1887

Abstract

Analysing the evolution of feline immunodeficiency virus (FIV) at the intra-host level is important in order to address whether the diversity and composition of viral quasispecies affect disease progression. We examined the intra-host diversity and the evolutionary rates of the entire and structural fragments of the sequences obtained from sequential blood samples in 43 naturally infected domestic cats that displayed different clinical outcomes. We observed in the majority of cats that FIV showed very low levels of intra-host diversity. We estimated that evolved at a rate of 1.16×10 substitutions per site per year and demonstrated that recombinant sequences evolved faster than non-recombinant sequences. It was evident that the V3–V5 fragment of FIV displayed higher evolutionary rates in healthy cats than in those with terminal illness. Our study provided the first evidence that the leader sequence of , rather than the V3–V5 sequence, had the highest intra-host diversity and the highest evolutionary rate of all fragments, consistent with this region being under a strong selective pressure for genetic variation. Overall, FIV displayed relatively low intra-host diversity and evolved slowly in naturally infected cats. The maximum evolutionary rate was observed in the leader sequence of . Although genetic stability is not necessarily a prerequisite for clinical stability, the higher genetic stability of FIV compared with human immunodeficiency virus might explain why many naturally infected cats do not progress rapidly to AIDS.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000035
2015-04-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/4/893.html?itemId=/content/journal/jgv/10.1099/vir.0.000035&mimeType=html&fmt=ahah

References

  1. Abecasis A. B., Vandamme A. M., Lemey P.. ( 2009;). Quantifying differences in the tempo of human immunodeficiency virus type 1 subtype evolution. . J Virol 83:, 12917–12924. [CrossRef][PubMed]
    [Google Scholar]
  2. Alizon S., Fraser C.. ( 2013;). Within-host and between-host evolutionary rates across the HIV-1 genome. . Retrovirology 10:, 49. [CrossRef][PubMed]
    [Google Scholar]
  3. Bęczkowski P. M.. ( 2013;). Virus evolution in the progression of natural feline immunodeficiency virus infection. . PhD thesis, Centre for Virus Research, University of Glasgow, UK.
    [Google Scholar]
  4. Bęczkowski P. M., Hughes J., Biek R., Litster A., Willett B. J., Hosie M. J.. ( 2014a;). Feline immunodeficiency virus (FIV) env recombinants are common in natural infections. . Retrovirology 11:, 80. [CrossRef]
    [Google Scholar]
  5. Bęczkowski P. M., Techakriengkrai N., Logan N., McMonagle E., Litster A., Willett B. J., Hosie M. J.. ( 2014b;). Emergence of CD134 cysteine-rich domain 2 (CRD2)-independent strains of feline immunodeficiency virus (FIV) is associated with disease progression in naturally infected cats. . Retrovirology 11:, 95. [CrossRef][PubMed]
    [Google Scholar]
  6. Bęczkowski P. M., Logan N., McMonagle E., Litster A., Willett B. J., Hosie M. J.. ( 2014c;). An investigation of the breadth of neutralising antibody response in cats naturally infected with feline immunodeficiency virus. . J Gen Virol doi:10.1099/vir.0.071522-0 [Epub ahead of print]. [CrossRef][PubMed]
    [Google Scholar]
  7. Biek R., Rodrigo A. G., Holley D., Drummond A., Anderson C. R. Jr, Ross H. A., Poss M.. ( 2003;). Epidemiology, genetic diversity, and evolution of endemic feline immunodeficiency virus in a population of wild cougars. . J Virol 77:, 9578–9589. [CrossRef][PubMed]
    [Google Scholar]
