1887

Abstract

Desmoglein-2 (DSG2) has emerged as a potential biomarker for coronavirus disease 2019 (COVID-19) complications, particularly cardiac and cardiovascular involvement. The expression of DSG2 in lung tissues has been detected at elevated levels, and circulating DSG2 levels correlate with COVID-19 severity. DSG2 may contribute to myocardial injury, cardiac dysfunction and vascular endothelial dysfunction in COVID-19. Monitoring DSG2 levels could aid in risk stratification, early detection and prognostication of COVID-19 complications. However, further research is required to validate DSG2 as a biomarker. Such research will aim to elucidate its precise role in pathogenesis, establishing standardized assays for its measurement and possibly identifying therapeutic targets.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.001902
2023-10-10
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/jgv/104/10/jgv001902.html?itemId=/content/journal/jgv/10.1099/jgv.0.001902&mimeType=html&fmt=ahah

References

  1. Rabi FA, Al Zoubi MS, Kasasbeh GA, Salameh DM, Al-Nasser AD. SARS-CoV-2 and coronavirus disease 2019: what we know so far. Pathogens 2020; 9:231 [View Article] [PubMed]
    [Google Scholar]
  2. Ahmed El-Arabey A, Abdalla M, Rashad Abd-Allah A, Marenga HS, Modafer Y et al. Molecular dynamic and bioinformatic studies of metformin-induced ACE2 phosphorylation in the presence of different SARS-CoV-2 S protein mutations. Saudi J Biol Sci 2023; 30:103699 [View Article] [PubMed]
    [Google Scholar]
  3. Jackson CB, Farzan M, Chen B, Choe H. Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol 2022; 23:3–20 [View Article] [PubMed]
    [Google Scholar]
  4. Aleksova A, Gagno G, Sinagra G, Beltrami AP, Janjusevic M et al. Effects of SARS-CoV-2 on cardiovascular system: the dual role of angiotensin-converting enzyme 2 (ACE2) as the virus receptor and homeostasis regulator-review. Int J Mol Sci 2021; 22:4526 [View Article] [PubMed]
    [Google Scholar]
  5. Lukiw WJ, Pogue A, Hill JM. SARS-CoV-2 infectivity and neurological targets in the brain. Cell Mol Neurobiol 2022; 42:217–224 [View Article]
    [Google Scholar]
  6. Khan AM, Kallogjeri D, Piccirillo JF. Growing public health concern of COVID-19 chronic olfactory dysfunction. JAMA Otolaryngol Head Neck Surg 2022; 148:81–82 [View Article] [PubMed]
    [Google Scholar]
  7. Tenforde MW, Kim SS, Lindsell CJ, Billig Rose E, Shapiro NI et al. Symptom duration and risk factors for delayed return to usual health among outpatients with COVID-19 in a multistate health care systems network - United States, March-June 2020. MMWR Morb Mortal Wkly Rep 2020; 69:993–998 [View Article] [PubMed]
    [Google Scholar]
  8. De Luca P, Camaioni A, Marra P, Salzano G, Carriere G et al. Effect of ultra-micronized palmitoylethanolamide and luteolin on olfaction and memory in patients with long COVID: results of a longitudinal study. Cells 2022; 11:2552 [View Article] [PubMed]
    [Google Scholar]
  9. Di Stadio A, D’Ascanio L, Vaira LA, Cantone E, De Luca P et al. Ultramicronized palmitoylethanolamide and luteolin supplement combined with olfactory training to treat Post-COVID-19 olfactory impairment: a multi-center double-blinded randomized placebo- controlled clinical trial. Curr Neuropharmacol 2022; 20:2001–2012 [View Article] [PubMed]
    [Google Scholar]
