1887

Abstract

Epidemiological studies have suggested that consumption of beef may correlate with an increased risk of colorectal cancer. One hypothesis to explain this proposed link might be the presence of a carcinogenic infectious agent capable of withstanding cooking. Polyomaviruses are a ubiquitous family of thermostable non-enveloped DNA viruses that are known to be carcinogenic. Using virion enrichment, rolling circle amplification (RCA) and next-generation sequencing, we searched for polyomaviruses in meat samples purchased from several supermarkets. Ground beef samples were found to contain three polyomavirus species. One species, bovine polyomavirus 1 (BoPyV1), was originally discovered as a contaminant in laboratory FCS. A previously unknown species, BoPyV2, occupies the same clade as human Merkel cell polyomavirus and raccoon polyomavirus, both of which are carcinogenic in their native hosts. A third species, BoPyV3, is related to human polyomaviruses 6 and 7. Examples of additional DNA virus families, including herpesviruses, adenoviruses, circoviruses and gyroviruses were also detected either in ground beef samples or in comparison samples of ground pork and ground chicken. The results suggest that the virion enrichment/RCA approach is suitable for random detection of essentially any DNA virus with a detergent-stable capsid. It will be important for future studies to address the possibility that animal viruses commonly found in food might be associated with disease.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000033
2015-04-01
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/4/833.html?itemId=/content/journal/jgv/10.1099/vir.0.000033&mimeType=html&fmt=ahah

