRef] [PubMed]
    [Google Scholar]
  41. Qin Z. L., Zheng Y., Kielian M.. ( 2009; ). Role of conserved histidine residues in the low-pH dependence of the Semliki Forest virus fusion protein. . J Virol 83:, 4670–4677. [CrossRef] [PubMed]
    [Google Scholar]
  42. Qin Z. L., Ju H. P., Liu Y., Gao T. T., Wang W. B., Aurelian L., Zhao P., Qi Z. T.. ( 2013; a). Fetal bovine serum inhibits hepatitis C virus attachment to host cells. . J Virol Methods 193:, 261–269. [CrossRef] [PubMed]
    [Google Scholar]
  43. Qin Z. L., Ju H. P., Wang W. B., Ren H., Guan M., Zhao P., Qi Z. T.. ( 2013; b). The Arg719 residue at the C-terminal end of the stem region in hepatitis C virus JFH-1 E2 glycoprotein promotes viral infection. . Virus Res 172:, 1–8. [CrossRef] [PubMed]
    [Google Scholar]
  44. Rocha-Perugini V., Lavie M., Delgrange D., Canton J., Pillez A., Potel J., Lecoeur C., Rubinstein E., Dubuisson J. et al. ( 2009; ). The association of CD81 with tetraspanin-enriched microdomains is not essential for hepatitis C virus entry. . BMC Microbiol 9:, 111. [CrossRef] [PubMed]
    [Google Scholar]
  45. Russell R. S., Meunier J. C., Takikawa S., Faulk K., Engle R. E., Bukh J., Purcell R. H., Emerson S. U.. ( 2008; ). Advantages of a single-cycle production assay to study cell culture-adaptive mutations of hepatitis C virus. . Proc Natl Acad Sci U S A 105:, 4370–4375. [CrossRef] [PubMed]
    [Google Scholar]
  46. Scarselli E., Ansuini H., Cerino R., Roccasecca R. M., Acali S., Filocamo G., Traboni C., Nicosia A., Cortese R., Vitelli A.. ( 2002; ). The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. . EMBO J 21:, 5017–5025. [CrossRef] [PubMed]
    [Google Scholar]
  47. Schowalter R. M., Chang A., Robach J. G., Buchholz U. J., Dutch R. E.. ( 2009; ). Low-pH triggering of human metapneumovirus fusion: essential residues and importance in entry. . J Virol 83:, 1511–1522. [CrossRef] [PubMed]
    [Google Scholar]
  48. Sharma N. R., Mateu G., Dreux M., Grakoui A., Cosset F. L., Melikyan G. B.. ( 2011; ). Hepatitis C virus is primed by CD81 protein for low pH-dependent fusion. . J Biol Chem 286:, 30361–30376. [CrossRef] [PubMed]
    [Google Scholar]
  49. Tong Y., Zhu Y., Xia X., Liu Y., Feng Y., Hua X., Chen Z., Ding H., Gao L. et al. ( 2011; ). Tupaia CD81, SR-BI, claudin-1, and occludin support hepatitis C virus infection. . J Virol 85:, 2793–2802. [CrossRef] [PubMed]
    [Google Scholar]
  50. Vieyres G., Thomas X., Descamps V., Duverlie G., Patel A. H., Dubuisson J.. ( 2010; ). Characterization of the envelope glycoproteins associated with infectious hepatitis C virus. . J Virol 84:, 10159–10168. [CrossRef] [PubMed]
    [Google Scholar]
  51. Vieyres G., Dubuisson J., Pietschmann T.. ( 2014; ). Incorporation of hepatitis C virus E1 and E2 glycoproteins: the keystones on a peculiar virion. . Viruses 6:, 1149–1187. [CrossRef] [PubMed]
    [Google Scholar]
  52. Wakita T., Pietschmann T., Kato T., Date T., Miyamoto M., Zhao Z., Murthy K., Habermann A., Kräusslich H. G. et al. ( 2005; ). Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. . Nat Med 11:, 791–796. [CrossRef] [PubMed]
    [Google Scholar]
  53. Weiner A. J., Calvo P. L., Kansopon J., Gretch D., Bonino F., Brunetto M., Houghton M.. ( 1999; ). Hepatitis C virus heteroduplex tracking assay : application to genotype determination, quasispecies analysis, and molecular evolution studies. . Methods Mol Med 19:, 221–233.[PubMed]
    [Google Scholar]
  54. Zhang J., Randall G., Higginbottom A., Monk P., Rice C. M., McKeating J. A.. ( 2004; ). CD81 is required for hepatitis C virus glycoprotein-mediated viral infection. . J Virol 78:, 1448–1455. [CrossRef] [PubMed]
    [Google Scholar]
  55. Zhong J., Gastaminza P., Cheng G., Kapadia S., Kato T., Burton D. R., Wieland S. F., Uprichard S. L., Wakita T., Chisari F. V.. ( 2005; ). Robust hepatitis C virus infection in vitro. . Proc Natl Acad Sci U S A 102:, 9294–9299. [CrossRef] [PubMed]
    [Google Scholar]
  56. Zhong J., Gastaminza P., Chung J., Stamataki Z., Isogawa M., Cheng G., McKeating J. A., Chisari F. V.. ( 2006; ). Persistent hepatitis C virus infection in vitro: coevolution of virus and host. . J Virol 80:, 11082–11093. [CrossRef] [PubMed]
    [Google Scholar]
  57. Zhu Y. Z., Luo Y., Cao M. M., Liu Y., Liu X. Q., Wang W., Wu D. G., Guan M., Xu Q. Q. et al. ( 2012; ). Significance of palmitoylation of CD81 on its association with tetraspanin-enriched microdomains and mediating hepatitis C virus cell entry. . Virology 429:, 112–123. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000091
Loading
/content/journal/jgv/10.1099/vir.0.000091
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error