  10. Kubiak JZ, Kloc M. Recent progress in research on COVID-19 pathophysiology: biomarkers, repurposed drugs, viral invasiveness, SARS-CoV-2 genetic diversity, the crystal structure of viral proteins, and the molecular and cellular outcomes of COVID-19. Int J Mol Sci 2022; 23:22 [View Article] [PubMed]
    [Google Scholar]
  11. Harmon RM, Green KJ. Structural and functional diversity of desmosomes. Cell Commun Adhes 2013; 20:171–187 [View Article] [PubMed]
    [Google Scholar]
  12. Ward KE, Steadman L, Karim AR, Reynolds GM, Pugh M et al. SARS-CoV-2 infection is associated with anti-desmoglein 2 autoantibody detection. Clin Exp Immunol 2023; 213:243–251 [View Article] [PubMed]
    [Google Scholar]
  13. Cooper F, Overmiller AM, Loder A, Brennan-Crispi DM, McGuinn KP et al. Enhancement of cutaneous wound healing by Dsg2 augmentation of uPAR secretion. J Invest Dermatol 2018; 138:2470–2479 [View Article] [PubMed]
    [Google Scholar]
  14. Nava P, Laukoetter MG, Hopkins AM, Laur O, Gerner-Smidt K et al. Desmoglein-2: a novel regulator of apoptosis in the intestinal epithelium. Mol Biol Cell 2007; 18:4565–4578 [View Article] [PubMed]
    [Google Scholar]
  15. Zhang X, Fang B, Mohan R, Chang JY. Coxsackie-adenovirus receptor as a novel marker of stem cells in treatment-resistant non-small cell lung cancer. Radiother Oncol 2012; 105:250–257 [View Article] [PubMed]
    [Google Scholar]
  16. Saaber F, Chen Y, Cui T, Yang L, Mireskandari M et al. Expression of desmogleins 1-3 and their clinical impacts on human lung cancer. Pathol Res Pract 2015; 211:208–213 [View Article] [PubMed]
    [Google Scholar]
  17. Kowalczyk AP, Green KJ. Structure, function, and regulation of desmosomes. Prog Mol Biol Transl Sci 2013; 116:95–118 [View Article] [PubMed]
    [Google Scholar]
  18. Caforio ALP, Re F, Avella A, Marcolongo R, Baratta P et al. Evidence from family studies for autoimmunity in arrhythmogenic right ventricular cardiomyopathy: associations of circulating anti-heart and anti-intercalated disk autoantibodies with disease severity and family history. Circulation 2020; 141:1238–1248 [View Article] [PubMed]
    [Google Scholar]
  19. Schlegel N, Boerner K, Waschke J. Targeting desmosomal adhesion and signalling for intestinal barrier stabilization in inflammatory bowel diseases-lessons from experimental models and patients. Acta Physiol 2021; 231:e13492 [View Article] [PubMed]
    [Google Scholar]
  20. Li KHC, Bazoukis G, Liu T, Li G, Wu WKK et al. Arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) in clinical practice. J Arrhythm 2018; 34:11–22 [View Article] [PubMed]
    [Google Scholar]
  21. Pilichou K, Nava A, Basso C, Beffagna G, Bauce B et al. Mutations in desmoglein-2 gene are associated with arrhythmogenic right ventricular cardiomyopathy. Circulation 2006; 113:1171–1179 [View Article] [PubMed]
    [Google Scholar]
  22. Amagai M, Klaus-Kovtun V, Stanley JR. Autoantibodies against a novel epithelial cadherin in pemphigus vulgaris, a disease of cell adhesion. Cell 1991; 67:869–877 [View Article] [PubMed]
    [Google Scholar]
  23. Rasmussen TB, Palmfeldt J, Nissen PH, Magnoni R, Dalager S et al. Mutated desmoglein-2 proteins are incorporated into desmosomes and exhibit dominant-negative effects in arrhythmogenic right ventricular cardiomyopathy. Human Mutation 2013; 34:697–705 [View Article]
    [Google Scholar]
