1887

Abstract

The segment-specific non-coding regions (NCRs) of influenza A virus RNA genome play important roles in controlling viral RNA transcription, replication and genome packaging. In this report, we present, for the first time to our knowledge, a full view of the segment-specific NCRs of all influenza A viruses by bioinformatics analysis. Our systematic functional analysis revealed that the eight segment-specific NCRs identified could differentially regulate viral RNA synthesis and protein expression at both transcription and translation levels. Interestingly, a highly conserved suboptimal nucleotide at −3 position of the Kozak sequence, which downregulated protein expression at the translation level, was only present in the segment-specific NCR of PB1. By reverse genetics, we demonstrate that recombinant viruses with an optimized Kozak sequence at the −3 position in PB1 resulted in a significant multiple-cycle replication reduction that was independent of PB1-F2 expression. Our detailed dynamic analysis of virus infection revealed that the mutant virus displays slightly altered dynamics from the wild-type virus on both viral RNA synthesis and protein production. Furthermore, we demonstrated that the level of PB1 expression is involved in regulating type I IFN production. Together, these data reveal a novel strategy exploited by influenza A virus to fine-tune virus replication dynamics and host antiviral response through regulating PB1 protein expression.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000030
2015-04-01
2019-12-07
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/4/756.html?itemId=/content/journal/jgv/10.1099/vir.0.000030&mimeType=html&fmt=ahah

References

  1. Bao Y. , Bolotov P. , Dernovoy D. , Kiryutin B. , Zaslavsky L. , Tatusova T. , Ostell J. , Lipman D. . ( 2008; ). The influenza virus resource at the National Center for Biotechnology Information. . J Virol 82:, 596–601. [CrossRef] [PubMed]
    [Google Scholar]
  2. Belicha-Villanueva A. , Rodriguez-Madoz J. R. , Maamary J. , Baum A. , Bernal-Rubio D. , Minguito de la Escalera M. , Fernandez-Sesma A. , García-Sastre A. . ( 2012; ). Recombinant influenza A viruses with enhanced levels of PB1 and PA viral protein expression. . J Virol 86:, 5926–5930. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bergmann M. , Muster T. . ( 1996; ). Mutations in the nonconserved noncoding sequences of the influenza A virus segments affect viral vRNA formation. . Virus Res 44:, 23–31. [CrossRef] [PubMed]
    [Google Scholar]
  4. Biswas S. K. , Nayak D. P. . ( 1994; ). Mutational analysis of the conserved motifs of influenza A virus polymerase basic protein 1. . J Virol 68:, 1819–1826.[PubMed]
    [Google Scholar]
  5. Braam J. , Ulmanen I. , Krug R. M. . ( 1983; ). Molecular model of a eucaryotic transcription complex: functions and movements of influenza P proteins during capped RNA-primed transcription. . Cell 34:, 609–618. [CrossRef] [PubMed]
    [Google Scholar]
  6. Chen W. , Calvo P. A. , Malide D. , Gibbs J. , Schubert U. , Bacik I. , Basta S. , O’Neill R. , Schickli J. . & other authors ( 2001; ). A novel influenza A virus mitochondrial protein that induces cell death. . Nat Med 7:, 1306–1312. [CrossRef] [PubMed]
    [Google Scholar]
  7. Davis W. G. , Bowzard J. B. , Sharma S. D. , Wiens M. E. , Ranjan P. , Gangappa S. , Stuchlik O. , Pohl J. , Donis R. O. . & other authors ( 2012; ). The 3′ untranslated regions of influenza genomic sequences are 5′ PPP-independent ligands for RIG-I. . PLoS ONE 7:, e32661. [CrossRef] [PubMed]
