1887

Abstract

Persistent infection with high-risk human papillomaviruses (HR-HPVs) is the causal factor in over 99 % of cervical cancer cases, and a significant proportion of oropharyngeal and anogenital cancers. The key drivers of HPV-mediated transformation are the oncoproteins E5, E6 and E7. Together, they act to prolong cell-cycle progression, delay differentiation and inhibit apoptosis in the host keratinocyte cell in order to generate an environment permissive for viral replication. The oncoproteins also have key roles in mediating evasion of the host immune response, enabling infection to persist. Moreover, prolonged infection within the cellular environment established by the HR-HPV oncoproteins can lead to the acquisition of host genetic mutations, eventually culminating in transformation to malignancy. In this review, we outline the many ways in which the HR-HPV oncoproteins manipulate the host cellular environment, focusing on how these activities can contribute to carcinogenesis.

Keyword(s): HPV , oncoprotein , keratinocyte , signalling and cancer
Funding
This study was supported by the:
  • MollyR. Patterson , Biotechnology and Biological Sciences Research Council , (Award BB/M011151/1)
  • EthanL. Morgan , Wellcome Trust , (Award 204825/Z/16/Z)
  • AndrewMacdonald , Medical Research Council , (Award MR/S001697/1)
  • AndrewMacdonald , Medical Research Council , (Award MR/ K012665)
Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.001540
2021-01-11
2021-03-02
Loading full text...

Full text loading...

/deliver/fulltext/jgv/10.1099/jgv.0.001540/jgv001540.html?itemId=/content/journal/jgv/10.1099/jgv.0.001540&mimeType=html&fmt=ahah

References

  1. Doorbar J, Egawa N, Griffin H, Kranjec C, Murakami I. Human papillomavirus molecular biology and disease association. Rev Med Virol 2015; 25 Suppl 1: 2 23 [CrossRef] [PubMed]
    [Google Scholar]
  2. Van Doorslaer K, Li Z, Xirasagar S, Maes P, Kaminsky D et al. The papillomavirus Episteme: a major update to the papillomavirus sequence database. Nucleic Acids Res 2017; 45: D499 D506 [CrossRef] [PubMed]
    [Google Scholar]
  3. PaVE The papillomavirus episteme. Available from: pave.niaid.nih.gov .
  4. Cubie HA. Diseases associated with human papillomavirus infection. Virology 2013; 445: 21 34 [CrossRef] [PubMed]
    [Google Scholar]
  5. Durst M, Gissmann L, Ikenberg H, zur Hausen H. A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proc Natl Acad Sci U S A 1983; 80: 3812 3815 [CrossRef] [PubMed]
    [Google Scholar]
  6. Stanley M. Pathology and epidemiology of HPV infection in females. Gynecol Oncol 2010; 117: S5 S10 [CrossRef] [PubMed]
    [Google Scholar]
  7. Munoz N, Bosch FX, de Sanjose S, Herrero R, Castellsague X et al. International agency for research on cancer multicenter cervical cancer study G. epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med 2003; 348: 518 527
    [Google Scholar]
  8. Graham SV. The human papillomavirus replication cycle, and its links to cancer progression: a comprehensive review. Clin Sci 2017; 131: 2201 2221 [CrossRef] [PubMed]
    [Google Scholar]
  9. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68: 394 424 [CrossRef] [PubMed]
    [Google Scholar]
  10. de Martel C, Plummer M, Vignat J, Franceschi S. Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int J Cancer 2017; 141: 664 670 [CrossRef] [PubMed]
    [Google Scholar]
  11. Moody CA, Laimins LA. Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer 2010; 10: 550 560 [CrossRef] [PubMed]
    [Google Scholar]
  12. Munger K, Werness BA, Dyson N, Phelps WC, Harlow E et al. Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. Embo J 1989; 8: 4099 4105 [CrossRef] [PubMed]
    [Google Scholar]
  13. Dyson N, Howley PM, Munger K, Harlow E. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 1989; 243: 934 937 [CrossRef] [PubMed]
    [Google Scholar]
  14. Dyson N, Guida P, Munger K, Harlow E. Homologous sequences in adenovirus E1A and human papillomavirus E7 proteins mediate interaction with the same set of cellular proteins. J Virol 1992; 66: 6893 6902 [CrossRef] [PubMed]
    [Google Scholar]
  15. Boyer SN, Wazer DE, Band V. E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway. Cancer Res 1996; 56: 4620 4624 [PubMed]
    [Google Scholar]
  16. Gonzalez SL, Stremlau M, He X, Basile JR, Munger K. Degradation of the retinoblastoma tumor suppressor by the human papillomavirus type 16 E7 oncoprotein is important for functional inactivation and is separable from proteasomal degradation of E7. J Virol 2001; 75: 7583 7591 [CrossRef] [PubMed]
    [Google Scholar]
  17. Huibregtse JM, Scheffner M, Howley PM. A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. Embo J 1991; 10: 4129 4135 [CrossRef] [PubMed]
    [Google Scholar]
  18. Scheffner M, Huibregtse JM, Vierstra RD, Howley PM. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 1993; 75: 495 505 [CrossRef] [PubMed]
    [Google Scholar]
  19. He C, Mao D, Hua G, Lv X, Chen X et al. The Hippo/YAP pathway interacts with EGFR signaling and HPV oncoproteins to regulate cervical cancer progression. EMBO Mol Med 2015; 7: 1426 1449 [CrossRef] [PubMed]
    [Google Scholar]
  20. Morgan EL, Wasson CW, Hanson L, Kealy D, Pentland I et al. Stat3 activation by E6 is essential for the differentiation-dependent HPV18 life cycle. PLoS Pathog 2018; 14: e1006975 [CrossRef] [PubMed]
    [Google Scholar]
  21. Morgan EL, Macdonald A. Autocrine STAT3 activation in HPV positive cervical cancer through a virus-driven Rac1-NFκB-IL-6 signalling axis. PLoS Pathog 2019; 15: e1007835 [CrossRef] [PubMed]
    [Google Scholar]
  22. Leechanachai P, Banks L, Moreau F, Matlashewski G. The E5 gene from human papillomavirus type 16 is an oncogene which enhances growth factor-mediated signal transduction to the nucleus. Oncogene 1992; 7: 19 25 [PubMed]
    [Google Scholar]
  23. Pim D, Collins M, Banks L. Human papillomavirus type 16 E5 gene stimulates the transforming activity of the epidermal growth factor receptor. Oncogene 1992; 7: 27 32 [PubMed]
    [Google Scholar]
  24. Straight SW, Hinkle PM, Jewers RJ, McCance DJ. The E5 oncoprotein of human papillomavirus type 16 transforms fibroblasts and effects the downregulation of the epidermal growth factor receptor in keratinocytes. J Virol 1993; 67: 4521 4532 [CrossRef] [PubMed]
    [Google Scholar]
  25. Smotkin D, Wettstein FO. Transcription of human papillomavirus type 16 early genes in a cervical cancer and a cancer-derived cell line and identification of the E7 protein. Proc Natl Acad Sci U S A 1986; 83: 4680 4684 [CrossRef] [PubMed]
    [Google Scholar]
  26. Grassmann K, Rapp B, Maschek H, Petry KU, Iftner T. Identification of a differentiation-inducible promoter in the E7 open reading frame of human papillomavirus type 16 (HPV-16) in raft cultures of a new cell line containing high copy numbers of episomal HPV-16 DNA. J Virol 1996; 70: 2339 2349 [CrossRef] [PubMed]
    [Google Scholar]
  27. Zheng ZM, Baker CC. Papillomavirus genome structure, expression, and post-transcriptional regulation. Front Biosci 2006; 11: 2286 2302 [CrossRef] [PubMed]
    [Google Scholar]
  28. Herfs M, Yamamoto Y, Laury A, Wang X, Nucci MR et al. A discrete population of squamocolumnar junction cells implicated in the pathogenesis of cervical cancer. Proc Natl Acad Sci U S A 2012; 109: 10516 10521 [CrossRef] [PubMed]
    [Google Scholar]
  29. Giroglou T, Florin L, Schafer F, Streeck RE, Sapp M. Human papillomavirus infection requires cell surface heparan sulfate. J Virol 2001; 75: 1565 1570 [CrossRef] [PubMed]
    [Google Scholar]
  30. Aksoy P, Gottschalk EY, Meneses PI. Hpv entry into cells. Mutat Res Rev Mutat Res 2017; 772: 13 22 [CrossRef] [PubMed]
    [Google Scholar]
  31. Schelhaas M, Shah B, Holzer M, Blattmann P, Kuhling L et al. Entry of human papillomavirus type 16 by actin-dependent, clathrin- and lipid raft-independent endocytosis. PLoS Pathog 2012; 8: e1002657 [CrossRef] [PubMed]
    [Google Scholar]
  32. Day PM, Thompson CD, Schowalter RM, Lowy DR, Schiller JT. Identification of a role for the trans-Golgi network in human papillomavirus 16 pseudovirus infection. J Virol 2013; 87: 3862 3870 [CrossRef] [PubMed]
    [Google Scholar]
  33. Bienkowska-Haba M, Williams C, Kim SM, Garcea RL, Sapp M. Cyclophilins facilitate dissociation of the human papillomavirus type 16 capsid protein L1 from the L2/DNA complex following virus entry. J Virol 2012; 86: 9875 9887 [CrossRef] [PubMed]
    [Google Scholar]
  34. DiGiuseppe S, Bienkowska-Haba M, Hilbig L, Sapp M. The nuclear retention signal of HPV16 L2 protein is essential for incoming viral genome to transverse the trans-Golgi network. Virology 2014; 458-459: 93 105 [CrossRef] [PubMed]
    [Google Scholar]
  35. Popa A, Zhang W, Harrison MS, Goodner K, Kazakov T et al. Direct binding of retromer to human papillomavirus type 16 minor capsid protein L2 mediates endosome exit during viral infection. PLoS Pathog 2015; 11: e1004699 [CrossRef] [PubMed]
    [Google Scholar]
  36. Lipovsky A, Popa A, Pimienta G, Wyler M, Bhan A et al. Genome-Wide siRNA screen identifies the retromer as a cellular entry factor for human papillomavirus. Proc Natl Acad Sci U S A 2013; 110: 7452 7457 [CrossRef] [PubMed]
    [Google Scholar]
  37. Zhang P, Monteiro da Silva G, Deatherage C, Burd C, DiMaio D. Cell-Penetrating Peptide Mediates Intracellular Membrane Passage of Human Papillomavirus L2 Protein to Trigger Retrograde Trafficking. Cell 2018; 174: e13 1465 1476 [CrossRef] [PubMed]
    [Google Scholar]
