1887

Abstract

Hendra virus (HeV) is lethal to humans and horses, and little is known about its epidemiology. Biosecurity restrictions impede advances, particularly on understanding pathways of transmission. Quantifying the environmental survival of HeV can be used for making decisions and to infer transmission pathways. We estimated HeV survival with a Weibull distribution and calculated parameters from data generated in laboratory experiments. HeV survival rates based on air temperatures 24 h after excretion ranged from 2 to 10 % in summer and from 12 to 33 % in winter. Simulated survival across the distribution of the black flying fox (), a key reservoir host, did not predict spillover events. Based on our analyses we concluded that the most likely pathways of transmission did not require long periods of virus survival and were likely to involve relatively direct contact with flying fox excreta shortly after excretion.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000073
2015-06-01
2021-10-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/6/1229.html?itemId=/content/journal/jgv/10.1099/vir.0.000073&mimeType=html&fmt=ahah

References

  1. Barve N. 2008 Tool for Partial-ROC Lawrence, KS: Biodiversity Institute;
    [Google Scholar]
  2. Chen J., Saunders S. C., Crow T. R., Naiman R. J., Brosofske K. D., Mroz G. D., Brookshire B. L., Franklin J. F. 1996; Microclimate in forest ecosystem and landscape ecology: variations in local climate can be used to monitor and compare the effects of different management regimes. Bioscience 49:288–297 [View Article]
    [Google Scholar]
  3. Domanska-Blicharz K., Minta Z., Smietanka K., Marché S., van den Berg T. 2010; H5N1 high pathogenicity avian influenza virus survival in different types of water. Avian Dis 54:Suppl734–737 [View Article][PubMed]
    [Google Scholar]
  4. Field H. E., de Jong C., Melville D., Smith C., Smith I., Broos A., Kung Y. H. N., McLaughlin A., Zeddeman A. 2011; Hendra virus infection dynamics in Australian fruit bats. PLoS One 6:e28678 [View Article][PubMed]
    [Google Scholar]
  5. Fogarty R., Halpin K., Hyatt A. D., Daszak P., Mungall B. A. 2008; Henipavirus susceptibility to environmental variables. Virus Res 132:140–144 [View Article][PubMed]
    [Google Scholar]
  6. Gil M. M., Miller F. A., Brandão T. R. S., Silva C. L. M. 2011; On the use of the Gompertz model to predict microbial thermal inactivation under isothermal and non-isothermal conditions. Food Eng Rev 3:17–25 [View Article]
    [Google Scholar]
  7. Halpin K., Young P. L., Field H. E., Mackenzie J. S. 2000; Isolation of Hendra virus from pteropid bats: a natural reservoir of Hendra virus. J Gen Virol 81:1927–1932[PubMed] [CrossRef]
    [Google Scholar]
  8. Hijmans, R. J. (2013). raster: Geographic data analysis and modeling http://cran.r-project.org/web/packages/raster/index.html
  9. Hijmans, R. J., Leathwick, L. & Elith, J. (2013). dismo: Species distribution modelling http://cran.r-project.org/web/packages/dismo/index.html
  10. Hudson I. L., Kim S. W., Keatley M. R. 2010; Climatic influences on the flowering phenology of four eucalypts: a GAMLSS approach. In Phenological Research pp. 209–228 Edited by Hudson I. L., Keatley M. R. London: Springer; [View Article]
    [Google Scholar]
  11. Kearney M., Porter W. 2009; Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol Lett 12:334–350 [View Article][PubMed]
    [Google Scholar]
  12. Kearney M. R., Isaac A. P., Porter W. P. 2014; microclim: Global estimates of hourly microclimate based on long-term monthly climate averages. Sci Data 1:140006 [View Article]
    [Google Scholar]
  13. Kramer A., Schwebke I., Kampf G. 2006; How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect Dis 6:130 [View Article][PubMed]
    [Google Scholar]
  14. Markwell D. D., Shortridge K. F. 1982; Possible waterborne transmission and maintenance of influenza viruses in domestic ducks. Appl Environ Microbiol 43:110–115[PubMed]
    [Google Scholar]
  15. Marsh G. A., Haining J., Hancock T. J., Robinson R., Foord A. J., Barr J. A., Riddell S., Heine H. G., White J. R. et al. 2011; Experimental infection of horses with Hendra virus/Australia/horse/2008/Redlands. Emerg Infect Dis 17:2232–2238 [View Article][PubMed]
    [Google Scholar]
  16. McCallum H. 2000 Population Parameters?: Estimation for Ecological Models Brisbane: Blackwell Science;
    [Google Scholar]
  17. Middleton D., Pallister J., Klein R., Feng Y.-R., Haining J., Arkinstall R., Frazer L., Huang J.-A., Edwards N. et al. 2014; Hendra virus vaccine, a one health approach to protecting horse, human, and environmental health. Emerg Infect Dis 20:372–379 [View Article][PubMed]