    [Google Scholar]
  8. Enami M. , Fukuda R. , Ishihama A. . ( 1985; ). Transcription and replication of eight RNA segments of influenza virus. . Virology 142:, 68–77. [CrossRef] [PubMed]
    [Google Scholar]
  9. Flick R. , Neumann G. , Hoffmann E. , Neumeier E. , Hobom G. . ( 1996; ). Promoter elements in the influenza vRNA terminal structure. . RNA 2:, 1046–1057.[PubMed]
    [Google Scholar]
  10. Fodor E. , Pritlove D. C. , Brownlee G. G. . ( 1995; ). Characterization of the RNA-fork model of virion RNA in the initiation of transcription in influenza A virus. . J Virol 69:, 4012–4019.[PubMed]
    [Google Scholar]
  11. Fodor E. , Crow M. , Mingay L. J. , Deng T. , Sharps J. , Fechter P. , Brownlee G. G. . ( 2002; ). A single amino acid mutation in the PA subunit of the influenza virus RNA polymerase inhibits endonucleolytic cleavage of capped RNAs. . J Virol 76:, 8989–9001. [CrossRef] [PubMed]
    [Google Scholar]
  12. Gog J. R. , Afonso E. S. , Dalton R. M. , Leclercq I. , Tiley L. , Elton D. , von Kirchbach J. C. , Naffakh N. , Escriou N. , Digard P. . ( 2007; ). Codon conservation in the influenza A virus genome defines RNA packaging signals. . Nucleic Acids Res 35:, 1897–1907. [CrossRef] [PubMed]
    [Google Scholar]
  13. González S. , Ortín J. . ( 1999a; ). Characterization of influenza virus PB1 protein binding to viral RNA: two separate regions of the protein contribute to the interaction domain. . J Virol 73:, 631–637.[PubMed]
    [Google Scholar]
  14. González S. , Ortín J. . ( 1999b; ). Distinct regions of influenza virus PB1 polymerase subunit recognize vRNA and cRNA templates. . EMBO J 18:, 3767–3775. [CrossRef] [PubMed]
    [Google Scholar]
  15. Graef K. M. , Vreede F. T. , Lau Y. F. , McCall A. W. , Carr S. M. , Subbarao K. , Fodor E. . ( 2010; ). The PB2 subunit of the influenza virus RNA polymerase affects virulence by interacting with the mitochondrial antiviral signaling protein and inhibiting expression of beta interferon. . J Virol 84:, 8433–8445. [CrossRef] [PubMed]
    [Google Scholar]
  16. Hale B. G. , Randall R. E. , Ortín J. , Jackson D. . ( 2008; ). The multifunctional NS1 protein of influenza A viruses. . J Gen Virol 89:, 2359–2376. [CrossRef] [PubMed]
    [Google Scholar]
  17. Hatada E. , Hasegawa M. , Mukaigawa J. , Shimizu K. , Fukuda R. . ( 1989; ). Control of influenza virus gene expression: quantitative analysis of each viral RNA species in infected cells. . J Biochem 105:, 537–546.[PubMed]
    [Google Scholar]
  18. Hoffmann E. , Neumann G. , Kawaoka Y. , Hobom G. , Webster R. G. . ( 2000; ). A DNA transfection system for generation of influenza A virus from eight plasmids. . Proc Natl Acad Sci U S A 97:, 6108–6113. [CrossRef] [PubMed]
    [Google Scholar]
  19. Hutchinson E. C. , von Kirchbach J. C. , Gog J. R. , Digard P. . ( 2010; ). Genome packaging in influenza A virus. . J Gen Virol 91:, 313–328. [CrossRef] [PubMed]
    [Google Scholar]
  20. Kim H. J. , Fodor E. , Brownlee G. G. , Seong B. L. . ( 1997; ). Mutational analysis of the RNA-fork model of the influenza A virus vRNA promoter in vivo . . J Gen Virol 78:, 353–357.[PubMed]
    [Google Scholar]
  21. Kochs G. , García-Sastre A. , Martínez-Sobrido L. . ( 2007; ). Multiple anti-interferon actions of the influenza A virus NS1 protein. . J Virol 81:, 7011–7021. [CrossRef] [PubMed]
    [Google Scholar]