  38. Pyeon D, Pearce SM, Lank SM, Ahlquist P, Lambert PF. Establishment of human papillomavirus infection requires cell cycle progression. PLoS Pathog 2009; 5: e1000318 [CrossRef] [PubMed]
    [Google Scholar]
  39. Aydin I, Weber S, Snijder B, Samperio Ventayol P, Kuhbacher A et al. Large scale RNAi reveals the requirement of nuclear envelope breakdown for nuclear import of human papillomaviruses. PLoS Pathog 2014; 10: e1004162 [CrossRef] [PubMed]
    [Google Scholar]
  40. Aydin I, Villalonga-Planells R, Greune L, Bronnimann MP, Calton CM et al. A central region in the minor capsid protein of papillomaviruses facilitates viral genome tethering and membrane penetration for mitotic nuclear entry. PLoS Pathog 2017; 13: e1006308 [CrossRef] [PubMed]
    [Google Scholar]
  41. Bergvall M, Melendy T, Archambault J. The E1 proteins. Virology 2013; 445: 35 56 [CrossRef] [PubMed]
    [Google Scholar]
  42. McBride AA. The papillomavirus E2 proteins. Virology 2013; 445: 57 79 [CrossRef] [PubMed]
    [Google Scholar]
  43. Romanczuk H, Thierry F, Howley PM. Mutational analysis of cis elements involved in E2 modulation of human papillomavirus type 16 p97 and type 18 p105 promoters. J Virol 1990; 64: 2849 2859 [CrossRef] [PubMed]
    [Google Scholar]
  44. Wang HK, Duffy AA, Broker TR, Chow LT. Robust production and passaging of infectious HPV in squamous epithelium of primary human keratinocytes. Genes Dev 2009; 23: 181 194 [CrossRef] [PubMed]
    [Google Scholar]
  45. Banerjee NS, Wang HK, Broker TR, Chow LT. Human papillomavirus (HPV) E7 induces prolonged G2 following S phase reentry in differentiated human keratinocytes. J Biol Chem 2011; 286: 15473 15482 [CrossRef] [PubMed]
    [Google Scholar]
  46. Cerqueira C, Schiller JT. Papillomavirus assembly: an overview and perspectives. Virus Res 2017; 231: 103 107 [CrossRef] [PubMed]
    [Google Scholar]
  47. Jeon S, Allen-Hoffmann BL, Lambert PF. Integration of human papillomavirus type 16 into the human genome correlates with a selective growth advantage of cells. J Virol 1995; 69: 2989 2997 [CrossRef] [PubMed]
    [Google Scholar]
  48. McBride AA, Warburton A. The role of integration in oncogenic progression of HPV-associated cancers. PLoS Pathog 2017; 13: e1006211 [CrossRef] [PubMed]
    [Google Scholar]
  49. Cancer Genome Atlas Network Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 2015; 517: 576 582 [CrossRef] [PubMed]
    [Google Scholar]
  50. Cancer Genome Atlas Research Network Albert Einstein College of Medicine Analytical Biological Services Barretos Cancer Hospital Baylor College of Medicine et al. Integrated genomic and molecular characterization of cervical cancer. Nature 2017; 543: 378 384 [CrossRef] [PubMed]
    [Google Scholar]
  51. Leung TW, Liu SS, Leung RC, Chu MM, Cheung AN et al. Hpv 16 E2 binding sites 1 and 2 become more methylated than E2 binding site 4 during cervical carcinogenesis. J Med Virol 2015; 87: 1022 1033 [CrossRef] [PubMed]
    [Google Scholar]
  52. Jeon S, Lambert PF. Integration of human papillomavirus type 16 DNA into the human genome leads to increased stability of E6 and E7 mRNAs: implications for cervical carcinogenesis. Proc Natl Acad Sci U S A 1995; 92: 1654 1658 [CrossRef] [PubMed]
    [Google Scholar]
  53. Müller M, Prescott EL, Wasson CW, Macdonald A. Human papillomavirus E5 oncoprotein: function and potential target for antiviral therapeutics. Future Virol 2015; 10: 27 39 [CrossRef]
    [Google Scholar]
  54. Conrad M, Bubb VJ, Schlegel R. The human papillomavirus type 6 and 16 E5 proteins are membrane-associated proteins which associate with the 16-kilodalton pore-forming protein. J Virol 1993; 67: 6170 6178 [CrossRef] [PubMed]
    [Google Scholar]
  55. Gieswein CE, Sharom FJ, Wildeman AG. Oligomerization of the E5 protein of human papillomavirus type 16 occurs through multiple hydrophobic regions. Virology 2003; 313: 415 426 [CrossRef] [PubMed]
    [Google Scholar]
  56. Wasson CW, Morgan EL, Muller M, Ross RL, Hartley M et al. Human papillomavirus type 18 E5 oncogene supports cell cycle progression and impairs epithelial differentiation by modulating growth factor receptor signalling during the virus life cycle. Oncotarget 2017; 8: 103581 103600 [CrossRef] [PubMed]
    [Google Scholar]
  57. Genther SM, Sterling S, Duensing S, Munger K, Sattler C et al. Quantitative role of the human papillomavirus type 16 E5 gene during the productive stage of the viral life cycle. J Virol 2003; 77: 2832 2842 [CrossRef] [PubMed]
    [Google Scholar]
  58. Fehrmann F, Klumpp DJ, Laimins LA. Human papillomavirus type 31 E5 protein supports cell cycle progression and activates late viral functions upon epithelial differentiation. J Virol 2003; 77: 2819 2831 [CrossRef] [PubMed]
    [Google Scholar]
  59. Leptak C, Ramon y Cajal S, Kulke R, Riese DJ, Riese DJ et al. Tumorigenic transformation of murine keratinocytes by the E5 genes of bovine papillomavirus type 1 and human papillomavirus type 16. J Virol 1991; 65: 7078 7083 [CrossRef] [PubMed]
    [Google Scholar]
  60. Goldstein DJ, Andresson T, Sparkowski JJ, Schlegel R. The BPV-1 E5 protein, the 16 kDa membrane pore-forming protein and the PDGF receptor exist in a complex that is dependent on hydrophobic transmembrane interactions. Embo J 1992; 11: 4851 4859 [CrossRef] [PubMed]
    [Google Scholar]
  61. Riese DJ, DiMaio D. An intact PDGF signaling pathway is required for efficient growth transformation of mouse C127 cells by the bovine papillomavirus E5 protein. Oncogene 1995; 10: 1431 1439 [PubMed]
    [Google Scholar]
  62. Karabadzhak AG, Petti LM, Barrera FN, Edwards APB, Moya-Rodriguez A et al. Two transmembrane dimers of the bovine papillomavirus E5 oncoprotein clamp the PDGF β receptor in an active dimeric conformation. Proc Natl Acad Sci U S A 2017; 114: E7262 E7271 [CrossRef] [PubMed]
    [Google Scholar]
  63. DiMaio D, Petti LM. The E5 proteins. Virology 2013; 445: 99 114 [CrossRef] [PubMed]
    [Google Scholar]
  64. Maufort JP, Williams SM, Pitot HC, Lambert PF. Human papillomavirus 16 E5 oncogene contributes to two stages of skin carcinogenesis. Cancer Res 2007; 67: 6106 6112 [CrossRef] [PubMed]
    [Google Scholar]
  65. Bouvard V, Matlashewski G, Gu ZM, Storey A, Banks L. The human papillomavirus type 16 E5 gene cooperates with the E7 gene to stimulate proliferation of primary cells and increases viral gene expression. Virology 1994; 203: 73 80 [CrossRef] [PubMed]
    [Google Scholar]
  66. Valle GF, Banks L. The human papillomavirus (HPV)-6 and HPV-16 E5 proteins co-operate with HPV-16 E7 in the transformation of primary rodent cells. J Gen Virol 1995; 76 (Pt 5: 1239 1245 [CrossRef] [PubMed]
    [Google Scholar]
  67. Maufort JP, Shai A, Pitot HC, Lambert PF. A role for HPV16 E5 in cervical carcinogenesis. Cancer Res 2010; 70: 2924 2931 [CrossRef] [PubMed]
    [Google Scholar]
  68. Chen SL, Lin ST, Tsai TC, Hsiao WC, Tsao Y-P, ErbB TYP. ErbB4 (JM-b/CYT-1)-induced expression and phosphorylation of c-Jun is abrogated by human papillomavirus type 16 E5 protein. Oncogene 2007; 26: 42 53 [CrossRef] [PubMed]
    [Google Scholar]
  69. Genther Williams SM, Disbrow GL, Schlegel R, Lee D, Threadgill DW et al. Requirement of epidermal growth factor receptor for hyperplasia induced by E5, a high-risk human papillomavirus oncogene. Cancer Res 2005; 65: 6534 6542 [CrossRef] [PubMed]
    [Google Scholar]
  70. Scott ML, Coleman DT, Kelly KC, Carroll JL, Woodby B et al. Human papillomavirus type 16 E5-mediated upregulation of Met in human keratinocytes. Virology 2018; 519: 1 11 [CrossRef] [PubMed]
    [Google Scholar]
  71. Straight SW, Herman B, McCance DJ. The E5 oncoprotein of human papillomavirus type 16 inhibits the acidification of endosomes in human keratinocytes. J Virol 1995; 69: 3185 3192 [CrossRef] [PubMed]
    [Google Scholar]
  72. Rodríguez MI, Finbow ME, Alonso A. Binding of human papillomavirus 16 E5 to the 16 kDa subunit C (proteolipid) of the vacuolar H+-ATPase can be dissociated from the E5-mediated epidermal growth factor receptor overactivation. Oncogene 2000; 19: 3727 3732 [CrossRef] [PubMed]
    [Google Scholar]
  73. Suprynowicz FA, Krawczyk E, Hebert JD, Sudarshan SR, Simic V et al. The human papillomavirus type 16 E5 oncoprotein inhibits epidermal growth factor trafficking independently of endosome acidification. J Virol 2010; 84: 10619 10629 [CrossRef] [PubMed]
    [Google Scholar]
  74. Hwang ES, Nottoli T, Dimaio D. The HPV16 E5 protein: expression, detection, and stable complex formation with transmembrane proteins in COS cells. Virology 1995; 211: 227 233 [CrossRef] [PubMed]
    [Google Scholar]
  75. Zhang B, Srirangam A, Potter DA, Roman A. Hpv16 E5 protein disrupts the c-Cbl-EGFR interaction and EGFR ubiquitination in human foreskin keratinocytes. Oncogene 2005; 24: 2585 2588 [CrossRef] [PubMed]
    [Google Scholar]
  76. Wetherill LF, Holmes KK, Verow M, Müller M, Howell G et al. High-Risk human papillomavirus E5 oncoprotein displays channel-forming activity sensitive to small-molecule inhibitors. J Virol 2012; 86: 5341 5351 [CrossRef] [PubMed]
    [Google Scholar]
  77. Royle J, Dobson SJ, Müller M, Macdonald A. Emerging roles of viroporins encoded by DNA viruses: novel targets for antivirals?. Viruses 2015; 7: 5375 5387 [CrossRef] [PubMed]
    [Google Scholar]
  78. Wetherill LF, Wasson CW, Swinscoe G, Kealy D, Foster R et al. Alkyl-imino sugars inhibit the pro-oncogenic ion channel function of human papillomavirus (HPV) E5. Antiviral Res 2018; 158: 113 121 [CrossRef] [PubMed]
    [Google Scholar]