  24. Kljuic A, Bazzi H, Sundberg JP, Martinez-Mir A, O’Shaughnessy R et al. Desmoglein 4 in hair follicle differentiation and epidermal adhesion: evidence from inherited hypotrichosis and acquired pemphigus vulgaris. Cell 2003; 113:249–260 [View Article] [PubMed]
    [Google Scholar]
  25. Wang H, Li Z-Y, Liu Y, Persson J, Beyer I et al. Desmoglein 2 is a receptor for adenovirus serotypes 3, 7, 11 and 14. Nat Med 2011; 17:96–104 [View Article]
    [Google Scholar]
  26. Hong J, Kang B, Yeo S, Jee Y, Park JH. Pathogenesis of coxsackievirus B2 in mice: characterization of clinical isolates of the coxsackievirus B2 from patients with myocarditis and aseptic meningitis in Korea. J Vet Sci 2017; 18:457–464 [View Article] [PubMed]
    [Google Scholar]
  27. Hograindleur MA, Effantin G, Fenel D, Mas C, Lieber A et al. Binding mechanism elucidation of the acute respiratory disease causing agent adenovirus of serotype 7 to desmoglein-2. Viruses 2020; 12:1075 [View Article] [PubMed]
    [Google Scholar]
  28. Weng CF, Huang CJ, Wu MH, Lee HHC, Ling TY. Co-expression of coxsackievirus/adenovirus receptors and desmoglein 2 in lung adenocarcinoma: a comprehensive analysis of bioinformatics and tissue microarrays. J Clin Med 2020; 9:3693 [View Article] [PubMed]
    [Google Scholar]
  29. Amstutz B, Gastaldelli M, Kälin S, Imelli N, Boucke K et al. Subversion of CtBP1-controlled macropinocytosis by human adenovirus serotype 3. EMBO J 2008; 27:956–969 [View Article] [PubMed]
    [Google Scholar]
  30. Wickham TJ, Mathias P, Cheresh DA, Nemerow GR. Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell 1993; 73:309–319 [View Article] [PubMed]
    [Google Scholar]
  31. Peng R, Wu LA, Wang Q, Qi J, Gao GF. Cell entry by SARS-CoV-2. Trends Biochem Sci 2021; 46:848–860 [View Article] [PubMed]
    [Google Scholar]
  32. Arnberg N. Adenovirus receptors: implications for targeting of viral vectors. Trends Pharmacol Sci 2012; 33:442–448 [View Article] [PubMed]
    [Google Scholar]
  33. Li H, Xiang X, Ren H, Xu L, Zhao L et al. Serum amyloid A is a biomarker of severe coronavirus disease and poor prognosis. J Infect 2020; 80:646–655 [View Article] [PubMed]
    [Google Scholar]
  34. Jones KS. Dsg2-mediated enhancement of SARS-Cov-2 entry and transmission. bioRxiv 2021 [View Article]
    [Google Scholar]
  35. Sigmund AM, Steinert LS, Egu DT, Bayerbach FC, Waschke J et al. Dsg2 upregulation as a rescue mechanism in pemphigus. Front Immunol 2020; 11:581370 [View Article] [PubMed]
    [Google Scholar]
  36. Fang H, Li Q, Wang G. The role of T cells in pemphigus vulgaris and bullous pemphigoid. Autoimmun Rev 2020; 19:102661 [View Article] [PubMed]
    [Google Scholar]
  37. Mannan T, Jing S, Foroushania SH, Fortune F, Wan H. RNAi-mediated inhibition of the desmosomal cadherin (desmoglein 3) impairs epithelial cell proliferation. Cell Prolif 2011; 44:301–310 [View Article]
    [Google Scholar]
  38. Rickelt S, Franke WW, Doerflinger Y, Goerdt S, Brandner JM et al. Subtypes of melanocytes and melanoma cells distinguished by their intercellular contacts: heterotypic adherens junctions, adhesive associations, and dispersed desmoglein 2 glycoproteins. Cell Tissue Res 2008; 334:401–422 [View Article]
    [Google Scholar]
  39. Peitsch WK, Doerflinger Y, Fischer-Colbrie R, Huck V, Bauer AT et al. Desmoglein 2 depletion leads to increased migration and upregulation of the chemoattractant secretoneurin in melanoma cells. PLoS One 2014; 9:e89491 [View Article] [PubMed]