  8. Borrego F., Ulbrecht M., Weiss E. H., Coligan J. E., Brooks A. G.. ( 1998;). Recognition of human histocompatibility leukocyte antigen (HLA)-E complexed with HLA class I signal sequence-derived peptides by CD94/NKG2 confers protection from natural killer cell-mediated lysis. . J Exp Med 187:, 813–818. [CrossRef][PubMed]
    [Google Scholar]
  9. Carpenter M. A., Brown E. W., MacDonald D. W., O’Brien S. J.. ( 1998;). Phylogeographic patterns of feline immunodeficiency virus genetic diversity in the domestic cat. . Virology 251:, 234–243. [CrossRef][PubMed]
    [Google Scholar]
  10. Carpenter S., Vaughn E. M., Yang J., Baccam P., Roth J. A., Wannemuehler Y.. ( 2000;). Antigenic and genetic stability of bovine immunodeficiency virus during long-term persistence in cattle experimentally infected with the BIV(R29) isolate. . J Gen Virol 81:, 1463–1472.[PubMed]
    [Google Scholar]
  11. Carvajal-Rodríguez A., Posada D., Pérez-Losada M., Keller E., Abrams E. J., Viscidi R. P., Crandall K. A.. ( 2008;). Disease progression and evolution of the HIV-1 env gene in 24 infected infants. . Infect Genet Evol 8:, 110–120. [CrossRef][PubMed]
    [Google Scholar]
  12. Chackerian B., Rudensey L. M., Overbaugh J.. ( 1997;). Specific N-linked and O-linked glycosylation modifications in the envelope V1 domain of simian immunodeficiency virus variants that evolve in the host alter recognition by neutralizing antibodies. . J Virol 71:, 7719–7727.[PubMed]
    [Google Scholar]
  13. Choisy M., Woelk C. H., Guégan J.-F., Robertson D. L.. ( 2004;). Comparative study of adaptive molecular evolution in different human immunodeficiency virus groups and subtypes. . J Virol 78:, 1962–1970. [CrossRef][PubMed]
    [Google Scholar]
  14. Delwart E. L., Pan H., Sheppard H. W., Wolpert D., Neumann A. U., Korber B., Mullins J. I.. ( 1997;). Slower evolution of human immunodeficiency virus type 1 quasispecies during progression to AIDS. . J Virol 71:, 7498–7508.[PubMed]
    [Google Scholar]
  15. Dietrich I., McMonagle E. L., Petit S. J., Vijayakrishnan S., Logan N., Chan C. N., Towers G. J., Hosie M. J., Willett B. J.. ( 2011;). Feline tetherin efficiently restricts release of feline immunodeficiency virus but not spreading of infection. . J Virol 85:, 5840–5852. [CrossRef][PubMed]
    [Google Scholar]
  16. Domingo E.. ( 2000;). Viruses at the edge of adaptation. . Virology 270:, 251–253. [CrossRef][PubMed]
    [Google Scholar]
  17. Domingo E., Holland J. J.. ( 1997;). RNA virus mutations and fitness for survival. . Annu Rev Microbiol 51:, 151–178. [CrossRef][PubMed]
    [Google Scholar]
  18. Drummond A. J., Rambaut A.. ( 2007;). BEAST: Bayesian evolutionary analysis by sampling trees. . BMC Evol Biol 7:, 214. [CrossRef][PubMed]
    [Google Scholar]
  19. Dunham S. P., Bruce J., MacKay S., Golder M., Jarrett O., Neil J. C.. ( 2006;). Limited efficacy of an inactivated feline immunodeficiency virus vaccine. . Vet Rec 158:, 561–562. [CrossRef][PubMed]
    [Google Scholar]
  20. Edo-Matas D., Lemey P., Tom J. A., Serna-Bolea C., van den Blink A. E., van ’t Wout A. B., Schuitemaker H., Suchard M. A.. ( 2011;). Impact of CCR5delta32 host genetic background and disease progression on HIV-1 intrahost evolutionary processes: efficient hypothesis testing through hierarchical phylogenetic models. . Mol Biol Evol 28:, 1605–1616. [CrossRef][PubMed]
    [Google Scholar]
  21. Efron B., Halloran E., Holmes S.. ( 1996;). Bootstrap confidence levels for phylogenetic trees. . Proc Natl Acad Sci U S A 93:, 13429–13434. [CrossRef][PubMed]
    [Google Scholar]
  22. Eigen M.. ( 1993;). Viral quasispecies. . Sci Am 269:, 42–49. [CrossRef][PubMed]
    [Google Scholar]
  23. Frey B., Suppmann B.. ( 1995;). Demonstration of the Expand™ PCR system’s greater fidelity and higher yields with a lacI-based fidelity assay. . Biochemica 2:, 34–35.