  79. Belleudi F, Leone L, Purpura V, Cannella F, Scrofani C et al. Hpv16 E5 affects the KGFR/FGFR2b-mediated epithelial growth through alteration of the receptor expression, signaling and endocytic traffic. Oncogene 2011; 30: 4963 4976 [CrossRef] [PubMed]
    [Google Scholar]
  80. Ranieri D, Belleudi F, Magenta A, Torrisi MR. Hpv16 E5 expression induces switching from FGFR2b to FGFR2c and epithelial-mesenchymal transition. Int J Cancer 2015; 137: 61 72 [CrossRef] [PubMed]
    [Google Scholar]
  81. Chen SL, Huang CH, Tsai TC, Lu KY, Tsao YP. The regulation mechanism of c-Jun and junB by human papillomavirus type 16 E5 oncoprotein. Arch Virol 1996; 141: 791 800 [CrossRef] [PubMed]
    [Google Scholar]
  82. Crusius K, Auvinen E, Alonso A. Enhancement of EGF- and PMA-mediated MAP kinase activation in cells expressing the human papillomavirus type 16 E5 protein. Oncogene 1997; 15: 1437 1444 [CrossRef] [PubMed]
    [Google Scholar]
  83. Tsao YP, Li LY, Tsai TC, Chen SL. Human papillomavirus type 11 and 16 E5 represses p21(WafI/SdiI/CipI) gene expression in fibroblasts and keratinocytes. J Virol 1996; 70: 7535 7539 [CrossRef] [PubMed]
    [Google Scholar]
  84. Pedroza-Saavedra A, Lam EW, Esquivel-Guadarrama F, Gutierrez-Xicotencatl L. The human papillomavirus type 16 E5 oncoprotein synergizes with EGF-receptor signaling to enhance cell cycle progression and the down-regulation of p27(Kip1). Virology 2010; 400: 44 52 [CrossRef] [PubMed]
    [Google Scholar]
  85. Oh J-M, Kim S-H, Cho E-A, Song Y-S, Kim W-H et al. Human papillomavirus type 16 E5 protein inhibits hydrogen-peroxide-induced apoptosis by stimulating ubiquitin-proteasome-mediated degradation of Bax in human cervical cancer cells. Carcinogenesis 2010; 31: 402 410 [CrossRef] [PubMed]
    [Google Scholar]
  86. Kabsch K, Mossadegh N, Kohl A, Komposch G, Schenkel J et al. The HPV-16 E5 protein inhibits TRAIL- and FasL-mediated apoptosis in human keratinocyte raft cultures. Intervirology 2004; 47: 48 56 [CrossRef] [PubMed]
    [Google Scholar]
  87. Zhang B, Spandau DF, Roman A. E5 protein of human papillomavirus type 16 protects human foreskin keratinocytes from UV B-irradiation-induced apoptosis. J Virol 2002; 76: 220 231 [CrossRef] [PubMed]
    [Google Scholar]
  88. Gruener M, Bravo IG, Momburg F, Alonso A, Tomakidi P. The E5 protein of the human papillomavirus type 16 down-regulates HLA-I surface expression in calnexin-expressing but not in calnexin-deficient cells. Virol J 2007; 4: 116 [CrossRef] [PubMed]
    [Google Scholar]
  89. Ashrafi GH, Haghshenas MR, Marchetti B, O'Brien PM, Campo MS. E5 protein of human papillomavirus type 16 selectively downregulates surface HLA class I. Int J Cancer 2005; 113: 276 283 [CrossRef] [PubMed]
    [Google Scholar]
  90. Campo MS, Graham SV, Cortese MS, Ashrafi GH, Araibi EH et al. Hpv-16 E5 down-regulates expression of surface HLA class I and reduces recognition by CD8 T cells. Virology 2010; 407: 137 142 [CrossRef] [PubMed]
    [Google Scholar]
  91. Zhang B, Li P, Wang E, Brahmi Z, Dunn KW et al. The E5 protein of human papillomavirus type 16 perturbs MHC class II antigen maturation in human foreskin keratinocytes treated with interferon-gamma. Virology 2003; 310: 100 108 [CrossRef] [PubMed]
    [Google Scholar]
  92. Miura S, Kawana K, Schust DJ, Fujii T, Yokoyama T et al. Cd1D, a sentinel molecule bridging innate and adaptive immunity, is downregulated by the human papillomavirus (HPV) E5 protein: a possible mechanism for immune evasion by HPV. J Virol 2010; 84: 11614 11623 [CrossRef] [PubMed]
    [Google Scholar]
  93. Cortese MS, Ashrafi GH, Campo MS. All 4 di-leucine motifs in the first hydrophobic domain of the E5 oncoprotein of human papillomavirus type 16 are essential for surface MHC class I downregulation activity and E5 endomembrane localization. Int J Cancer 2010; 126: 1675 1682 [CrossRef] [PubMed]
    [Google Scholar]
  94. Ashrafi GH, Haghshenas M, Marchetti B, Campo MS. E5 protein of human papillomavirus 16 downregulates HLA class I and interacts with the heavy chain via its first hydrophobic domain. Int J Cancer 2006; 119: 2105 2112 [CrossRef] [PubMed]
    [Google Scholar]
  95. Kotnik Halavaty K, Regan J, Mehta K, Laimins L. Human papillomavirus E5 oncoproteins bind the A4 endoplasmic reticulum protein to regulate proliferative ability upon differentiation. Virology 2014; 452-453: 223 230 [CrossRef] [PubMed]
    [Google Scholar]
  96. Regan JA, Laimins LA. Bap31 is a novel target of the human papillomavirus E5 protein. J Virol 2008; 82: 10042 10051 [CrossRef] [PubMed]
    [Google Scholar]
  97. Scott ML, Woodby BL, Ulicny J, Raikhy G, Orr AW et al. Human papillomavirus 16 E5 inhibits interferon signaling and supports episomal viral maintenance. J Virol 2020; 94: 06 01 2020 [CrossRef] [PubMed]
    [Google Scholar]
  98. Miyauchi S, Sanders PD, Guram K, Kim SS, Paolini F et al. Hpv16 E5 mediates resistance to PD-L1 blockade and can be targeted with rimantadine in head and neck cancer. Cancer Res 2020; 80: 732 746 [CrossRef] [PubMed]
    [Google Scholar]
  99. Schwarz E, Freese UK, Gissmann L, Mayer W, Roggenbuck B et al. Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature 1985; 314: 111 114 [CrossRef] [PubMed]
    [Google Scholar]
  100. Band V, De Caprio JA, Delmolino L, Kulesa V, Sager R. Loss of p53 protein in human papillomavirus type 16 E6-immortalized human mammary epithelial cells. J Virol 1991; 65: 6671 6676 [CrossRef] [PubMed]
    [Google Scholar]
  101. Liu Z, Ghai J, Ostrow RS, McGlennen RC, Faras AJ. The E6 gene of human papillomavirus type 16 is sufficient for transformation of baby rat kidney cells in cotransfection with activated Ha-ras. Virology 1994; 201: 388 396 [CrossRef] [PubMed]
    [Google Scholar]
  102. Halbert CL, Demers GW, Galloway DA. The E7 gene of human papillomavirus type 16 is sufficient for immortalization of human epithelial cells. J Virol 1991; 65: 473 478 [CrossRef] [PubMed]
    [Google Scholar]
  103. Song S, Liem A, Miller JA, Lambert PF. Human papillomavirus types 16 E6 and E7 contribute differently to carcinogenesis. Virology 2000; 267: 141 150 [CrossRef] [PubMed]
    [Google Scholar]
  104. Münger K, Phelps WC, Bubb V, Howley PM, Schlegel R. The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J Virol 1989; 63: 4417 4421 [CrossRef] [PubMed]
    [Google Scholar]
  105. Howie HL, Katzenellenbogen RA, Galloway DA. Papillomavirus E6 proteins. Virology 2009; 384: 324 334 [CrossRef] [PubMed]
    [Google Scholar]
  106. Nominé Y, Masson M, Charbonnier S, Zanier K, Ristriani T et al. Structural and functional analysis of E6 oncoprotein: insights in the molecular pathways of human papillomavirus-mediated pathogenesis. Mol Cell 2006; 21: 665 678 [CrossRef] [PubMed]
    [Google Scholar]
  107. Zanier K ould. M'hamed ould Sidi a, Boulade-Ladame C, Rybin V, Chappelle a, Atkinson a, Kieffer B, Trave G. solution structure analysis of the HPV16 E6 oncoprotein reveals a self-association mechanism required for E6-mediated degradation of p53. Structure 2012; 20: 604 617
    [Google Scholar]
  108. Ganti K, Broniarczyk J, Manoubi W, Massimi P, Mittal S et al. The human papillomavirus E6 PDZ binding motif: from life cycle to malignancy. Viruses 2015; 7: 3530 3551 [CrossRef] [PubMed]
    [Google Scholar]
  109. Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 1990; 63: 1129 1136 [CrossRef] [PubMed]
    [Google Scholar]
  110. Bieging KT, Mello SS, Attardi LD. Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer 2014; 14: 359 370 [CrossRef] [PubMed]
    [Google Scholar]
  111. Patel D, Huang SM, Baglia LA, McCance DJ. The E6 protein of human papillomavirus type 16 binds to and inhibits co-activation by CBP and p300. Embo J 1999; 18: 5061 5072 [CrossRef] [PubMed]
    [Google Scholar]
  112. Zimmermann H, Degenkolbe R, Bernard HU, O'Connor MJ. The human papillomavirus type 16 E6 oncoprotein can down-regulate p53 activity by targeting the transcriptional coactivator CBP/p300. J Virol 1999; 73: 6209 6219 [CrossRef] [PubMed]
    [Google Scholar]
  113. Kumar A, Zhao Y, Meng G, Zeng M, Srinivasan S et al. Human papillomavirus oncoprotein E6 inactivates the transcriptional coactivator human ADA3. Mol Cell Biol 2002; 22: 5801 5812 [CrossRef] [PubMed]
    [Google Scholar]
  114. Lechner MS, Laimins LA. Inhibition of p53 DNA binding by human papillomavirus E6 proteins. J Virol 1994; 68: 4262 4273 [CrossRef] [PubMed]
    [Google Scholar]
  115. Thomas M, Banks L. Inhibition of Bak-induced apoptosis by HPV-18 E6. Oncogene 1998; 17: 2943 2954 [CrossRef] [PubMed]
    [Google Scholar]
  116. Thomas M, Banks L. Human papillomavirus (HPV) E6 interactions with Bak are conserved amongst E6 proteins from high and low risk HPV types. J Gen Virol 1999; 80 (Pt 6: 1513 1517 [CrossRef] [PubMed]
    [Google Scholar]
  117. Filippova M, Parkhurst L, Duerksen-Hughes PJ. The human papillomavirus 16 E6 protein binds to Fas-associated death domain and protects cells from Fas-triggered apoptosis. J Biol Chem 2004; 279: 25729 25744 [CrossRef] [PubMed]
    [Google Scholar]
  118. Garnett TO, Filippova M, Duerksen-Hughes PJ. Accelerated degradation of FADD and procaspase 8 in cells expressing human papilloma virus 16 E6 impairs TRAIL-mediated apoptosis. Cell Death Differ 2006; 13: 1915 1926 [CrossRef] [PubMed]
    [Google Scholar]
  119. Filippova M, Song H, Connolly JL, Dermody TS, Duerksen-Hughes PJ. The human papillomavirus 16 E6 protein binds to tumor necrosis factor (TNF) R1 and protects cells from TNF-induced apoptosis. J Biol Chem 2002; 277: 21730 21739 [CrossRef] [PubMed]
    [Google Scholar]
  120. Vande Pol SB, Klingelhutz AJ. Papillomavirus E6 oncoproteins. Virology 2013; 445: 115 137 [CrossRef] [PubMed]
    [Google Scholar]