    [Google Scholar]
  40. Giusti B, Margheri F, Rossi L, Lapini I, Magi A et al. Desmoglein-2-integrin Beta-8 interaction regulates actin assembly in endothelial cells: deregulation in systemic sclerosis. PLoS One 2013; 8:e68117 [View Article] [PubMed]
    [Google Scholar]
  41. Andrini L et al. Desmoglein-2 impairs thrombus growth and stability in acute ischemic stroke. Stroke 2020; 51:130–137 [View Article]
    [Google Scholar]
  42. Dawood F et al. Desmoglein-2 in health and disease: insights from human studies. Cell Tissue Res 2018; 372:281–294 [View Article]
    [Google Scholar]
  43. Sokolov VV et al. Desmoglein-2 interaction is crucial for cardiomyocyte cohesion and function. Cardiovasc Res 2017; 113:30–39 [View Article]
    [Google Scholar]
  44. Gross A, Pack LAP, Schacht GM, Kant S, Ungewiss H et al. Desmoglein 2, but not desmocollin 2, protects intestinal epithelia from injury. Mucosal Immunol 2018; 11:1630–1639 [View Article] [PubMed]
    [Google Scholar]
  45. Meir M, Burkard N, Ungewiß H, Diefenbacher M, Flemming S et al. Neurotrophic factor GDNF regulates intestinal barrier function in inflammatory bowel disease. J Clin Invest 2019; 129:2824–2840 [View Article] [PubMed]
    [Google Scholar]
  46. Baker AT, Boyd RJ, Sarkar D, Teijeira-Crespo A, Chan CK et al. ChAdOx1 interacts with CAR and PF4 with implications for thrombosis with thrombocytopenia syndrome. Sci Adv 2021; 7:eabl8213 [View Article] [PubMed]
    [Google Scholar]
  47. Lee ECY, Tyler RE, Johnson D, Koh N, Ong BC et al. High frequency of anti-DSG 2 antibodies in post COVID-19 serum samples. J Mol Cell Cardiol 2022; 170:121–123 [View Article] [PubMed]
    [Google Scholar]
  48. Wang H, Beyer I, Persson J, Song H, Li Z et al. A new human DSG2-transgenic mouse model for studying the tropism and pathology of human adenoviruses. J Virol 2012; 86:6286–6302 [View Article]
    [Google Scholar]
  49. Zhao G, Qiu Y, Zhang HM, Yang D. Intercalated discs: cellular adhesion and signaling in heart health and diseases. Heart Fail Rev 2019; 24:115–132 [View Article] [PubMed]
    [Google Scholar]
  50. Liaci AM. Structural and Functional Studies on the Early Steps of Polyomavirus and Adenovirus Life Cycles Doctoral dissertation, Universität Tübingen; 2019
    [Google Scholar]
  51. Blaum BS, Stehle T. Sialic acids in nonenveloped virus infections. Adv Carbohydr Chem Biochem 2019; 76:65–111 [View Article] [PubMed]
    [Google Scholar]
  52. Blanco-Rodriguez G, Di Nunzio F. The viral capsid: a master key to access the host nucleus. Viruses 2021; 13:1178 [View Article] [PubMed]
    [Google Scholar]
  53. Kamal M, Abo Omirah M, Hussein A, Saeed H. Assessment and characterisation of post-COVID-19 manifestations. Int J Clin Pract 2021; 75:e13746 [View Article] [PubMed]
    [Google Scholar]
  54. Ingul CB, Grimsmo J, Mecinaj A, Trebinjac D, Berger Nossen M et al. Cardiac dysfunction and arrhythmias 3 months after hospitalization for COVID-19. J Am Heart Assoc 2022; 11:e023473 [View Article] [PubMed]
    [Google Scholar]
  55. Vite A, Gandjbakhch E, Hery T, Fressart V, Gary F et al. Desmoglein-2 mutations in propeptide cleavage-site causes arrhythmogenic right ventricular cardiomyopathy/dysplasia by impairing extracellular 1-dependent desmosomal interactions upon cellular stress. Europace 2020; 22:320–329 [View Article] [PubMed]