References

  1. Bouvard V., Baan R. A., Grosse Y., Lauby-Secretan B., El Ghissassi F., Benbrahim-Tallaa L., Guha N., Straif K..WHO International Agency for Research on Cancer Monograph Working Group ( 2012;). Carcinogenicity of malaria and of some polyomaviruses. . Lancet Oncol 13:, 339–340. [CrossRef][PubMed]
    [Google Scholar]
  2. Carter J. J., Daugherty M. D., Qi X., Bheda-Malge A., Wipf G. C., Robinson K., Roman A., Malik H. S., Galloway D. A.. ( 2013;). Identification of an overprinting gene in Merkel cell polyomavirus provides evolutionary insight into the birth of viral genes. . Proc Natl Acad Sci U S A 110:, 12744–12749. [CrossRef][PubMed]
    [Google Scholar]
  3. Crouse J., Amorese D.. ( 1987;). Ethanol precipitation: ammonium acetate as an alternative to sodium acetate. . Focus 19:, 13–16.
    [Google Scholar]
  4. Dela Cruz F. N. Jr, Giannitti F., Li L., Woods L. W., Del Valle L., Delwart E., Pesavento P. A.. ( 2013;). Novel polyomavirus associated with brain tumors in free-ranging raccoons, western United States. . Emerg Infect Dis 19:, 77–84. [CrossRef][PubMed]
    [Google Scholar]
  5. Dereeper A., Guignon V., Blanc G., Audic S., Buffet S., Chevenet F., Dufayard J. F., Guindon S., Lefort V.. & other authors ( 2008;). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. . Nucleic Acids Res 36: (Web Server issue), W465–W469. [CrossRef][PubMed]
    [Google Scholar]
  6. Drexler M.. ( 2002;). Secret Agents: The Menace of Emerging Infections. Washington, DC:: The National Academies Press;.
    [Google Scholar]
  7. Feng H., Shuda M., Chang Y., Moore P. S.. ( 2008;). Clonal integration of a polyomavirus in human Merkel cell carcinoma. . Science 319:, 1096–1100. [CrossRef][PubMed]
    [Google Scholar]
  8. Grabherr M. G., Haas B. J., Yassour M., Levin J. Z., Thompson D. A., Amit I., Adiconis X., Fan L., Raychowdhury R.. & other authors ( 2011;). Full-length transcriptome assembly from RNA-Seq data without a reference genome. . Nat Biotechnol 29:, 644–652. [CrossRef][PubMed]
    [Google Scholar]
  9. Howley P. M., Newell N., Shah K. V., Law M. F., Gruss P., Sauer G., Kelly T. J. Jr. ( 1979;). Identification of the primate papovavirus HD as the stump-tailed macaque virus. . J Virol 30:, 400–403.[PubMed]
    [Google Scholar]
  10. Johne R., Müller H., Rector A., van Ranst M., Stevens H.. ( 2009;). Rolling-circle amplification of viral DNA genomes using phi29 polymerase. . Trends Microbiol 17:, 205–211. [CrossRef][PubMed]
    [Google Scholar]
  11. Johne R., Buck C. B., Allander T., Atwood W. J., Garcea R. L., Imperiale M. J., Major E. O., Ramqvist T., Norkin L. C.. ( 2011;). Taxonomical developments in the family Polyomaviridae. . Arch Virol 156:, 1627–1634. [CrossRef][PubMed]
    [Google Scholar]
  12. Kilcher S., Loessner M. J., Klumpp J.. ( 2010;). Brochothrix thermosphacta bacteriophages feature heterogeneous and highly mosaic genomes and utilize unique prophage insertion sites. . J Bacteriol 192:, 5441–5453. [CrossRef][PubMed]
    [Google Scholar]
  13. Langmead B., Salzberg S. L.. ( 2012;). Fast gapped-read alignment with Bowtie 2. . Nat Methods 9:, 357–359. [CrossRef][PubMed]
    [Google Scholar]
  14. Leendertz F. H., Scuda N., Cameron K. N., Kidega T., Zuberbühler K., Leendertz S. A., Couacy-Hymann E., Boesch C., Calvignac S., Ehlers B.. ( 2011;). African great apes are naturally infected with polyomaviruses closely related to Merkel cell polyomavirus. . J Virol 85:, 916–924. [CrossRef][PubMed]
    [Google Scholar]
  15. Nims R. W., Plavsic M.. ( 2013;). Polyomavirus inactivation – a review. . Biologicals 41:, 63–70. [CrossRef][PubMed]
    [Google Scholar]
  16. Parry J. V., Gardner S. D.. ( 1986;). Human exposure to bovine polyomavirus: a zoonosis?. Arch Virol 87:, 287–296. [CrossRef][PubMed]
    [Google Scholar]
  17. Pastrana D. V., FitzGerald P. C., Phan G. Q., Raiji M. T., Murphy P. M., McDermott D. H., Velez D., Bliskovsky V., McBride A. A., Buck C. B.. ( 2013a;). A divergent variant of the eleventh human polyomavirus species, Saint Louis Polyomavirus. . Genome Announcements 1:, e00812–e00813. [CrossRef][PubMed]
    [Google Scholar]
  18. Pastrana D. V., Ray U., Magaldi T. G., Schowalter R. M., Çuburu N., Buck C. B.. ( 2013b;). BK polyomavirus genotypes represent distinct serotypes with distinct entry tropism. . J Virol 87:, 10105–10113. [CrossRef][PubMed]
    [Google Scholar]
  19. Paulson K. G., Carter J. J., Johnson L. G., Cahill K. W., Iyer J. G., Schrama D., Becker J. C., Madeleine M. M., Nghiem P., Galloway D. A.. ( 2010;). Antibodies to merkel cell polyomavirus T antigen oncoproteins reflect tumor burden in merkel cell carcinoma patients. . Cancer Res 70:, 8388–8397. [CrossRef][PubMed]
    [Google Scholar]
  20. Richmond J. E., Parry J. V., Gardner S. D.. ( 1984;). Characterisation of a polyomavirus in two foetal rhesus monkey kidney cell lines used for the growth of hepatitis A virus. . Arch Virol 80:, 131–146. [CrossRef][PubMed]
    [Google Scholar]
  21. Rusiñol M., Fernandez-Cassi X., Hundesa A., Vieira C., Kern A., Eriksson I., Ziros P., Kay D., Miagostovich M.. & other authors ( 2014;). Application of human and animal viral microbial source tracking tools in fresh and marine waters from five different geographical areas. . Water Res 59:, 119–129. [CrossRef][PubMed]
    [Google Scholar]
  22. Sauerbrei A., Wutzler P.. ( 2009;). Testing thermal resistance of viruses. . Arch Virol 154:, 115–119. [CrossRef][PubMed]
    [Google Scholar]
  23. Schowalter R. M., Buck C. B.. ( 2013;). The Merkel cell polyomavirus minor capsid protein. . PLoS Pathog 9:, e1003558. [CrossRef][PubMed]
    [Google Scholar]
  24. Schowalter R. M., Pastrana D. V., Pumphrey K. A., Moyer A. L., Buck C. B.. ( 2010;). Merkel cell polyomavirus and two previously unknown polyomaviruses are chronically shed from human skin. . Cell Host Microbe 7:, 509–515. [CrossRef][PubMed]
    [Google Scholar]
  25. Schuurman R., van Steenis B., van Strien A., van der Noordaa J., Sol C.. ( 1991;). Frequent detection of bovine polyomavirus in commercial batches of calf serum by using the polymerase chain reaction. . J Gen Virol 72:, 2739–2745. [CrossRef][PubMed]
    [Google Scholar]
  26. Veterinary Record editorial board ( 2014;). Horsemeat in ‘beef' products: European Commission summarises progress. . Vet Rec 174:, 264. [CrossRef]
    [Google Scholar]
  27. Waldeck W., Sauer G.. ( 1977;). New oncogenic papova virus from primate cells. . Nature 269:, 171–173. [CrossRef][PubMed]
    [Google Scholar]
  28. Yamaguchi H., Kobayashi S., Ishii A., Ogawa H., Nakamura I., Moonga L., Hang’ombe B. M., Mweene A. S., Thomas Y.. & other authors ( 2013;). Identification of a novel polyomavirus from vervet monkeys in Zambia. . J Gen Virol 94:, 1357–1364. [CrossRef][PubMed]
    [Google Scholar]
  29. Zhang W., Li L., Deng X., Kapusinszky B., Delwart E.. ( 2014;). What is for dinner? Viral metagenomics of US store bought beef, pork, and chicken. . Virology 468-470:, 303–310. [CrossRef][PubMed]
    [Google Scholar]
  30. zur Hausen, H. (2008). The Search for Infectious Causes of Human Cancers: Where and Why. http://www.nobelprize.org/nobel_prizes/medicine/laureates/2008/hausen_lecture.pdf.
  31. zur Hausen H.. ( 2009;). Papillomaviruses in the causation of human cancers – a brief historical account. . Virology 384:, 260–265. [CrossRef][PubMed]
    [Google Scholar]
  32. zur Hausen H.. ( 2012;). Red meat consumption and cancer: reasons to suspect involvement of bovine infectious factors in colorectal cancer. . Int J Cancer 130:, 2475–2483. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000033
Loading
/content/journal/jgv/10.1099/vir.0.000033
Loading

Data & Media loading...

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error