  121. Liu Y, Chen JJ, Gao Q, Dalal S, Hong Y et al. Multiple functions of human papillomavirus type 16 E6 contribute to the immortalization of mammary epithelial cells. J Virol 1999; 73: 7297 7307 [CrossRef] [PubMed]
    [Google Scholar]
  122. Nguyen ML, Nguyen MM, Lee D, Griep AE, Lambert PF. The PDZ ligand domain of the human papillomavirus type 16 E6 protein is required for E6's induction of epithelial hyperplasia in vivo. J Virol 2003; 77: 6957 6964 [CrossRef] [PubMed]
    [Google Scholar]
  123. Gardiol D, Kühne C, Glaunsinger B, Lee SS, Javier R et al. Oncogenic human papillomavirus E6 proteins target the discs large tumour suppressor for proteasome-mediated degradation. Oncogene 1999; 18: 5487 5496 [CrossRef] [PubMed]
    [Google Scholar]
  124. Nakagawa S, Huibregtse JM. Human scribble (Vartul) is targeted for ubiquitin-mediated degradation by the high-risk papillomavirus E6 proteins and the E6AP ubiquitin-protein ligase. Mol Cell Biol 2000; 20: 8244 8253 [CrossRef] [PubMed]
    [Google Scholar]
  125. Glaunsinger BA, Lee SS, Thomas M, Banks L, Javier R. Interactions of the PDZ-protein MAGI-1 with adenovirus E4-ORF1 and high-risk papillomavirus E6 oncoproteins. Oncogene 2000; 19: 5270 5280 [CrossRef] [PubMed]
    [Google Scholar]
  126. Thomas M, Laura R, Hepner K, Guccione E, Sawyers C et al. Oncogenic human papillomavirus E6 proteins target the MAGI-2 and MAGI-3 proteins for degradation. Oncogene 2002; 21: 5088 5096 [CrossRef] [PubMed]
    [Google Scholar]
  127. Kiyono T, Hiraiwa A, Fujita M, Hayashi Y, Akiyama T et al. Binding of high-risk human papillomavirus E6 oncoproteins to the human homologue of the Drosophila discs large tumor suppressor protein. Proc Natl Acad Sci U S A 1997; 94: 11612 11616 [CrossRef] [PubMed]
    [Google Scholar]
  128. Lee SS, Weiss RS, Javier RT. Binding of human virus oncoproteins to hDlg/SAP97, a mammalian homolog of the Drosophila discs large tumor suppressor protein. Proc Natl Acad Sci U S A 1997; 94: 6670 6675 [CrossRef] [PubMed]
    [Google Scholar]
  129. Ganti K, Massimi P, Manzo-Merino J, Tomaić V, Pim D et al. Interaction of the human papillomavirus E6 oncoprotein with sorting nexin 27 modulates endocytic cargo transport pathways. PLoS Pathog 2016; 12: e1005854 [CrossRef] [PubMed]
    [Google Scholar]
  130. Morgan EL, Scarth JA, Patterson MR, Wasson CW, Hemingway GC et al. E6-Mediated activation of JNK drives EGFR signalling to promote proliferation and viral oncoprotein expression in cervical cancer. Cell Death Differ 2020 10 Dec 2020 [CrossRef] [PubMed]
    [Google Scholar]
  131. Banks L, Pim D, Thomas M. Human tumour viruses and the deregulation of cell polarity in cancer. Nat Rev Cancer 2012; 12: 877 886 [CrossRef] [PubMed]
    [Google Scholar]
  132. Thomas M, Myers MP, Massimi P, Guarnaccia C, Banks L. Analysis of multiple HPV E6 PDZ interactions defines type-specific PDZ fingerprints that predict oncogenic potential. PLoS Pathog 2016; 12: e1005766 [CrossRef] [PubMed]
    [Google Scholar]
  133. Boon SS, Banks L. High-Risk human papillomavirus E6 oncoproteins interact with 14-3-3ζ in a PDZ binding motif-dependent manner. J Virol 2013; 87: 1586 1595 [CrossRef] [PubMed]
    [Google Scholar]
  134. Katzenellenbogen R. Telomerase induction in HPV infection and oncogenesis. Viruses 2017; 9: 180 [CrossRef] [PubMed]
    [Google Scholar]
  135. Klingelhutz AJ, Foster SA, McDougall JK. Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature 1996; 380: 79 82 [CrossRef] [PubMed]
    [Google Scholar]
  136. Veldman T, Horikawa I, Barrett JC, Schlegel R. Transcriptional activation of the telomerase hTERT gene by human papillomavirus type 16 E6 oncoprotein. J Virol 2001; 75: 4467 4472 [CrossRef] [PubMed]
    [Google Scholar]
  137. Van Doorslaer K, Burk RD. Association between hTERT activation by HPV E6 proteins and oncogenic risk. Virology 2012; 433: 216 219 [CrossRef] [PubMed]
    [Google Scholar]
  138. Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene 2017; 36: 1461 1473 [CrossRef] [PubMed]
    [Google Scholar]
  139. Bonilla-Delgado J, Bulut G, Liu X, Cortés-Malagón EM, Schlegel R et al. The E6 oncoprotein from HPV16 enhances the canonical Wnt/β-catenin pathway in skin epidermis in vivo. Mol Cancer Res 2012; 10: 250 258 [CrossRef] [PubMed]
    [Google Scholar]
  140. Sominsky S, Kuslansky Y, Shapiro B, Jackman A, Haupt Y et al. Hpv16 E6 and E6AP differentially cooperate to stimulate or augment Wnt signaling. Virology 2014; 468-470: 510 523 [CrossRef] [PubMed]
    [Google Scholar]
  141. Drews CM, Case S, Vande Pol SB. E6 proteins from high-risk HPV, low-risk HPV, and animal papillomaviruses activate the Wnt/β-catenin pathway through E6AP-dependent degradation of NHERF1. PLoS Pathog 2019; 15: e1007575 [CrossRef] [PubMed]
    [Google Scholar]
  142. Chen PM, Cheng YW, Wang YC, Wu T-C, Chen C-Y et al. Up-Regulation of FoxM1 by E6 oncoprotein through the MZF1/NKX2-1 axis is required for human papillomavirus-associated tumorigenesis. Neoplasia 2014; 16: 961 971 [CrossRef] [PubMed]
    [Google Scholar]
  143. Rampias T, Boutati E, Pectasides E, Sasaki C, Kountourakis P et al. Activation of Wnt signaling pathway by human papillomavirus E6 and E7 oncogenes in HPV16-positive oropharyngeal squamous carcinoma cells. Mol Cancer Res 2010; 8: 433 443 [CrossRef] [PubMed]
    [Google Scholar]
  144. Bray SJ. Notch signalling in context. Nat Rev Mol Cell Biol 2016; 17: 722 735 [CrossRef] [PubMed]
    [Google Scholar]
  145. Ntziachristos P, Lim JS, Sage J, Aifantis I. From fly wings to targeted cancer therapies: a centennial for Notch signaling. Cancer Cell 2014; 25: 318 334 [CrossRef] [PubMed]
    [Google Scholar]
  146. Zagouras P, Stifani S, Blaumueller CM, Carcangiu ML, Artavanis-Tsakonas S. Alterations in Notch signaling in neoplastic lesions of the human cervix. Proc Natl Acad Sci U S A 1995; 92: 6414 6418 [CrossRef] [PubMed]
    [Google Scholar]
  147. Vliet-Gregg PA, Hamilton JR, Katzenellenbogen RA. NFX1-123 and human papillomavirus 16E6 increase Notch expression in keratinocytes. J Virol 2013; 87: 13741 13750 [CrossRef] [PubMed]
    [Google Scholar]
  148. Sun W, Gaykalova DA, Ochs MF, Mambo E, Arnaoutakis D et al. Activation of the Notch pathway in head and neck cancer. Cancer Res 2014; 74: 1091 1104 [CrossRef] [PubMed]
    [Google Scholar]
  149. Talora C, Sgroi DC, Crum CP, Dotto GP. Specific down-modulation of Notch1 signaling in cervical cancer cells is required for sustained HPV-E6/E7 expression and late steps of malignant transformation. Genes Dev 2002; 16: 2252 2263 [CrossRef] [PubMed]
    [Google Scholar]
  150. Porta C, Paglino C, Mosca A. Targeting PI3K/Akt/mTOR signaling in cancer. Front Oncol 2014; 4: 64 [CrossRef] [PubMed]
    [Google Scholar]
  151. Contreras-Paredes A, De la Cruz-Hernández E, Martínez-Ramírez I, Dueñas-González A, Lizano M. E6 variants of human papillomavirus 18 differentially modulate the protein kinase B/phosphatidylinositol 3-kinase (akt/PI3K) signaling pathway. Virology 2009; 383: 78 85 [CrossRef] [PubMed]
    [Google Scholar]
  152. Adey NB, Huang L, Ormonde PA, Baumgard ML, Pero R et al. Threonine phosphorylation of the MMAC1/PTEN PDZ binding domain both inhibits and stimulates PDZ binding. Cancer Res 2000; 60: 35 37 [PubMed]
    [Google Scholar]
  153. Takahashi Y, Morales FC, Kreimann EL, Georgescu MM. Pten tumor suppressor associates with NHERF proteins to attenuate PDGF receptor signaling. Embo J 2006; 25: 910 920 [CrossRef] [PubMed]
    [Google Scholar]
  154. Accardi R, Rubino R, Scalise M, Gheit T, Shahzad N et al. E6 and E7 from human papillomavirus type 16 cooperate to target the PDZ protein Na/H exchange regulatory factor 1. J Virol 2011; 85: 8208 8216 [CrossRef] [PubMed]
    [Google Scholar]
  155. Lu Z, Hu X, Li Y, Zheng L, Zhou Y et al. Human papillomavirus 16 E6 oncoprotein interferences with insulin signaling pathway by binding to tuberin. J Biol Chem 2004; 279: 35664 35670 [CrossRef] [PubMed]
    [Google Scholar]
  156. Zheng L, Ding H, Lu Z, Li Y, Pan Y et al. E3 ubiquitin ligase E6AP-mediated TSC2 turnover in the presence and absence of HPV16 E6. Genes Cells 2008; 13: 285 294 [CrossRef] [PubMed]
    [Google Scholar]
  157. Spangle JM, Münger K. The human papillomavirus type 16 E6 oncoprotein activates mTORC1 signaling and increases protein synthesis. J Virol 2010; 84: 9398 9407 [CrossRef] [PubMed]
    [Google Scholar]
  158. Spangle JM, Munger K. The HPV16 E6 oncoprotein causes prolonged receptor protein tyrosine kinase signaling and enhances internalization of phosphorylated receptor species. PLoS Pathog 2013; 9: e1003237 [CrossRef] [PubMed]
    [Google Scholar]
  159. Moroishi T, Hansen CG, Guan KL. The emerging roles of YAP and TAZ in cancer. Nat Rev Cancer 2015; 15: 73 79 [CrossRef] [PubMed]
    [Google Scholar]
  160. Webb Strickland S, Brimer N, Lyons C, Vande Pol SB. Human papillomavirus E6 interaction with cellular PDZ domain proteins modulates YAP nuclear localization. Virology 2018; 516: 127 138 [CrossRef] [PubMed]
    [Google Scholar]
  161. He C, Lv X, Huang C, Angeletti PC, Hua G et al. A human Papillomavirus-Independent cervical cancer animal model reveals unconventional mechanisms of cervical carcinogenesis. Cell Rep 2019; 26: 2636 2650 [CrossRef] [PubMed]
    [Google Scholar]
  162. Morgan EL, Patterson MR, Ryder EL, Lee SY, Wasson CW et al. MicroRNA-18a targeting of the STK4/MST1 tumour suppressor is necessary for transformation in HPV positive cervical cancer. PLoS Pathog 2020; 16: e1008624 [CrossRef] [PubMed]
    [Google Scholar]