    [Google Scholar]
  56. Qin S, Liao Y, Du Q, Wang W, Huang J et al. DSG2 expression is correlated with poor prognosis and promotes early-stage cervical cancer. Cancer Cell Int 2020; 20:206 [View Article] [PubMed]
    [Google Scholar]
  57. Yang T, Gu X, Jia L, Guo J, Tang Q et al. DSG2 expression is low in colon cancer and correlates with poor survival. BMC Gastroenterol 2021; 21:7 [View Article] [PubMed]
    [Google Scholar]
  58. Fousteri G, Kuka M. The elusive identity of CXCR5+ CD8 T cells in viral infection and autoimmunity: cytotoxic, regulatory, or helper cells?. Mol Immunol 2020; 119:101–105 [View Article] [PubMed]
    [Google Scholar]
  59. Icenogle T. COVID-19: infection or autoimmunity. Front Immunol 2020; 11:2055 [View Article] [PubMed]
    [Google Scholar]
  60. Valta M, Yoshihara M, Einarsdottir E, Pahkuri S, Ezer S et al. Viral infection-related gene upregulation in monocytes in children with signs of β-cell autoimmunity. Pediatr Diabetes 2022; 23:703–713 [View Article] [PubMed]
    [Google Scholar]
  61. Tang KT, Hsu BC, Chen DY. Autoimmune and rheumatic manifestations associated with COVID-19 in adults: an updated systematic review. Front Immunol 2021; 12:645013 [View Article] [PubMed]
    [Google Scholar]
  62. Nune A, Iyengar KP, Ish P, Varupula B, Musat CA et al. The emergence of new-onset SLE following SARS-CoV-2 vaccination. QJM 2021; 114:739–740 [View Article] [PubMed]
    [Google Scholar]
  63. Rojas M, Herrán M, Ramírez-Santana C, Leung PSC, Anaya J-M et al. Molecular mimicry and autoimmunity in the time of COVID-19. J Autoimmun 2023; 139:103070 [View Article] [PubMed]
    [Google Scholar]
  64. Ehrenfeld M, Tincani A, Andreoli L, Cattalini M, Greenbaum A et al. Covid-19 and autoimmunity. Autoimmun Rev 2020; 19:102597 [View Article] [PubMed]
    [Google Scholar]
  65. Cheng N, Liu M, Li W, Sun B, Liu D et al. Protein post-translational modification in SARS-CoV-2 and host interaction. Front Immunol 2022; 13:1068449 [View Article] [PubMed]
    [Google Scholar]
  66. Chatterjee D, Fatah M, Akdis D, Spears DA, Koopmann TT et al. An autoantibody identifies arrhythmogenic right ventricular cardiomyopathy and participates in its pathogenesis. Eur Heart J 2018; 39:3932–3944 [View Article] [PubMed]
    [Google Scholar]
  67. Schlegel N, Meir M, Heupel W-M, Holthöfer B, Leube RE et al. Desmoglein 2-mediated adhesion is required for intestinal epithelial barrier integrity. Am J Physiol Gastrointest Liver Physiol 2010; 298:G774–83 [View Article] [PubMed]
    [Google Scholar]
  68. Rizzo S, Lodder EM, Verkerk AO, Wolswinkel R, Beekman L et al. (+) current density, and conduction slowing in desmoglein-2 mutant mice before cardiomyopathic changes. Cardiovasc Res 2012; 95:409–418
    [Google Scholar]
  69. Li F. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol 2016; 3:237–261 [View Article] [PubMed]
    [Google Scholar]
  70. Sanche S, Lin YT, Xu C, Romero-Severson E, Hengartner N et al. High contagiousness and rapid spread of severe acute respiratory syndrome coronavirus 2. Emerg Infect Dis 2020; 26:1470–1477 [View Article]
    [Google Scholar]
  71. Shang J, Wan Y, Luo C, Ye G, Geng Q et al. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci USA 2020; 117:11727–11734 [View Article]
    [Google Scholar]