  22. Kozak M. . ( 1986; ). Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. . Cell 44:, 283–292. [CrossRef] [PubMed]
    [Google Scholar]
  23. Kozak M. . ( 1991; ). Structural features in eukaryotic mRNAs that modulate the initiation of translation. . J Biol Chem 266:, 19867–19870.[PubMed]
    [Google Scholar]
  24. Le Goffic R. , Bouguyon E. , Chevalier C. , Vidic J. , Da Costa B. , Leymarie O. , Bourdieu C. , Decamps L. , Dhorne-Pollet S. , Delmas B. . ( 2010; ). Influenza A virus protein PB1-F2 exacerbates IFN-beta expression of human respiratory epithelial cells. . J Immunol 185:, 4812–4823. [CrossRef] [PubMed]
    [Google Scholar]
  25. Liu Q. , Wang S. , Ma G. , Pu J. , Forbes N. E. , Brown E. G. , Liu J. H. . ( 2009; ). Improved and simplified recombineering approach for influenza virus reverse genetics. . J Mol Genet Med 3:, 225–231. [CrossRef] [PubMed]
    [Google Scholar]
  26. Ma J. , Liu K. , Xue C. , Zhou J. , Xu S. , Ren Y. , Zheng J. , Cao Y. . ( 2013; ). Impact of the segment-specific region of the 3′-untranslated region of the influenza A virus PB1 segment on protein expression. . Virus Genes 47:, 429–438. [CrossRef] [PubMed]
    [Google Scholar]
  27. Maeda Y. , Goto H. , Horimoto T. , Takada A. , Kawaoka Y. . ( 2004; ). Biological significance of the U residue at the -3 position of the mRNA sequences of influenza A viral segments PB1 and NA. . Virus Res 100:, 153–157. [CrossRef] [PubMed]
    [Google Scholar]
  28. Palese P. , Sham M. L. . ( 2007; ). Orthomyxoviridae: the viruses and their replication. . In Fields Virology, , 5th edn., vol. 2, pp. 1647–1689. Edited by Knipe D. M. , Howley P. M. . . Philadelphia:: Lippincott Williams & Wilkins;.
    [Google Scholar]
  29. Park Y. W. , Katze M. G. . ( 1995; ). Translational control by influenza virus. Identification of cis-acting sequences and trans-acting factors which may regulate selective viral mRNA translation. . J Biol Chem 270:, 28433–28439.[PubMed] [CrossRef]
    [Google Scholar]
  30. Park Y. W. , Wilusz J. , Katze M. G. . ( 1999; ). Regulation of eukaryotic protein synthesis: selective influenza viral mRNA translation is mediated by the cellular RNA-binding protein GRSF-1. . Proc Natl Acad Sci U S A 96:, 6694–6699. [CrossRef] [PubMed]
    [Google Scholar]
  31. Park S. J. , Park B. K. , Song D. S. , Poo H. . ( 2012; ). Complete genome sequence of a mammalian species-infectious and -pathogenic H6N5 avian influenza virus without evidence of adaptation. . J Virol 86:, 12459–12460. [CrossRef] [PubMed]
    [Google Scholar]
  32. Park S. J. , Kang B. K. , Jeoung H. Y. , Moon H. J. , Hong M. , Na W. , Park B. K. , Poo H. , Kim J. K. . & other authors ( 2013; ). Complete genome sequence of a canine-origin H3N2 feline influenza virus isolated from domestic cats in South Korea. . Genome Announc 1:, e0025312. [CrossRef] [PubMed]
    [Google Scholar]
  33. Rehwinkel J. , Tan C. P. , Goubau D. , Schulz O. , Pichlmair A. , Bier K. , Robb N. , Vreede F. , Barclay W. . & other authors ( 2010; ). RIG-I detects viral genomic RNA during negative-strand RNA virus infection. . Cell 140:, 397–408. [CrossRef] [PubMed]
    [Google Scholar]
  34. Resa-Infante P. , Jorba N. , Coloma R. , Ortin J. . ( 2011; ). The influenza virus RNA synthesis machine: advances in its structure and function. . RNA Biol 8:, 207–215. [CrossRef] [PubMed]
    [Google Scholar]
  35. Su S. , Cao N. , Chen J. , Zhao F. , Li H. , Zhao M. , Wang Y. , Huang Z. , Yuan L. . & other authors ( 2012; ). Complete genome sequence of an avian-origin H3N2 canine influenza A virus isolated in farmed dogs in southern China. . J Virol 86:, 10238. [CrossRef] [PubMed]