  163. Thomas SJ, Snowden JA, Zeidler MP, Danson SJ. The role of JAK/STAT signalling in the pathogenesis, prognosis and treatment of solid tumours. Br J Cancer 2015; 113: 365 371 [CrossRef] [PubMed]
    [Google Scholar]
  164. Morgan EL, Macdonald A. Manipulation of JAK/STAT signalling by high-risk HPVs: potential therapeutic targets for HPV-associated malignancies. Viruses 2020; 12: 977 [CrossRef] [PubMed]
    [Google Scholar]
  165. Morgan EL, Macdonald A. Jak2 inhibition impairs proliferation and sensitises cervical cancer cells to cisplatin-induced cell death. Cancers 2019; 11: 1934 [CrossRef] [PubMed]
    [Google Scholar]
  166. Ronco LV, Karpova AY, Vidal M, Howley PM. Human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity. Genes Dev 1998; 12: 2061 2072 [CrossRef] [PubMed]
    [Google Scholar]
  167. Li S, Labrecque S, Gauzzi MC, Cuddihy AR, Wong AH et al. The human papilloma virus (HPV)-18 E6 oncoprotein physically associates with Tyk2 and impairs Jak-STAT activation by interferon-alpha. Oncogene 1999; 18: 5727 5737 [CrossRef] [PubMed]
    [Google Scholar]
  168. Chiang C, Pauli EK, Biryukov J, Feister KF, Meng M et al. The human papillomavirus E6 oncoprotein targets USP15 and TRIM25 to suppress RIG-I-mediated innate immune signaling. J Virol 2018; 92: 15 03 2018 [CrossRef] [PubMed]
    [Google Scholar]
  169. Reiser J, Hurst J, Voges M, Krauss P, Münch P et al. High-Risk human papillomaviruses repress constitutive kappa interferon transcription via E6 to prevent pathogen recognition receptor and antiviral-gene expression. J Virol 2011; 85: 11372 11380 [CrossRef] [PubMed]
    [Google Scholar]
  170. Zhao S. Specific type epigenetic changes in cervical cancers. In Verma M. editor Methods in Molecular Biology (Methods and Protocols) , Cancer Epigenetics. New York, NY: 1238: Humana Press; 2015 pp 733 749
    [Google Scholar]
  171. Leonard SM, Wei W, Collins SI, Pereira M, Diyaf A et al. Oncogenic human papillomavirus imposes an instructive pattern of DNA methylation changes which parallel the natural history of cervical HPV infection in young women. Carcinogenesis 2012; 33: 1286 1293 [CrossRef] [PubMed]
    [Google Scholar]
  172. Au Yeung CL, Tsang WP, Tsang TY, Co NN, Yau PL et al. Hpv-16 E6 upregulation of DNMT1 through repression of tumor suppressor p53. Oncol Rep 2010; 24: 1599 1604 [CrossRef] [PubMed]
    [Google Scholar]
  173. Lin RK, Wu C-Y, Chang J-W, Juan L-J, Hsu H-S et al. Dysregulation of p53/Sp1 control leads to DNA methyltransferase-1 overexpression in lung cancer. Cancer Res 2010; 70: 5807 5817 [CrossRef] [PubMed]
    [Google Scholar]
  174. Yanatatsaneejit P, Chalertpet K, Sukbhattee J, Nuchcharoen I, Phumcharoen P et al. Promoter methylation of tumor suppressor genes induced by human papillomavirus in cervical cancer. Oncol Lett 2020; 20: 955 961 [CrossRef] [PubMed]
    [Google Scholar]
  175. Hsu CH, Peng KL, Jhang HC, Lin CH, Wu S-Y. The HPV E6 oncoprotein targets histone methyltransferases for modulating specific gene transcription. Oncogene 2012; 31: 2335 2349 [CrossRef] [PubMed]
    [Google Scholar]
  176. Tornesello ML, Faraonio R, Buonaguro L, Annunziata C, Starita N et al. The role of microRNAs, long non-coding RNAs, and circular RNAs in cervical cancer. Front Oncol 2020; 10: 150 [CrossRef] [PubMed]
    [Google Scholar]
  177. Gebert LFR, MacRae IJ. Regulation of microRNA function in animals. Nat Rev Mol Cell Biol 2019; 20: 21 37 [CrossRef] [PubMed]
    [Google Scholar]
  178. Wang X, Wang HK, McCoy JP, Banerjee NS, Rader JS et al. Oncogenic HPV infection interrupts the expression of tumor-suppressive miR-34a through viral oncoprotein E6. RNA 2009; 15: 637 647 [CrossRef] [PubMed]
    [Google Scholar]
  179. Martinez I, Gardiner AS, Board KF, Monzon FA, Edwards RP et al. Human papillomavirus type 16 reduces the expression of microRNA-218 in cervical carcinoma cells. Oncogene 2008; 27: 2575 2582 [CrossRef] [PubMed]
    [Google Scholar]
  180. Cheng Y, Geng L, Zhao L, Zuo P, Wang J. Human papillomavirus E6-regulated microRNA-20b promotes invasion in cervical cancer by targeting tissue inhibitor of metalloproteinase 2. Mol Med Rep 2017; 16: 5464 5470 [CrossRef] [PubMed]
    [Google Scholar]
  181. Liu X. Up-Regulation of miR-20a by HPV16 E6 exerts growth-promoting effects by targeting PDCD6 in cervical carcinoma cells. Biomed Pharmacother 2018; 102: 996 1002 [CrossRef] [PubMed]
    [Google Scholar]
  182. Marchese FP, Raimondi I, Huarte M. The multidimensional mechanisms of long noncoding RNA function. Genome Biol 2017; 18: 206 [CrossRef] [PubMed]
    [Google Scholar]
  183. Yang M, Zhai X, Xia B, Wang Y, Lou G. Long noncoding RNA CCHE1 promotes cervical cancer cell proliferation via upregulating PCNA. Tumour Biol 2015; 36: 7615 7622 [CrossRef] [PubMed]
    [Google Scholar]
  184. Sharma S, Munger K. Expression of the cervical carcinoma expressed PCNA regulatory (CCEPR) long noncoding RNA is driven by the human papillomavirus E6 protein and modulates cell proliferation independent of PCNA. Virology 2018; 518: 8 13 [CrossRef] [PubMed]
    [Google Scholar]
  185. Barr JA, Hayes KE, Brownmiller T, Harold AD, Jagannathan R et al. Long non-coding RNA FAM83H-AS1 is regulated by human papillomavirus 16 E6 independently of p53 in cervical cancer cells. Sci Rep 2019; 9: 3662 [CrossRef] [PubMed]
    [Google Scholar]
  186. McLaughlin-Drubin ME, Münger K. The human papillomavirus E7 oncoprotein. Virology 2009; 384: 335 344 [CrossRef] [PubMed]
    [Google Scholar]
  187. Jabbar SF, Park S, Schweizer J, Berard-Bergery M, Pitot HC et al. Cervical cancers require the continuous expression of the human papillomavirus type 16 E7 oncoprotein even in the presence of the viral E6 oncoprotein. Cancer Res 2012; 72: 4008 4016 [CrossRef] [PubMed]
    [Google Scholar]
  188. Mirabello L, Yeager M, Yu K, Clifford GM, Xiao Y et al. Hpv16 E7 genetic conservation is critical to carcinogenesis. Cell 2017; 170: 1164 1174 [CrossRef] [PubMed]
    [Google Scholar]
  189. Phelps WC, Yee CL, Münger K, Howley PM. The human papillomavirus type 16 E7 gene encodes transactivation and transformation functions similar to those of adenovirus E1A. Cell 1988; 53: 539 547 [CrossRef] [PubMed]
    [Google Scholar]
  190. Barbosa MS, Edmonds C, Fisher C, Schiller JT, Lowy DR et al. The region of the HPV E7 oncoprotein homologous to adenovirus E1A and SV40 large T antigen contains separate domains for Rb binding and casein kinase II phosphorylation. Embo J 1990; 9: 153 160 [CrossRef] [PubMed]
    [Google Scholar]
  191. Firzlaff JM, Galloway DA, Eisenman RN, Lüscher B. The E7 protein of human papillomavirus type 16 is phosphorylated by casein kinase II. New Biol 1989; 1: 44 53 [PubMed]
    [Google Scholar]
  192. Knapp AA, McManus PM, Bockstall K, Moroianu J. Identification of the nuclear localization and export signals of high risk HPV16 E7 oncoprotein. Virology 2009; 383: 60 68 [CrossRef] [PubMed]
    [Google Scholar]
  193. Chen HZ, Tsai SY, Leone G. Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat Rev Cancer 2009; 9: 785 797 [CrossRef] [PubMed]
    [Google Scholar]
  194. Todorovic B, Hung K, Massimi P, Avvakumov N, Dick FA et al. Conserved region 3 of human papillomavirus 16 E7 contributes to deregulation of the retinoblastoma tumor suppressor. J Virol 2012; 86: 13313 13323 [CrossRef] [PubMed]
    [Google Scholar]
  195. Nor Rashid N, Yusof R, Watson RJ. Disruption of repressive p130-DREAM complexes by human papillomavirus 16 E6/E7 oncoproteins is required for cell-cycle progression in cervical cancer cells. J Gen Virol 2011; 92: 2620 2627 [CrossRef] [PubMed]
    [Google Scholar]
  196. Chien WM, Parker JN, Schmidt-Grimminger DC, Broker TR, Chow LT. Casein kinase II phosphorylation of the human papillomavirus-18 E7 protein is critical for promoting S-phase entry. Cell Growth Differ 2000; 11: 425 435 [PubMed]
    [Google Scholar]
  197. Genovese NJ, Banerjee NS, Broker TR, Chow LT. Casein kinase II motif-dependent phosphorylation of human papillomavirus E7 protein promotes p130 degradation and S-phase induction in differentiated human keratinocytes. J Virol 2008; 82: 4862 4873 [CrossRef] [PubMed]
    [Google Scholar]
  198. Huh K, Zhou X, Hayakawa H, Cho JY, Libermann TA et al. Human papillomavirus type 16 E7 oncoprotein associates with the cullin 2 ubiquitin ligase complex, which contributes to degradation of the retinoblastoma tumor suppressor. J Virol 2007; 81: 9737 9747 [CrossRef] [PubMed]
    [Google Scholar]
  199. White EA, Sowa ME, Tan MJ, Jeudy S, Hayes SD et al. Systematic identification of interactions between host cell proteins and E7 oncoproteins from diverse human papillomaviruses. Proc Natl Acad Sci U S A 2012; 109: E260 E267 [CrossRef] [PubMed]
    [Google Scholar]
  200. Darnell GA, Schroder WA, Antalis TM, Lambley E, Major L et al. Human papillomavirus E7 requires the protease calpain to degrade the retinoblastoma protein. J Biol Chem 2007; 282: 37492 37500 [CrossRef] [PubMed]
    [Google Scholar]
  201. Tomita T, Huibregtse JM, Matouschek A. A masked initiation region in retinoblastoma protein regulates its proteasomal degradation. Nat Commun 2020; 11: 2019 [CrossRef] [PubMed]
    [Google Scholar]
  202. Zhang B, Chen W, Roman A. The E7 proteins of low- and high-risk human papillomaviruses share the ability to target the pRB family member p130 for degradation. Proc Natl Acad Sci U S A 2006; 103: 437 442 [CrossRef] [PubMed]
    [Google Scholar]
  203. Hwang SG, Lee D, Kim J, Seo T, Choe J. Human papillomavirus type 16 E7 binds to E2F1 and activates E2F1-driven transcription in a retinoblastoma protein-independent manner. J Biol Chem 2002; 277: 2923 2930 [CrossRef] [PubMed]
    [Google Scholar]