  72. Li F, Goff SP. Receptor recognition mechanisms of coronaviruses: a decade of structural studies. J Virol 2015; 89:1954–1964 [View Article]
    [Google Scholar]
  73. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med 2020; 46:586–590 [View Article]
    [Google Scholar]
  74. Jing S, Zhang J, Cao M, Liu M, Yan Y et al. Household transmission of human adenovirus type 55 in case of fatal acute respiratory disease. Emerg Infect Dis 2019; 25:1756–1758 [View Article] [PubMed]
    [Google Scholar]
  75. Zhang J, Ma K, Wang X, Jiang Y, Zhao S et al. Desmoglein 2 (DSG2) is a receptor of human adenovirus type 55 causing adult severe community-acquired pneumonia. Virol Sin 2021; 36:1400–1410 [View Article] [PubMed]
    [Google Scholar]
  76. Bahlmann NA, Tsoukas RL, Erkens S, Wang H, Jönsson F et al. Properties of adenovirus vectors with increased affinity to DSG2 and the potential benefits of oncolytic approaches and gene therapy. Viruses 2022; 14:1835 [View Article] [PubMed]
    [Google Scholar]
  77. Feng Y, Yi C, Liu X, Qu L, Su W et al. Human desmoglein-2 and human CD46 mediate human adenovirus type 55 infection, but human desmoglein-2 plays the major roles. J Virol 2020; 94:10–1128 [View Article] [PubMed]
    [Google Scholar]
  78. Wang H, Ducournau C, Saydaminova K, Richter M, Yumul R et al. Intracellular signaling and desmoglein 2 shedding triggered by human adenoviruses Ad3, Ad14, and Ad14P1. J Virol 2015; 89:10841–10859 [View Article]
    [Google Scholar]
  79. Xu S, Wu W, Zhang S. Manifestations and mechanism of SARS-CoV2 mediated cardiac injury. Int J Biol Sci 2022; 18:2703–2713 [View Article]
    [Google Scholar]
  80. Bellavite P, Ferraresi A, Isidoro C. Immune response and molecular mechanisms of cardiovascular adverse effects of spike proteins from SARS-CoV-2 and mRNA vaccines. Biomedicines 2023; 11:451 [View Article] [PubMed]
    [Google Scholar]
  81. Zou X, Chen K, Zou J, Han P, Hao J et al. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med 2020; 14:185–192 [View Article] [PubMed]
    [Google Scholar]
  82. Sun R, Ma C, Wang W, Yang S. Upregulation of desmoglein 2 and its clinical value in lung adenocarcinoma: a comprehensive analysis by multiple bioinformatics methods. PeerJ 2020; 8:e8420 [View Article] [PubMed]
    [Google Scholar]
  83. Burkard N, Meir M, Kannapin F, Otto C, Petzke M et al. Desmoglein2 regulates claudin2 expression by sequestering PI-3-kinase in intestinal epithelial cells. Front Immunol 2021; 12:756321 [View Article] [PubMed]
    [Google Scholar]
  84. Tavazzi G, Pellegrini C, Maurelli M, Belliato M, Sciutti F et al. Myocardial localization of coronavirus in COVID-19 cardiogenic shock. Eur J Heart Fail 2020; 22:911–915 [View Article] [PubMed]
    [Google Scholar]
  85. Strimbu K, Tavel JA. What are biomarkers?. Curr Opin HIV AIDS 2010; 5:463–466 [View Article] [PubMed]
    [Google Scholar]
  86. Ponti G, Maccaferri M, Ruini C, Tomasi A, Ozben T. Biomarkers associated with COVID-19 disease progression. Crit Rev Clin Lab Sci 2020; 57:389–399 [View Article]
    [Google Scholar]
  87. FDA-NIH Biomarker Working Group BEST (Biomarkers, EndpointS, and other Tools) resource. In Silver Spring (MD): Food and Drug Administration (US) Bethesda (MD): National Institutes of Health(US); 2016 [PubMed]
    [Google Scholar]
  88. Califf RM. Biomarker definitions and their applications. Exp Biol Med 2018; 243:213–221 [View Article]
    [Google Scholar]