    [Google Scholar]
  24. Gao F., Morrison S. G., Robertson D. L., Thornton C. L., Craig S., Karlsson G., Sodroski J., Morgado M., Galvao-Castro B.. & other authors ( 1996;). Molecular cloning and analysis of functional envelope genes from human immunodeficiency virus type 1 sequence subtypes A through G. The WHO and NIAID Networks for HIV Isolation and Characterization. . J Virol 70:, 1651–1667.[PubMed]
    [Google Scholar]
  25. Gnanakaran S., Bhattacharya T., Daniels M., Keele B. F., Hraber P. T., Lapedes A. S., Shen T., Gaschen B., Krishnamoorthy M.. & other authors ( 2011;). Recurrent signature patterns in HIV-1 B clade envelope glycoproteins associated with either early or chronic infections. . PLoS Pathog 7:, e1002209. [CrossRef][PubMed]
    [Google Scholar]
  26. Greene W. K., Meers J., del Fierro G., Carnegie P. R., Robinson W. F.. ( 1993;). Extensive sequence variation of feline immunodeficiency virus env genes in isolates from naturally infected cats. . Arch Virol 133:, 51–62. [CrossRef][PubMed]
    [Google Scholar]
  27. Hartikka J., Sawdey M., Cornefert-Jensen F., Margalith M., Barnhart K., Nolasco M., Vahlsing H. L., Meek J., Marquet M.. & other authors ( 1996;). An improved plasmid DNA expression vector for direct injection into skeletal muscle. . Hum Gene Ther 7:, 1205–1217. [CrossRef][PubMed]
    [Google Scholar]
  28. Hayward J. J., Rodrigo A. G.. ( 2010;). Molecular epidemiology of feline immunodeficiency virus in the domestic cat (Felis catus). . Vet Immunol Immunopathol 134:, 68–74. [CrossRef][PubMed]
    [Google Scholar]
  29. Hegde R. S., Bernstein H. D.. ( 2006;). The surprising complexity of signal sequences. . Trends Biochem Sci 31:, 563–571. [CrossRef][PubMed]
    [Google Scholar]
  30. Hosie M. J., Addie D., Belák S., Boucraut-Baralon C., Egberink H., Frymus T., Gruffydd-Jones T., Hartmann K., Lloret A., Lutz H.. ( 2009;). Feline immunodeficiency. ABCD guidelines on prevention and management. . J Feline Med Surg 11:, 575–584. [CrossRef][PubMed]
    [Google Scholar]
  31. Huisman W., Schrauwen E. J. A., Rimmelzwaan G. F., Osterhaus A. D. M. E.. ( 2008;). Intrahost evolution of envelope glycoprotein and OrfA sequences after experimental infection of cats with a molecular clone and a biological isolate of feline immunodeficiency virus. . Virus Res 137:, 24–32. [CrossRef][PubMed]
    [Google Scholar]
  32. Ikeda Y., Miyazawa T., Nishimura Y., Nakamura K., Tohya Y., Mikami T.. ( 2004;). High genetic stability of TM1 and TM2 strains of subtype B feline immunodeficiency virus in long-term infection. . J Vet Med Sci 66:, 287–289. [CrossRef][PubMed]
    [Google Scholar]
  33. Khan R. M.. ( 2013;). Analysis of variance. . In Problem Solving and Data Analysis using Minitab, pp. 150–208. New York;: Wiley;. [CrossRef]
    [Google Scholar]
  34. Kils-Hütten L., Cheynier R., Wain-Hobson S., Meyerhans A.. ( 2001;). Phylogenetic reconstruction of intrapatient evolution of human immunodeficiency virus type 1: predominance of drift and purifying selection. . J Gen Virol 82:, 1621–1627.[PubMed]
    [Google Scholar]
  35. Korber B., Muldoon M., Theiler J., Gao F., Gupta R., Lapedes A., Hahn B. H., Wolinsky S., Bhattacharya T.. ( 2000;). Timing the ancestor of the HIV-1 pandemic strains. . Science 288:, 1789–1796. [CrossRef][PubMed]