  204. Lyons TE, Salih M, Tuana BS. Activating E2Fs mediate transcriptional regulation of human E2F6 repressor. Am J Physiol Cell Physiol 2006; 290: C189 C199 [CrossRef] [PubMed]
    [Google Scholar]
  205. Attwooll C, Oddi S, Cartwright P, Prosperini E, Agger K et al. A novel repressive E2F6 complex containing the polycomb group protein, EPC1, that interacts with EZH2 in a proliferation-specific manner. J Biol Chem 2005; 280: 1199 1208 [CrossRef] [PubMed]
    [Google Scholar]
  206. McLaughlin-Drubin ME, Huh KW, Münger K. Human papillomavirus type 16 E7 oncoprotein associates with E2F6. J Virol 2008; 82: 8695 8705 [CrossRef] [PubMed]
    [Google Scholar]
  207. Nguyen CL, Münger K. Direct association of the HPV16 E7 oncoprotein with cyclin A/Cdk2 and cyclin E/CDK2 complexes. Virology 2008; 380: 21 25 [CrossRef] [PubMed]
    [Google Scholar]
  208. Zerfass K, Schulze A, Spitkovsky D, Friedman V, Henglein B et al. Sequential activation of cyclin E and cyclin a gene expression by human papillomavirus type 16 E7 through sequences necessary for transformation. J Virol 1995; 69: 6389 6399 [CrossRef] [PubMed]
    [Google Scholar]
  209. Zerfass-Thome K, Zwerschke W, Mannhardt B, Tindle R, Botz JW et al. Inactivation of the CDK inhibitor p27Kip1 by the human papillomavirus type 16 E7 oncoprotein. Oncogene 1996; 13: 2323 2330 [PubMed]
    [Google Scholar]
  210. Funk JO, Waga S, Harry JB, Espling E, Stillman B et al. Inhibition of CDK activity and PCNA-dependent DNA replication by p21 is blocked by interaction with the HPV-16 E7 oncoprotein. Genes Dev 1997; 11: 2090 2100 [CrossRef] [PubMed]
    [Google Scholar]
  211. Jones DL, Alani RM, Münger K. The human papillomavirus E7 oncoprotein can uncouple cellular differentiation and proliferation in human keratinocytes by abrogating p21Cip1-mediated inhibition of Cdk2. Genes Dev 1997; 11: 2101 2111 [CrossRef] [PubMed]
    [Google Scholar]
  212. White EA, Münger K, Howley PM. High-Risk human papillomavirus E7 proteins target PTPN14 for degradation. mBio 2016; 7: e01530-16 20 09 2016 [CrossRef] [PubMed]
    [Google Scholar]
  213. Szalmás A, Tomaić V, Basukala O, Massimi P, Mittal S et al. The PTPN14 tumor suppressor is a degradation target of human papillomavirus E7. J Virol 2017; 91: [CrossRef] [PubMed]
    [Google Scholar]
  214. Hatterschide J, Bohidar AE, Grace M, Nulton TJ, Kim HW et al. PTPN14 degradation by high-risk human papillomavirus E7 limits keratinocyte differentiation and contributes to HPV-mediated oncogenesis. Proc Natl Acad Sci U S A 2019; 116: 7033 7042 [CrossRef] [PubMed]
    [Google Scholar]
  215. Yun HY, Kim MW, Lee HS, Kim W, Shin JH et al. Structural basis for recognition of the tumor suppressor protein PTPN14 by the oncoprotein E7 of human papillomavirus. PLoS Biol 2019; 17: e3000367 [CrossRef] [PubMed]
    [Google Scholar]
  216. Pietenpol JA, Stein RW, Moran E, Yaciuk P, Schlegel R et al. Tgf-Beta 1 inhibition of c-myc transcription and growth in keratinocytes is abrogated by viral transforming proteins with pRB binding domains. Cell 1990; 61: 777 785 [CrossRef] [PubMed]
    [Google Scholar]
  217. Lee DK, Kim BC, Kim IY, Cho EA, Satterwhite DJ et al. The human papilloma virus E7 oncoprotein inhibits transforming growth factor-beta signaling by blocking binding of the Smad complex to its target sequence. J Biol Chem 2002; 277: 38557 38564 [CrossRef] [PubMed]
    [Google Scholar]
  218. James CD, Fontan CT, Otoa R, Das D, Prabhakar AT et al. Human papillomavirus 16 E6 and E7 synergistically repress innate immune gene transcription. mSphere 2020; 5: e00828-19 [CrossRef] [PubMed]
    [Google Scholar]
  219. Lau L, Gray EE, Brunette RL, Stetson DB. DNA tumor virus oncogenes antagonize the cGAS-STING DNA-sensing pathway. Science 2015; 350: 568 571 [CrossRef] [PubMed]
    [Google Scholar]
  220. Lo Cigno I, Calati F, Borgogna C, Zevini A, Albertini S et al. Human papillomavirus E7 oncoprotein subverts host innate immunity via SUV39H1-Mediated epigenetic silencing of immune sensor genes. J Virol 2020; 94: [CrossRef] [PubMed]
    [Google Scholar]
  221. Wu L, Cao J, Cai WL, Lang SM, Horton JR et al. KDM5 histone demethylases repress immune response via suppression of sting. PLoS Biol 2018; 16: e2006134 [CrossRef] [PubMed]
    [Google Scholar]
  222. Hasan UA, Zannetti C, Parroche P, Goutagny N, Malfroy M et al. The human papillomavirus type 16 E7 oncoprotein induces a transcriptional repressor complex on the Toll-like receptor 9 promoter. J Exp Med 2013; 210: 1369 1387 [CrossRef] [PubMed]
    [Google Scholar]
  223. Richards KH, Wasson CW, Watherston O, Doble R, Eric Blair G et al. The human papillomavirus (HPV) E7 protein antagonises an imiquimod-induced inflammatory pathway in primary human keratinocytes. Sci Rep 2015; 5: 12922 [CrossRef] [PubMed]
    [Google Scholar]
  224. Richards KH, Doble R, Wasson CW, Haider M, Blair GE et al. Human papillomavirus E7 oncoprotein increases production of the anti-inflammatory interleukin-18 binding protein in keratinocytes. J Virol 2014; 88: 4173 4179 [CrossRef] [PubMed]
    [Google Scholar]
  225. Barnard P, McMillan NA. The human papillomavirus E7 oncoprotein abrogates signaling mediated by interferon-alpha. Virology 1999; 259: 305 313 [CrossRef] [PubMed]
    [Google Scholar]
  226. Park JS, Kim EJ, Kwon HJ, Hwang ES, Namkoong SE et al. Inactivation of interferon regulatory factor-1 tumor suppressor protein by HPV E7 oncoprotein. Implication for the E7-mediated immune evasion mechanism in cervical carcinogenesis. J Biol Chem 2000; 275: 6764 6769 [CrossRef] [PubMed]
    [Google Scholar]
  227. Bergot AS, Ford N, Leggatt GR, Wells JW, Frazer IH et al. Hpv16-E7 expression in squamous epithelium creates a local immune suppressive environment via CCL2- and CCL5- mediated recruitment of mast cells. PLoS Pathog 2014; 10: e1004466 [CrossRef] [PubMed]
    [Google Scholar]
  228. Cicchini L, Westrich JA, Xu T, Vermeer DW, Berger JN et al. Suppression of antitumor immune responses by human papillomavirus through epigenetic downregulation of Cxcl14. mBio 2016; 7: e00270-16 [CrossRef] [PubMed]
    [Google Scholar]
  229. Bottley G, Watherston OG, Hiew YL, Norrild B, Cook GP et al. High-Risk human papillomavirus E7 expression reduces cell-surface MHC class I molecules and increases susceptibility to natural killer cells. Oncogene 2008; 27: 1794 1799 [CrossRef] [PubMed]
    [Google Scholar]
  230. Korzeniewski N, Spardy N, Duensing A, Duensing S. Genomic instability and cancer: lessons learned from human papillomaviruses. Cancer Lett 2011; 305: 113 122 [CrossRef] [PubMed]
    [Google Scholar]
  231. Bester AC, Roniger M, Oren YS, Im MM, Sarni D et al. Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell 2011; 145: 435 446 [CrossRef] [PubMed]
    [Google Scholar]
  232. Mehta K, Laimins L. Human papillomaviruses preferentially recruit DNA repair factors to viral genomes for rapid repair and amplification. mBio 2018; 9: e00064-18 [CrossRef] [PubMed]
    [Google Scholar]
  233. Moody CA, Laimins LA. Human papillomaviruses activate the ATM DNA damage pathway for viral genome amplification upon differentiation. PLoS Pathog 2009; 5: e1000605 [CrossRef] [PubMed]
    [Google Scholar]
  234. Hong S, Cheng S, Iovane A, Laimins LA. Stat-5 regulates transcription of the topoisomerase IIβ-Binding protein 1 (TopBP1) gene to activate the ATR pathway and promote human papillomavirus replication. mBio 2015; 6: e02006 02015 [CrossRef] [PubMed]
    [Google Scholar]
  235. Blackford AN, Jackson SP. Atm, ATR, and DNA-PK: the Trinity at the heart of the DNA damage response. Mol Cell 2017; 66: 801 817 [CrossRef] [PubMed]
    [Google Scholar]
  236. Hong S, Laimins LA. The JAK-STAT transcriptional regulator, STAT-5, activates the ATM DNA damage pathway to induce HPV 31 genome amplification upon epithelial differentiation. PLoS Pathog 2013; 9: e1003295 [CrossRef] [PubMed]
    [Google Scholar]
  237. Hong S, Dutta A, Laimins LA. The acetyltransferase Tip60 is a critical regulator of the differentiation-dependent amplification of human papillomaviruses. J Virol 2015; 89: 4668 4675 [CrossRef] [PubMed]
    [Google Scholar]
  238. Gillespie KA, Mehta KP, Laimins LA, Moody CA. Human papillomaviruses recruit cellular DNA repair and homologous recombination factors to viral replication centers. J Virol 2012; 86: 9520 9526 [CrossRef] [PubMed]
    [Google Scholar]
  239. Duensing S, Lee LY, Duensing A, Basile J, Piboonniyom S et al. The human papillomavirus type 16 E6 and E7 oncoproteins cooperate to induce mitotic defects and genomic instability by uncoupling centrosome duplication from the cell division cycle. Proc Natl Acad Sci U S A 2000; 97: 10002 10007 [CrossRef] [PubMed]
    [Google Scholar]
  240. Duensing S, Münger K. The human papillomavirus type 16 E6 and E7 oncoproteins independently induce numerical and structural chromosome instability. Cancer Res 2002; 62: 7075 7082 [PubMed]
    [Google Scholar]
  241. Nguyen CL, Eichwald C, Nibert ML, Münger K. Human papillomavirus type 16 E7 oncoprotein associates with the centrosomal component gamma-tubulin. J Virol 2007; 81: 13533 13543 [CrossRef] [PubMed]
    [Google Scholar]
  242. Paoli P, Giannoni E, Chiarugi P. Anoikis molecular pathways and its role in cancer progression. Biochim Biophys Acta 2013; 1833: 3481 3498 [CrossRef] [PubMed]
    [Google Scholar]
  243. DeMasi J, Huh KW, Nakatani Y, Münger K, Howley PM. Bovine papillomavirus E7 transformation function correlates with cellular p600 protein binding. Proc Natl Acad Sci U S A 2005; 102: 11486 11491 [CrossRef] [PubMed]
    [Google Scholar]