  89. Bivona G, Agnello L, Ciaccio M. Biomarkers for prognosis and treatment response in COVID-19 patients. Ann Lab Med 2021; 41:540–548 [View Article] [PubMed]
    [Google Scholar]
  90. Liu T, Zhang J, Yang Y, Ma H, Li Z et al. The role of interleukin-6 in monitoring severe case of coronavirus disease 2019. EMBO Mol Med 2020; 12:e12421 [View Article] [PubMed]
    [Google Scholar]
  91. Tan L, Wang Q, Zhang D, Ding J, Huang Q et al. Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Signal Transduct Target Ther 2020; 5:61 [View Article] [PubMed]
    [Google Scholar]
  92. Wang D, Hu B, Hu C, Zhu F, Liu X et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020; 323:1061–1069 [View Article] [PubMed]
    [Google Scholar]
  93. Jain KK. Biomarkers of infectious diseases. In The Handbook of Biomarkers 2017 pp 219–238 [View Article]
    [Google Scholar]
  94. Bavishi C, Bonow RO, Trivedi V, Abbott JD, Messerli FH et al. Special article - acute myocardial injury in patients hospitalized with COVID-19 infection: a review. Prog Cardiovasc Dis 2020; 63:682–689 [View Article] [PubMed]
    [Google Scholar]
  95. Shi S, Qin M, Shen B, Cai Y, Liu T et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol 2020; 5:802 [View Article]
    [Google Scholar]
  96. Aboughdir M, Kirwin T, Abdul Khader A, Wang B. Prognostic value of cardiovascular biomarkers in COVID-19: a review. Viruses 2020; 12:527 [View Article]
    [Google Scholar]
  97. Cheng Y, Luo R, Wang K, Zhang M, Wang Z et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int 2020; 97:829–838 [View Article] [PubMed]
    [Google Scholar]
  98. Kaszak I, Witkowska-Piłaszewicz O, Niewiadomska Z, Dworecka-Kaszak B, Ngosa Toka F et al. Role of cadherins in cancer-a review. Int J Mol Sci 2020; 21:7624 [View Article] [PubMed]
    [Google Scholar]
  99. Amagai M, Stanley JR. Desmoglein as a target in skin disease and beyond. J Invest Dermatol 2012; 132:776–784 [View Article] [PubMed]
    [Google Scholar]
  100. Hartlieb E, Kempf B, Partilla M, Vigh B, Spindler V et al. Desmoglein 2 is less important than desmoglein 3 for keratinocyte cohesion. PLoS One 2013; 8:e53739 [View Article] [PubMed]
    [Google Scholar]
  101. Kim J, Beidler P, Wang H, Li C, Quassab A et al. Desmoglein-2 as a prognostic and biomarker in ovarian cancer. Cancer Biol Ther 2020; 21:1154–1162 [View Article] [PubMed]
    [Google Scholar]
  102. Denning MF, Guy SG, Ellerbroek SM, Norvell SM, Kowalczyk AP et al. The expression of desmoglein isoforms in cultured human keratinocytes is regulated by calcium, serum, and protein kinase C. Exp Cell Res 1998; 239:50–59 [View Article] [PubMed]
    [Google Scholar]
  103. Qadri S, Anttonen O, Viikilä J, Seppälä EH, Myllykangas S et al. Case reports of two pedigrees with recessive arrhythmogenic right ventricular cardiomyopathy associated with homozygous Thr335Ala variant in DSG2. BMC Med Genet 2017; 18:86 [View Article] [PubMed]
    [Google Scholar]
  104. Zhou BX, Li Y. Significance of desmoglein-2 on cell malignant behaviors via mediating MAPK signaling in cervical cancer. Kaohsiung J Med Sci 2020; 36:336–343 [View Article] [PubMed]
    [Google Scholar]
  105. Liu Y-Q, Chu L-Y, Yang T, Zhang B, Zheng Z-T et al. Serum DSG2 as a potential biomarker for diagnosis of esophageal squamous cell carcinoma and esophagogastric junction adenocarcinoma. Biosci Rep 2022; 42:BSR20212612 [View Article]