    [Google Scholar]
  36. Kosakovsky Pond S. L., Frost S. D.. ( 2005;). Not so different after all: a comparison of methods for detecting amino acid sites under selection. . Mol Biol Evol 22:, 1208–1222. [CrossRef][PubMed]
    [Google Scholar]
  37. Kosakovsky Pond S. L., Posada D., Gravenor M. B., Woelk C. H., Frost S. D.. ( 2006a;). Automated phylogenetic detection of recombination using a genetic algorithm. . Mol Biol Evol 23:, 1891–1901. [CrossRef][PubMed]
    [Google Scholar]
  38. Kosakovsky Pond S. L., Frost S. D. W., Grossman Z., Gravenor M. B., Richman D. D., Brown A. J. L.. ( 2006b;). Adaptation to different human populations by HIV-1 revealed by codon-based analyses. . PLOS Comput Biol 2:, e62. [CrossRef][PubMed]
    [Google Scholar]
  39. Kraase M., Sloan R., Klein D., Logan N., McMonagle L., Biek R., Willett B. J., Hosie M. J.. ( 2010;). Feline immunodeficiency virus env gene evolution in experimentally infected cats. . Vet Immunol Immunopathol 134:, 96–106. [CrossRef][PubMed]
    [Google Scholar]
  40. Leitner T., Albert J.. ( 1999;). The molecular clock of HIV-1 unveiled through analysis of a known transmission history. . Proc Natl Acad Sci U S A 96:, 10752–10757. [CrossRef][PubMed]
    [Google Scholar]
  41. Lemberg M. K., Martoglio B.. ( 2002;). Requirements for signal peptide peptidase-catalyzed intramembrane proteolysis. . Mol Cell 10:, 735–744. [CrossRef][PubMed]
    [Google Scholar]
  42. Lewis D. A., Bebenek K., Beard W. A., Wilson S. H., Kunkel T. A.. ( 1999;). Uniquely altered DNA replication fidelity conferred by an amino acid change in the nucleotide binding pocket of human immunodeficiency virus type 1 reverse transcriptase. . J Biol Chem 274:, 32924–32930. [CrossRef][PubMed]
    [Google Scholar]
  43. Lombardi S., Garzelli C., La Rosa C., Zaccaro L., Specter S., Malvaldi G., Tozzini F., Esposito F., Bendinelli M.. ( 1993;). Identification of a linear neutralization site within the third variable region of the feline immunodeficiency virus envelope. . J Virol 67:, 4742–4749.[PubMed]
    [Google Scholar]
  44. Lukashov V. V., Kuiken C. L., Goudsmit J.. ( 1995;). Intrahost human immunodeficiency virus type 1 evolution is related to length of the immunocompetent period. . J Virol 69:, 6911–6916.[PubMed]
    [Google Scholar]
  45. Lythgoe K. A., Fraser C.. ( 2012;). New insights into the evolutionary rate of HIV-1 at the within-host and epidemiological levels. . Proc Biol Sci 279:, 3367–3375. [CrossRef][PubMed]
    [Google Scholar]
  46. MacNeil A., Sankale J. L., Meloni S. T., Sarr A. D., Mboup S., Kanki P.. ( 2007a;). Long-term intrapatient viral evolution during HIV-2 infection. . J Infect Dis 195:, 726–733. [CrossRef][PubMed]
    [Google Scholar]
  47. MacNeil A., Sarr A. D., Sankalé J. L., Meloni S. T., Mboup S., Kanki P.. ( 2007b;). Direct evidence of lower viral replication rates in vivo in human immunodeficiency virus type 2 (HIV-2) infection than in HIV-1 infection. . J Virol 81:, 5325–5330. [CrossRef][PubMed]
    [Google Scholar]
  48. Marçola T. G., Gomes C. P., Silva P. A., Fernandes G. R., Paludo G. R., Pereira R. W.. ( 2013;). Identification of a novel subtype of feline immunodeficiency virus in a population of naturally infected felines in the Brazilian Federal District. . Virus Genes 46:, 546–550. [CrossRef][PubMed]