  244. DeMasi J, Chao MC, Kumar AS, Howley PM. Bovine papillomavirus E7 oncoprotein inhibits anoikis. J Virol 2007; 81: 9419 9425 [CrossRef] [PubMed]
    [Google Scholar]
  245. Huh KW, DeMasi J, Ogawa H, Nakatani Y, Howley PM et al. Association of the human papillomavirus type 16 E7 oncoprotein with the 600-kDa retinoblastoma protein-associated factor, p600. Proc Natl Acad Sci U S A 2005; 102: 11492 11497 [CrossRef] [PubMed]
    [Google Scholar]
  246. Burgers WA, Blanchon L, Pradhan S, de Launoit Y, Kouzarides T et al. Viral oncoproteins target the DNA methyltransferases. Oncogene 2007; 26: 1650 1655 [CrossRef] [PubMed]
    [Google Scholar]
  247. McLaughlin-Drubin ME, Crum CP, Münger K. Human papillomavirus E7 oncoprotein induces Kdm6a and KDM6B histone demethylase expression and causes epigenetic reprogramming. Proc Natl Acad Sci U S A 2011; 108: 2130 2135 [CrossRef] [PubMed]
    [Google Scholar]
  248. Gameiro SF, Kolendowski B, Zhang A, Barrett JW, Nichols AC et al. Human papillomavirus dysregulates the cellular apparatus controlling the methylation status of H3K27 in different human cancers to consistently alter gene expression regardless of tissue of origin. Oncotarget 2017; 8: 72564 72576 [CrossRef] [PubMed]
    [Google Scholar]
  249. Soto DR, Barton C, Munger K, McLaughlin-Drubin ME. Kdm6A addiction of cervical carcinoma cell lines is triggered by E7 and mediated by p21Cip1 suppression of replication stress. PLoS Pathog 2017; 13: e1006661 [CrossRef] [PubMed]
    [Google Scholar]
  250. Brehm A, Nielsen SJ, Miska EA, McCance DJ, Reid JL et al. The E7 oncoprotein associates with Mi2 and histone deacetylase activity to promote cell growth. Embo J 1999; 18: 2449 2458 [CrossRef] [PubMed]
    [Google Scholar]
  251. Longworth MS, Laimins LA. The binding of histone deacetylases and the integrity of zinc finger-like motifs of the E7 protein are essential for the life cycle of human papillomavirus type 31. J Virol 2004; 78: 3533 3541 [CrossRef] [PubMed]
    [Google Scholar]
  252. Longworth MS, Wilson R, Laimins LA. HPV31 E7 facilitates replication by activating E2F2 transcription through its interaction with HDACs. Embo J 2005; 24: 1821 1830 [CrossRef] [PubMed]
    [Google Scholar]
  253. Huang SM, McCance DJ. Down regulation of the interleukin-8 promoter by human papillomavirus type 16 E6 and E7 through effects on CREB binding protein/p300 and P/CAF. J Virol 2002; 76: 8710 8721 [CrossRef] [PubMed]
    [Google Scholar]
  254. Avvakumov N, Torchia J, Mymryk JS. Interaction of the HPV E7 proteins with the pCAF acetyltransferase. Oncogene 2003; 22: 3833 3841 [CrossRef] [PubMed]
    [Google Scholar]
  255. Bernat A, Avvakumov N, Mymryk JS, Banks L. Interaction between the HPV E7 oncoprotein and the transcriptional coactivator p300. Oncogene 2003; 22: 7871 7881 [CrossRef] [PubMed]
    [Google Scholar]
  256. Baldwin A, Huh KW, Münger K. Human papillomavirus E7 oncoprotein dysregulates steroid receptor coactivator 1 localization and function. J Virol 2006; 80: 6669 6677 [CrossRef] [PubMed]
    [Google Scholar]
  257. Yi R, Poy MN, Stoffel M, Fuchs E. A skin microRNA promotes differentiation by repressing 'stemness'. Nature 2008; 452: 225 229 [CrossRef] [PubMed]
    [Google Scholar]
  258. Melar-New M, Laimins LA. Human papillomaviruses modulate expression of microRNA 203 upon epithelial differentiation to control levels of p63 proteins. J Virol 2010; 84: 5212 5221 [CrossRef] [PubMed]
    [Google Scholar]
  259. Peta E, Sinigaglia A, Masi G, Di Camillo B, Grassi A et al. Hpv16 E6 and E7 upregulate the histone lysine demethylase KDM2B through the c-MYC/miR-146a-5p axys. Oncogene 2018; 37: 1654 1668 [CrossRef] [PubMed]
    [Google Scholar]
  260. Hong S, Cheng S, Songock W, Bodily J, Laimins LA. Suppression of microRNA 424 levels by human papillomaviruses is necessary for differentiation-dependent genome amplification. J Virol 2017; 91: [CrossRef] [PubMed]
    [Google Scholar]
  261. Li Q, Feng Y, Chao X, Shi S, Liang M et al. HOTAIR contributes to cell proliferation and metastasis of cervical cancer via targetting miR-23b/MAPK1 axis. Biosci Rep 2018; 38: [CrossRef] [PubMed]
    [Google Scholar]
  262. Sharma S, Mandal P, Sadhukhan T, Roy Chowdhury R, Ranjan Mondal N et al. Bridging links between long noncoding RNA HOTAIR and HPV oncoprotein E7 in cervical cancer pathogenesis. Sci Rep 2015; 5: 11724 [CrossRef] [PubMed]
    [Google Scholar]
  263. Sharma S, Munger K. The role of long noncoding RNAs in human papillomavirus-associated pathogenesis. Pathogens 2020; 9: 289 [CrossRef] [PubMed]
    [Google Scholar]
  264. Iancu IV, Anton G, Botezatu A, Huica I, Nastase A, Socolov DG et al. LINC01101 and LINC00277 expression levels as novel factors in HPV-induced cervical neoplasia. J Cell Mol Med 2017; 21: 3787 3794 [CrossRef] [PubMed]
    [Google Scholar]
  265. He H, Liu X, Liu Y, Zhang M, Lai Y et al. Human papillomavirus E6/E7 and long noncoding RNA TMPOP2 mutually upregulated gene expression in cervical cancer cells. J Virol 2019; 93: [CrossRef] [PubMed]
    [Google Scholar]
  266. Jiang Y, Li Y, Fang S, Jiang B, Qin C et al. The role of MALAT1 correlates with HPV in cervical cancer. Oncol Lett 2014; 7: 2135 2141 [CrossRef] [PubMed]
    [Google Scholar]
  267. Liang H, Zhang C, Guan H, Liu J, Cui Y. Lncrna DANCR promotes cervical cancer progression by upregulating ROCK1 via sponging miR-335-5p. J Cell Physiol 2019; 234: 7266 7278 [CrossRef] [PubMed]
    [Google Scholar]
  268. Hazawa M, Lin DC, Handral H, Xu L, Chen Y et al. ZNF750 is a lineage-specific tumour suppressor in squamous cell carcinoma. Oncogene 2017; 36: 2243 2254 [CrossRef] [PubMed]
    [Google Scholar]
  269. Harper KL, Mcdonnell E, Whitehouse A. Circrnas: from anonymity to novel regulators of gene expression in cancer (review). Int J Oncol 2019; 55: 1183 1193 [CrossRef] [PubMed]
    [Google Scholar]
  270. Zheng SR, Zhang HR, Zhang ZF, Lai SY, Huang LJ et al. Human papillomavirus 16 E7 oncoprotein alters the expression profiles of circular RNAs in CaSki cells. J Cancer 2018; 9: 3755 3764 [CrossRef] [PubMed]
    [Google Scholar]
  271. Wang H, Zhao Y, Chen M, Cui J. Identification of novel long non-coding and circular RNAs in human Papillomavirus-Mediated cervical cancer. Front Microbiol 2017; 8: 8 [CrossRef] [PubMed]
    [Google Scholar]
  272. Jiao J, Zhang T, Jiao X, Huang T, Zhao L et al. hsa_circ_0000745 promotes cervical cancer by increasing cell proliferation, migration, and invasion. J Cell Physiol 2020; 235: 1287 1295 [CrossRef] [PubMed]
    [Google Scholar]
  273. Liu J, Wang D, Long Z, Liu J, Li W. CircRNA8924 promotes cervical cancer cell proliferation, migration and invasion by competitively binding to MiR-518d-5p /519-5p family and modulating the expression of CBX8. Cell Physiol Biochem 2018; 48: 173 184 [CrossRef] [PubMed]
    [Google Scholar]
  274. Zhao J, Lee EE, Kim J, Yang R, Chamseddin B et al. Transforming activity of an oncoprotein-encoding circular RNA from human papillomavirus. Nat Commun 2019; 10: 2300 [CrossRef] [PubMed]
    [Google Scholar]
  275. Chen SL, Tsai TZ, Han CP, Tsao YP. Mutational analysis of human papillomavirus type 11 E5a oncoprotein. J Virol 1996; 70: 3502 3508 [CrossRef] [PubMed]
    [Google Scholar]
  276. Krawczyk E, Suprynowicz FA, Hebert JD, Kamonjoh CM, Schlegel R. The human papillomavirus type 16 E5 oncoprotein translocates calpactin I to the perinuclear region. J Virol 2011; 85: 10968 10975 [CrossRef] [PubMed]
    [Google Scholar]
  277. Lazarczyk M, Pons C, Mendoza J-A, Cassonnet P, Jacob Y et al. Regulation of cellular zinc balance as a potential mechanism of EVER-mediated protection against pathogenesis by cutaneous oncogenic human papillomaviruses. J Exp Med 2008; 205: 35 42 [CrossRef] [PubMed]
    [Google Scholar]
  278. Krawczyk E, Hanover JA, Schlegel R, Suprynowicz FA. Karyopherin beta3: a new cellular target for the HPV-16 E5 oncoprotein. Biochem Biophys Res Commun 2008; 371: 684 688 [CrossRef] [PubMed]
    [Google Scholar]
  279. Müller M, Wasson CW, Bhatia R, Boxall S, Millan D et al. YIP1 family member 4 (YIPF4) is a novel cellular binding partner of the papillomavirus E5 proteins. Sci Rep 2015; 5: 12523 [CrossRef] [PubMed]
    [Google Scholar]
  280. Shimada M, Yamashita A, Saito M, Ichino M, Kinjo T et al. The human papillomavirus E6 protein targets apoptosis-inducing factor (AIF) for degradation. Sci Rep 2020; 10: 14195 [CrossRef] [PubMed]
    [Google Scholar]
  281. Yim EK, Lee KH, Myeong J, Tong SY, Um S-J et al. Novel interaction between HPV E6 and BARD1 (BRCA1-associated ring domain 1) and its biologic roles. DNA Cell Biol 2007; 26: 753 761 [CrossRef] [PubMed]
    [Google Scholar]
  282. Wang F, Wang J, Wang J, Zhang L, Fu H et al. BCCIPβ facilitates p53 ubiquitination via binding with E6 protein in high-risk HPV positive head and neck squamous cell carcinoma. Biochem Biophys Res Commun 2020; 529: 685 691 [CrossRef] [PubMed]
    [Google Scholar]
  283. Zhang Y, Fan S, Meng Q, Ma Y, Katiyar P et al. Brca1 interaction with human papillomavirus oncoproteins. J Biol Chem 2005; 280: 33165 33177 [CrossRef] [PubMed]
    [Google Scholar]
  284. Filippova M, Johnson MM, Bautista M, Filippov V, Fodor N et al. The large and small isoforms of human papillomavirus type 16 E6 bind to and differentially affect procaspase 8 stability and activity. J Virol 2007; 81: 4116 4129 [CrossRef] [PubMed]
    [Google Scholar]
  285. Veldman T, Liu X, Yuan H, Schlegel R. Human papillomavirus E6 and Myc proteins associate in vivo and bind to and cooperatively activate the telomerase reverse transcriptase promoter. Proc Natl Acad Sci U S A 2003; 100: 8211 8216 [CrossRef] [PubMed]