    [Google Scholar]
  106. Walker AL, Li RHL, Nguyen N, Jauregui CE, Meurs KM et al. Evaluation of autoantibodies to desmoglein-2 in dogs with and without cardiac disease. Sci Rep 2023; 13:5044 [View Article] [PubMed]
    [Google Scholar]
  107. Miguel MCB, Julio TA, Vernal S, de Paula NA, Lieber A et al. Autoantibodies against desmoglein 2 are not pathogenic in pemphigus. Anais Brasileiros de Dermatologia 2022; 97:145–156 [View Article]
    [Google Scholar]
  108. Stege NM, de Boer RA, van den Berg MP, Silljé HHW. The time has come to explore plasma biomarkers in genetic cardiomyopathies. IJMS 2021; 22:2955 [View Article]
    [Google Scholar]
  109. Giannitsis E, Katus HA. Cardiac troponin level elevations not related to acute coronary syndromes. Nat Rev Cardiol 2013; 10:623–634 [View Article] [PubMed]
    [Google Scholar]
  110. Lippi G, Favaloro EJ, Kavsak P. Measurement of high-sensitivity cardiac troponin in pulmonary embolism: useful test or a clinical distraction. Semin Thromb Hemost 2019; 45:784–792 [View Article]
    [Google Scholar]
  111. Wilhelm J, Hettwer S, Schuermann M, Bagger S, Gerhardt F et al. Elevated troponin in septic patients in the emergency department: frequency, causes, and prognostic implications. Clin Res Cardiol 2014; 103:561–567 [View Article] [PubMed]
    [Google Scholar]
  112. Raman B, Bluemke DA, Lüscher TF, Neubauer S. Long COVID: post-acute sequelae of COVID-19 with a cardiovascular focus. Eur Heart J 2022; 43:1157–1172 [View Article] [PubMed]
    [Google Scholar]
  113. Richter AG, Shields AM, Karim A, Birch D, Faustini SE et al. Establishing the prevalence of common tissue-specific autoantibodies following severe acute respiratory syndrome coronavirus 2 infection. Clin Exp Immunol 2021; 205:99–105 [View Article] [PubMed]
    [Google Scholar]
  114. Almamlouk R, Kashour T, Obeidat S, Bois MC, Maleszewski JJ et al. COVID-19-Associated cardiac pathology at the postmortem evaluation: a collaborative systematic review. Clin Microbiol Infect 2022; 28:1066–1075 [View Article]
    [Google Scholar]
  115. Hanson SW, Abbafati C, Aerts JG, Al-Aly Z, Ashbaugh C et al. A global systematic analysis of the occurrence, severity, and recovery pattern of long COVID in 2020 and 2021. medRxiv 20222022.05.26.22275532 [View Article]
    [Google Scholar]
  116. Park J, Lee NG, Oh M, Song J, Kim W et al. Selective elimination of human pluripotent stem cells by Anti-Dsg2 antibody-doxorubicin conjugates. Biomaterials 2020; 259:120265 [View Article] [PubMed]
    [Google Scholar]
  117. Agyeman AA, Chin KL, Landersdorfer CB, Liew D, Ofori-Asenso R. Smell and taste dysfunction in patients With COVID-19: a systematic review and meta-analysis. Mayo Clin Proc 2020; 95:1621–1631 [View Article]
    [Google Scholar]
  118. Schäfer S, Koch PJ, Franke WW. Identification of the ubiquitous human desmoglein, Dsg2, and the expression catalogue of the desmoglein subfamily of desmosomal cadherins. Exp Cell Res 1994; 211:391–399 [View Article] [PubMed]
    [Google Scholar]
  119. Dhama K, Latheef SK, Dadar M, Samad HA, Munjal A et al. Biomarkers in stress related diseases/disorders: diagnostic, prognostic, and therapeutic values. Front Mol Biosci 2019; 6:91 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.001902
Loading
/content/journal/jgv/10.1099/jgv.0.001902
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error