    [Google Scholar]
  49. Marlink R. G., Ricard D., M’Boup S., Kanki P. J., Romet-Lemonne J. L., N’Doye I., Diop K., Simpson M. A., Greco F.. & other authors ( 1988;). Clinical, hematologic, and immunologic cross-sectional evaluation of individuals exposed to human immunodeficiency virus type-2 (HIV-2). . AIDS Res Hum Retroviruses 4:, 137–148. [CrossRef][PubMed]
    [Google Scholar]
  50. Marlink R., Kanki P., Thior I., Travers K., Eisen G., Siby T., Traore I., Hsieh C. C., Dia M. C.. & other authors ( 1994;). Reduced rate of disease development after HIV-2 infection as compared to HIV-1. . Science 265:, 1587–1590. [CrossRef][PubMed]
    [Google Scholar]
  51. Mikhail M., Wang B., Lemey P., Beckthold B., Vandamme A. M., Gill M. J., Saksena N. K.. ( 2005;). Role of viral evolutionary rate in HIV-1 disease progression in a linked cohort. . Retrovirology 2:, 41. [CrossRef][PubMed]
    [Google Scholar]
  52. Motokawa K., Hohdatsu T., Imori A., Arai S., Koyama H.. ( 2005;). Mutations in feline immunodeficiency (FIV) virus envelope gene V3–V5 regions in FIV-infected cats. . Vet Microbiol 106:, 33–40. [CrossRef][PubMed]
    [Google Scholar]
  53. Olmsted R. A., Hirsch V. M., Purcell R. H., Johnson P. R.. ( 1989;). Nucleotide sequence analysis of feline immunodeficiency virus: genome organization and relationship to other lentiviruses. . Proc Natl Acad Sci U S A 86:, 8088–8092. [CrossRef][PubMed]
    [Google Scholar]
  54. Olmsted R. A., Langley R., Roelke M. E., Goeken R. M., Adger-Johnson D., Goff J. P., Albert J. P., Packer C., Laurenson M. K.. & other authors ( 1992;). Worldwide prevalence of lentivirus infection in wild feline species: epidemiologic and phylogenetic aspects. . J Virol 66:, 6008–6018.[PubMed]
    [Google Scholar]
  55. Onafuwa-Nuga A., Telesnitsky A.. ( 2009;). The remarkable frequency of human immunodeficiency virus type 1 genetic recombination. . Microbiol Mol Biol Rev 73:, 451–480. [CrossRef][PubMed]
    [Google Scholar]
  56. Operario D. J., Reynolds H. M., Kim B.. ( 2005;). Comparison of DNA polymerase activities between recombinant feline immunodeficiency and leukemia virus reverse transcriptases. . Virology 335:, 106–121. [CrossRef][PubMed]
    [Google Scholar]
  57. Pancino G., Chappey C., Saurin W., Sonigo P.. ( 1993;). B epitopes and selection pressures in feline immunodeficiency virus envelope glycoproteins. . J Virol 67:, 664–672.[PubMed]
    [Google Scholar]
  58. Pecon-Slattery J., Troyer J. L., Johnson W. E., O’Brien S. J.. ( 2008;). Evolution of feline immunodeficiency virus in Felidae: implications for human health and wildlife ecology. . Vet Immunol Immunopathol 123:, 32–44. [CrossRef][PubMed]
    [Google Scholar]
  59. Pistello M., Cammarota G., Nicoletti E., Matteucci D., Curcio M., Del Mauro D., Bendinelli M.. ( 1997;). Analysis of the genetic diversity and phylogenetic relationship of Italian isolates of feline immunodeficiency virus indicates a high prevalence and heterogeneity of subtype B. . J Gen Virol 78:, 2247–2257.[PubMed]
    [Google Scholar]