    [Google Scholar]
  18. Munster V. J., Prescott J. B., Bushmaker T., Long D., Rosenke R., Thomas T., Scott D., Fischer E. R., Feldmann H., de Wit E. 2012; Rapid Nipah virus entry into the central nervous system of hamsters via the olfactory route. Sci Rep 2:736 [View Article][PubMed]
    [Google Scholar]
  19. Murray A. G., Jackson G. A. 1993; Viral dynamics: a model of the interaction of ultraviolet light and mixing processes on virus survival in seawater. Mar Ecol Prog Ser 102:105–114 [View Article]
    [Google Scholar]
  20. Murray K., Selleck P., Hooper P., Hyatt A., Gould A., Gleeson L., Westbury H., Hiley L., Selvey L. et al. 1995; A morbillivirus that caused fatal disease in horses and humans. Science 268:94–97 [View Article][PubMed]
    [Google Scholar]
  21. Paterson D. L., Murray P. K., McCormack J. G. 1998; Zoonotic disease in Australia caused by a novel member of the paramyxoviridae. Clin Infect Dis 27:112–118 [View Article][PubMed]
    [Google Scholar]
  22. Peleg M. 1996; Evaluation of the Fermi equation as a model of dose-response curves. Appl Microbiol Biotechnol 46:303–306 [View Article]
    [Google Scholar]
  23. Peleg M., Cole M. B. 1998; Reinterpretation of microbial survival curves. Crit Rev Food Sci Nutr 38:353–380 [View Article][PubMed]
    [Google Scholar]
  24. Peterson A. T., Papes M., Soberon J. 2008; Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol Modell 213:63–72 [View Article]
    [Google Scholar]
  25. Plowright R. K., Eby P., Hudson P. J., Smith I. L., Westcott D., Bryden W. L., Middleton D., Reid P. A., McFarlane R. A. et al. 2015; Ecological dynamics of emerging bat virus spillover. Proc Biol Sci 282:20142124 [View Article][PubMed]
    [Google Scholar]
  26. R Core Team 2014 r: A Language and Environment for Statistical Computing Vienna: R Foundation for Statistical Computing;
    [Google Scholar]
  27. Scanlan J. C., Kung N. Y., Selleck P. W., Field H. E. 2014; Survival of Hendra virus in the environment: modelling the effect of temperature. EcoHealth [Epub ahead of print] [View Article][PubMed]
    [Google Scholar]
  28. Smith C., Skelly C., Kung N., Roberts B., Field H. 2014; Flying-fox species density – a spatial risk factor for Hendra virus infection in horses in eastern Australia. PLoS One 9:e99965 [View Article][PubMed]
    [Google Scholar]
  29. Soetaert, K., Petzoldt, T. & Woodrow, R. (2010). Solving differential equations in r http://journal.r-project.org/archive/2010-2/RJournal_2010-2_Soetaert~et~al.pdf
  30. van Boekel M. A. 2002; On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells. Int J Food Microbiol 74:139–159 [View Article][PubMed]
    [Google Scholar]
  31. Wagenvoort J. H., Penders R. J. 1997; Long-term in-vitro survival of an epidemic MRSA phage-group III-29 strain. J Hosp Infect 35:322–325 [View Article][PubMed]
    [Google Scholar]
  32. Walther B. A., Ewald P. W. 2004; Pathogen survival in the external environment and the evolution of virulence. Biol Rev Camb Philos Soc 79:849–869 [View Article][PubMed]
    [Google Scholar]
  33. Ward R. L., Akin E. W., D’Alessio D. J. 1984; Minimum infective dose of animal viruses. Crit Rev Environ Control 14:297–310 [View Article]
    [Google Scholar]
  34. Weber T. P., Stilianakis N. I. 2008; Inactivation of influenza A viruses in the environment and modes of transmission: a critical review. J Infect 57:361–373 [View Article][PubMed]
    [Google Scholar]
  35. Weingartl H., Czub S., Copps J., Berhane Y., Middleton D., Marszal P., Gren J., Smith G., Ganske S. et al. 2005; Invasion of the central nervous system in a porcine host by Nipah virus. J Virol 79:7528–7534 [View Article][PubMed]
    [Google Scholar]
  36. Williamson M. M., Hooper P. T., Selleck P. W., Gleeson L. J., Daniels P. W., Westbury H. A., Murray P. K. 1998; Transmission studies of Hendra virus (equine morbillivirus) in fruit bats, horses and cats. Aust Vet J 76:813–818 [View Article][PubMed]
    [Google Scholar]
  37. Williamson M. M., Hooper P. T., Selleck P. W., Westbury H. A., Slocombe R. F. 2000; Experimental Hendra virus infection in pregnant guinea-pigs and fruit bats (Pteropus poliocephalus). J Comp Pathol 122:201–207 [View Article][PubMed]
    [Google Scholar]
  38. Zhao Y., Aarnink A. J., Dijkman R., Fabri T., de Jong M. C., Groot Koerkamp P. W. 2012; Effects of temperature, relative humidity, absolute humidity, and evaporation potential on survival of airborne Gumboro vaccine virus. Appl Environ Microbiol 78:1048–1054 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000073
Loading
/content/journal/jgv/10.1099/vir.0.000073
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error