    [Google Scholar]
  36. Talon J. , Horvath C. M. , Polley R. , Basler C. F. , Muster T. , Palese P. , García-Sastre A. . ( 2000; ). Activation of interferon regulatory factor 3 is inhibited by the influenza A virus NS1 protein. . J Virol 74:, 7989–7996. [CrossRef] [PubMed]
    [Google Scholar]
  37. Tauber S. , Ligertwood Y. , Quigg-Nicol M. , Dutia B. M. , Elliott R. M. . ( 2012; ). Behaviour of influenza A viruses differentially expressing segment 2 gene products in vitro and in vivo . . J Gen Virol 93:, 840–849. [CrossRef] [PubMed]
    [Google Scholar]
  38. Varich N. L. , Kaverin N. V. . ( 1987; ). Regulation of the replication of influenza virus RNA segments: partial suppression of protein synthesis restores the ‘early’ replication pattern. . J Gen Virol 68:, 2879–2887. [CrossRef] [PubMed]
    [Google Scholar]
  39. Vreede F. T. , Chan A. Y. , Sharps J. , Fodor E. . ( 2010; ). Mechanisms and functional implications of the degradation of host RNA polymerase II in influenza virus infected cells. . Virology 396:, 125–134. [CrossRef] [PubMed]
    [Google Scholar]
  40. Wang L. , Lee C. W. . ( 2009; ). Sequencing and mutational analysis of the non-coding regions of influenza A virus. . Vet Microbiol 135:, 239–247. [CrossRef] [PubMed]
    [Google Scholar]
  41. Wang R. , Taubenberger J. K. . ( 2014; ). Characterization of the noncoding regions of the 1918 influenza A H1N1 virus. . J Virol 88:, 1815–1818. [CrossRef] [PubMed]
    [Google Scholar]
  42. Wang R. , Xiao Y. , Taubenberger J. K. . ( 2014; ). Rapid sequencing of influenza A virus vRNA, cRNA and mRNA non-coding regions. . J Virol Methods 195:, 26–33. [CrossRef] [PubMed]
    [Google Scholar]
  43. Wise H. M. , Foeglein A. , Sun J. , Dalton R. M. , Patel S. , Howard W. , Anderson E. C. , Barclay W. S. , Digard P. . ( 2009; ). A complicated message: Identification of a novel PB1-related protein translated from influenza A virus segment 2 mRNA. . J Virol 83:, 8021–8031. [CrossRef] [PubMed]
    [Google Scholar]
  44. Wise H. M. , Barbezange C. , Jagger B. W. , Dalton R. M. , Gog J. R. , Curran M. D. , Taubenberger J. K. , Anderson E. C. , Digard P. . ( 2011; ). Overlapping signals for translational regulation and packaging of influenza A virus segment 2. . Nucleic Acids Res 39:, 7775–7790. [CrossRef] [PubMed]
    [Google Scholar]
  45. Yamanaka K. , Ishihama A. , Nagata K. . ( 1988; ). Translational regulation of influenza virus mRNAs. . Virus Genes 2:, 19–30. [CrossRef] [PubMed]
    [Google Scholar]
  46. Yamanaka K. , Nagata K. , Ishihama A. . ( 1991; ). Temporal control for translation of influenza virus mRNAs. . Arch Virol 120:, 33–42. [CrossRef] [PubMed]
    [Google Scholar]
  47. Zhao L. , Peng Y. , Zhou K. , Cao M. , Wang J. , Wang X. , Jiang T. , Deng T. . ( 2014; ). New insights into the nonconserved noncoding region of the subtype-determinant hemagglutinin and neuraminidase segments of influenza A viruses. . J Virol 88:, 11493–11503. [CrossRef] [PubMed]
    [Google Scholar]
  48. Zheng H. , Palese P. , García-Sastre A. . ( 1996; ). Nonconserved nucleotides at the 3′ and 5′ ends of an influenza A virus RNA play an important role in viral RNA replication. . Virology 217:, 242–251. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000030
Loading
/content/journal/jgv/10.1099/vir.0.000030
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error