  60. Popper S. J., Sarr A. D., Travers K. U., Guèye-Ndiaye A., Mboup S., Essex M. E., Kanki P. J.. ( 1999;). Lower human immunodeficiency virus (HIV) type 2 viral load reflects the difference in pathogenicity of HIV-1 and HIV-2. . J Infect Dis 180:, 1116–1121. [CrossRef][PubMed]
    [Google Scholar]
  61. Popper S. J., Sarr A. D., Guèye-Ndiaye A., Mboup S., Essex M. E., Kanki P. J.. ( 2000;). Low plasma human immunodeficiency virus type 2 viral load is independent of proviral load: low virus production in vivo. . J Virol 74:, 1554–1557. [CrossRef][PubMed]
    [Google Scholar]
  62. Posada D.. ( 2008;). jModelTest: phylogenetic model averaging. . Mol Biol Evol 25:, 1253–1256. [CrossRef][PubMed]
    [Google Scholar]
  63. Rambaut A., Posada D., Crandall K. A., Holmes E. C.. ( 2004;). The causes and consequences of HIV evolution. . Nat Rev Genet 5:, 52–61. [CrossRef][PubMed]
    [Google Scholar]
  64. Roelke M. E., Brown M. A., Troyer J. L., Winterbach H., Winterbach C., Hemson G., Smith D., Johnson R. C., Pecon-Slattery J.. & other authors ( 2009;). Pathological manifestations of feline immunodeficiency virus (FIV) infection in wild African lions. . Virology 390:, 1–12. [CrossRef][PubMed]
    [Google Scholar]
  65. Salemi M.. ( 2013;). The intra-host evolutionary and population dynamics of human immunodeficiency virus type 1: a phylogenetic perspective. . Infect Dis Rep 5: (Suppl 1), e3. [CrossRef][PubMed]
    [Google Scholar]
  66. Samman A., McMonagle E. L., Logan N., Willett B. J., Biek R., Hosie M. J.. ( 2011;). Phylogenetic characterisation of naturally occurring feline immunodeficiency virus in the United Kingdom. . Vet Microbiol 150:, 239–247. [CrossRef][PubMed]
    [Google Scholar]
  67. Schultz A. K., Zhang M., Leitner T., Kuiken C., Korber B., Morgenstern B., Stanke M.. ( 2006;). A jumping profile Hidden Markov Model and applications to recombination sites in HIV and HCV genomes. . BMC Bioinformatics 7:, 265. [CrossRef][PubMed]
    [Google Scholar]
  68. Seo T.-K., Thorne J. L., Hasegawa M., Kishino H.. ( 2002;). A viral sampling design for testing the molecular clock and for estimating evolutionary rates and divergence times. . Bioinformatics 18:, 115–123. [CrossRef][PubMed]
    [Google Scholar]
  69. Shankarappa R., Margolick J. B., Gange S. J., Rodrigo A. G., Upchurch D., Farzadegan H., Gupta P., Rinaldo C. R., Learn G. H.. & other authors ( 1999;). Consistent viral evolutionary changes associated with the progression of human immunodeficiency virus type 1 infection. . J Virol 73:, 10489–10502.[PubMed]
    [Google Scholar]
  70. Shapiro B., Rambaut A., Drummond A. J.. ( 2006;). Choosing appropriate substitution models for the phylogenetic analysis of protein-coding sequences. . Mol Biol Evol 23:, 7–9. [CrossRef][PubMed]
    [Google Scholar]
  71. Sodora D. L., Shpaer E. G., Kitchell B. E., Dow S. W., Hoover E. A., Mullins J. I.. ( 1994;). Identification of three feline immunodeficiency virus (FIV) env gene subtypes and comparison of the FIV and human immunodeficiency virus type 1 evolutionary patterns. . J Virol 68:, 2230–2238.[PubMed]
    [Google Scholar]
  72. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  73. Tebit D. M., Nankya I., Arts E. J., Gao Y.. ( 2007;). HIV diversity, recombination and disease progression: how does fitness “fit” into the puzzle?. AIDS Rev 9:, 75–87.[PubMed]
    [Google Scholar]
  74. Teixeira B. M., Logan N., Cruz J. C. M., Reis J. K. P., Brandão P. E., Richtzenhain L. J., Hagiwara M. K., Willett B. J., Hosie M. J.. ( 2010;). Genetic diversity of Brazilian isolates of feline immunodeficiency virus. . Arch Virol 155:, 379–384. [CrossRef][PubMed]
    [Google Scholar]
  75. Terio K. A., Kinsel M. J., Raphael J., Mlengeya T., Lipende I., Kirchhoff C. A., Gilagiza B., Wilson M. L., Kamenya S.. & other authors ( 2011;). Pathologic lesions in chimpanzees (Pan trogylodytes schweinfurthii) from Gombe National Park, Tanzania, 2004–2010. . J Zoo Wildl Med 42:, 597–607. [CrossRef][PubMed]
    [Google Scholar]
  76. Tomasec P., Braud V. M., Rickards C., Powell M. B., McSharry B. P., Gadola S., Cerundolo V., Borysiewicz L. K., McMichael A. J., Wilkinson G. W.. ( 2000;). Surface expression of HLA-E, an inhibitor of natural killer cells, enhanced by human cytomegalovirus gpUL40. . Science 287:, 1031–1033. [CrossRef][PubMed]
    [Google Scholar]
  77. Troyer J. L., Vandewoude S., Pecon-Slattery J., McIntosh C., Franklin S., Antunes A., Johnson W., O’Brien S. J.. ( 2008;). FIV cross-species transmission: an evolutionary prospective. . Vet Immunol Immunopathol 123:, 159–166. [CrossRef][PubMed]
    [Google Scholar]
  78. Ulbrecht M., Martinozzi S., Grzeschik M., Hengel H., Ellwart J. W., Pla M., Weiss E. H.. ( 2000;). Cutting edge: the human cytomegalovirus UL40 gene product contains a ligand for HLA-E and prevents NK cell-mediated lysis. . J Immunol 164:, 5019–5022. [CrossRef][PubMed]
    [Google Scholar]
  79. Verschoor E. J., Hulskotte E. G., Ederveen J., Koolen M. J., Horzinek M. C., Rottier P. J.. ( 1993;). Post-translational processing of the feline immunodeficiency virus envelope precursor protein. . Virology 193:, 433–438. [CrossRef][PubMed]
    [Google Scholar]
  80. Whittle H., Morris J., Todd J., Corrah T., Sabally S., Bangali J., Ngom P. T., Rolfe M., Wilkins A.. ( 1994;). HIV-2-infected patients survive longer than HIV-1-infected patients. . AIDS 8:, 1617–1620. [CrossRef][PubMed]
    [Google Scholar]
  81. Wilgenbusch J. C., Swofford D.. ( 2002;). Inferring evolutionary trees with paup. . Curr Protoc Bioinform 6, 6.4.
    [Google Scholar]
  82. Wolfs T. F., de Jong J. J., Van den Berg H., Tijnagel J. M., Krone W. J., Goudsmit J.. ( 1990;). Evolution of sequences encoding the principal neutralization epitope of human immunodeficiency virus 1 is host dependent, rapid, and continuous. . Proc Natl Acad Sci U S A 87:, 9938–9942. [CrossRef][PubMed]
    [Google Scholar]
  83. Yamaguchi Y., Gojobori T.. ( 1997;). Evolutionary mechanisms and population dynamics of the third variable envelope region of HIV within single hosts. . Proc Natl Acad Sci U S A 94:, 1264–1269. [CrossRef][PubMed]
    [Google Scholar]
  84. Zhang L., Diaz R. S., Ho D. D., Mosley J. W., Busch M. P., Mayer A.. ( 1997;). Host-specific driving force in human immunodeficiency virus type 1 evolution in vivo. . J Virol 71:, 2555–2561.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000035
Loading
/content/journal/jgv/10.1099/vir.0.000035
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error