    [Google Scholar]
  286. An J, Mo D, Liu H, Veena MS, Srivatsan ES et al. Inactivation of the CYLD deubiquitinase by HPV E6 mediates hypoxia-induced NF-kappaB activation. Cancer Cell 2008; 14: 394 407 [CrossRef] [PubMed]
    [Google Scholar]
  287. Handa K, Yugawa T, Narisawa-Saito M, Ohno S, Fujita M et al. E6AP-dependent degradation of DLG4/PSD95 by high-risk human papillomavirus type 18 E6 protein. J Virol 2007; 81: 1379 1389 [CrossRef] [PubMed]
    [Google Scholar]
  288. Brimer N, Lyons C, Vande Pol SB. Association of E6AP (Ube3a) with human papillomavirus type 11 E6 protein. Virology 2007; 358: 303 310 [CrossRef] [PubMed]
    [Google Scholar]
  289. Favre-Bonvin A, Reynaud C, Kretz-Remy C, Jalinot P. Human papillomavirus type 18 E6 protein binds the cellular PDZ protein TIP-2/GIPC, which is involved in transforming growth factor beta signaling and triggers its degradation by the proteasome. J Virol 2005; 79: 4229 4237 [CrossRef] [PubMed]
    [Google Scholar]
  290. Jeong KW, Kim HZ, Kim S, Kim YS, Choe J. Human papillomavirus type 16 E6 protein interacts with cystic fibrosis transmembrane regulator-associated ligand and promotes E6-associated protein-mediated ubiquitination and proteasomal degradation. Oncogene 2007; 26: 487 499 [CrossRef] [PubMed]
    [Google Scholar]
  291. Degenhardt YY, Silverstein SJ, Gps SSJ. Gps2, a protein partner for human papillomavirus E6 proteins. J Virol 2001; 75: 151 160 [CrossRef] [PubMed]
    [Google Scholar]
  292. Vos RM, Altreuter J, White EA, Howley PM. The ubiquitin-specific peptidase USP15 regulates human papillomavirus type 16 E6 protein stability. J Virol 2009; 83: 8885 8892 [CrossRef] [PubMed]
    [Google Scholar]
  293. White EA, Kramer RE, Tan MJ, Hayes SD, Harper JW et al. Comprehensive analysis of host cellular interactions with human papillomavirus E6 proteins identifies new E6 binding partners and reflects viral diversity. J Virol 2012; 86: 13174 13186 [CrossRef] [PubMed]
    [Google Scholar]
  294. Liu X, Dakic A, Zhang Y, Dai Y, Chen R et al. Hpv E6 protein interacts physically and functionally with the cellular telomerase complex. Proc Natl Acad Sci U S A 2009; 106: 18780 18785 [CrossRef] [PubMed]
    [Google Scholar]
  295. Latorre IJ, Roh MH, Frese KK, Weiss RS, Margolis B et al. Viral oncoprotein-induced mislocalization of select PDZ proteins disrupts tight junctions and causes polarity defects in epithelial cells. J Cell Sci 2005; 118: 4283 4293 [CrossRef] [PubMed]
    [Google Scholar]
  296. Storrs CH, Silverstein SJ. Patj, a tight junction-associated PDZ protein, is a novel degradation target of high-risk human papillomavirus E6 and the alternatively spliced isoform 18 E6. J Virol 2007; 81: 4080 4090 [CrossRef] [PubMed]
    [Google Scholar]
  297. Jha S, Vande Pol S, Banerjee NS, Dutta AB, Chow LT et al. Destabilization of Tip60 by human papillomavirus E6 results in attenuation of Tip60-dependent transcriptional regulation and apoptotic pathway. Mol Cell 2010; 38: 700 711 [CrossRef] [PubMed]
    [Google Scholar]
  298. Kukimoto I, Aihara S, Yoshiike K, Kanda T. Human papillomavirus oncoprotein E6 binds to the C-terminal region of human minichromosome maintenance 7 protein. Biochem Biophys Res Commun 1998; 249: 258 262 [CrossRef] [PubMed]
    [Google Scholar]
  299. Srivenugopal KS, Ali-Osman F. The DNA repair protein, O(6)-methylguanine-DNA methyltransferase is a proteolytic target for the E6 human papillomavirus oncoprotein. Oncogene 2002; 21: 5940 5945 [CrossRef] [PubMed]
    [Google Scholar]
  300. Lee SS, Glaunsinger B, Mantovani F, Banks L, Javier RT. Multi-Pdz domain protein MUPP1 is a cellular target for both adenovirus E4-ORF1 and high-risk papillomavirus type 18 E6 oncoproteins. J Virol 2000; 74: 9680 9693 [CrossRef] [PubMed]
    [Google Scholar]
  301. Gewin L, Myers H, Kiyono T, Galloway DA. Identification of a novel telomerase repressor that interacts with the human papillomavirus type-16 E6/E6-AP complex. Genes Dev 2004; 18: 2269 2282 [CrossRef] [PubMed]
    [Google Scholar]
  302. Katzenellenbogen RA, Egelkrout EM, Vliet-Gregg P, Gewin LC, Gafken PR et al. NFX1-123 and poly(A) binding proteins synergistically augment activation of telomerase in human papillomavirus type 16 E6-expressing cells. J Virol 2007; 81: 3786 3796 [CrossRef] [PubMed]
    [Google Scholar]
  303. Werness BA, Levine AJ, Howley PM. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 1990; 248: 76 79 [CrossRef] [PubMed]
    [Google Scholar]
  304. Crook T, Tidy JA, Vousden KH. Degradation of p53 can be targeted by HPV E6 sequences distinct from those required for p53 binding and trans-activation. Cell 1991; 67: 547 556 [CrossRef] [PubMed]
    [Google Scholar]
  305. Guccione E, Lethbridge KJ, Killick N, Leppard KN, Banks L. Hpv E6 proteins interact with specific PML isoforms and allow distinctions to be made between different pod structures. Oncogene 2004; 23: 4662 4672 [CrossRef] [PubMed]
    [Google Scholar]
  306. Spanos WC, Hoover A, Harris GF, Wu S, Strand GL et al. The PDZ binding motif of human papillomavirus type 16 E6 induces PTPN13 loss, which allows anchorage-independent growth and synergizes with Ras for invasive growth. J Virol 2008; 82: 2493 2500 [CrossRef] [PubMed]
    [Google Scholar]
  307. Hoover AC, Strand GL, Nowicki PN, Anderson ME, Vermeer PD et al. Impaired PTPN13 phosphatase activity in spontaneous or HPV-induced squamous cell carcinomas potentiates oncogene signaling through the MAP kinase pathway. Oncogene 2009; 28: 3960 3970 [CrossRef] [PubMed]
    [Google Scholar]
  308. Jing M, Bohl J, Brimer N, Kinter M, Vande Pol SB. Degradation of tyrosine phosphatase PTPN3 (PTPH1) by association with oncogenic human papillomavirus E6 proteins. J Virol 2007; 81: 2231 2239 [CrossRef] [PubMed]
    [Google Scholar]
  309. Chen JJ, Reid CE, Band V, Androphy EJ. Interaction of papillomavirus E6 oncoproteins with a putative calcium-binding protein. Science 1995; 269: 529 531 [CrossRef] [PubMed]
    [Google Scholar]
  310. Kranjec C, Tomaic V, Massimi P, Nicolaides L, Doorbar J et al. The high-risk HPV E6 target Scribble (hScrib) is required for HPV E6 expression in cervical tumour-derived cell lines. Papillomavirus Res 2016; 2: 70 77 [CrossRef] [PubMed]
    [Google Scholar]
  311. Gao Q, Srinivasan S, Boyer SN, Wazer DE, Band V. The E6 oncoproteins of high-risk papillomaviruses bind to a novel putative gap protein, E6TP1, and target it for degradation. Mol Cell Biol 1999; 19: 733 744 [CrossRef] [PubMed]
    [Google Scholar]
  312. Gao Q, Kumar A, Singh L, Huibregtse JM, Beaudenon S et al. Human papillomavirus E6-induced degradation of E6TP1 is mediated by E6AP ubiquitin ligase. Cancer Res 2002; 62: 3315 3321 [PubMed]
    [Google Scholar]
  313. Hampson L, Li C, Oliver AW, Kitchener HC, Hampson IN. The PDZ protein TIP-1 is a gain of function target of the HPV16 E6 oncoprotein. Int J Oncol 2004; 25: 1249 1256 [CrossRef] [PubMed]
    [Google Scholar]
  314. Iftner T, Elbel M, Schopp B, Hiller T, Loizou JI et al. Interference of papillomavirus E6 protein with single-strand break repair by interaction with XRCC1. Embo J 2002; 21: 4741 4748 [CrossRef] [PubMed]
    [Google Scholar]
  315. Degenhardt YY, Silverstein S. Interaction of zyxin, a focal adhesion protein, with the E6 protein from human papillomavirus type 6 results in its nuclear translocation. J Virol 2001; 75: 11791 11802 [CrossRef] [PubMed]
    [Google Scholar]
  316. Rey O, Lee S, Baluda MA, Swee J, Ackerson B et al. The E7 oncoprotein of human papillomavirus type 16 interacts with F-actin in vitro and in vivo. Virology 2000; 268: 372 381 [CrossRef] [PubMed]
    [Google Scholar]
  317. Antinore MJ, Birrer MJ, Patel D, Nader L, McCance DJ. The human papillomavirus type 16 E7 gene product interacts with and trans-activates the AP1 family of transcription factors. Embo J 1996; 15: 1950 1960 [CrossRef] [PubMed]
    [Google Scholar]
  318. Pang CL, Toh SY, He P, Teissier S, Ben Khalifa Y et al. A functional interaction of E7 with B-Myb-MuvB complex promotes acute cooperative transcriptional activation of both S- and M-phase genes. (129 C). Oncogene 2014; 33: 4039 4049 [CrossRef]
    [Google Scholar]
  319. Lee D, Lim C, Seo T, Kwon H, Min H et al. The viral oncogene human papillomavirus E7 deregulates transcriptional silencing by Brm-related gene 1 via molecular interactions. J Biol Chem 2002; 277: 48842 48848 [CrossRef] [PubMed]
    [Google Scholar]
  320. McIntyre MC, Ruesch MN, Laimins LA. Human papillomavirus E7 oncoproteins bind a single form of cyclin E in a complex with CDK2 and p107. Virology 1996; 215: 73 82 [CrossRef] [PubMed]
    [Google Scholar]
  321. Yaginuma Y, Eguchi A, Yoshimoto M, Ogawa K. The PxDLLCxE sequence in conserved region 2 of human papilloma virus 18 protein E7 is required for E7 binding to centromere protein C. Oncology 2012; 83: 210 217 [CrossRef] [PubMed]
    [Google Scholar]
  322. Wang YW, Chang HS, Lin CH, Yu WCY. Hpv-18 E7 conjugates to c-myc and mediates its transcriptional activity. Int J Biochem Cell Biol 2007; 39: 402 412 [CrossRef] [PubMed]
    [Google Scholar]
  323. Oh K-J, Kalinina A, Wang J, Nakayama K, Nakayama KI, KJ O, Nakayama KI et al. The papillomavirus E7 oncoprotein is ubiquitinated by UbcH7 and cullin 1- and Skp2-containing E3 ligase. J Virol 2004; 78: 5338 5346 [CrossRef] [PubMed]
    [Google Scholar]
  324. Liang YJ, Chang HS, Wang CY, Yu WCY. Dyrk1A stabilizes HPV16E7 oncoprotein through phosphorylation of the threonine 5 and threonine 7 residues. Int J Biochem Cell Biol 2008; 40: 2431 2441 [CrossRef] [PubMed]
    [Google Scholar]
  325. Campo-Fernandez B, Morandell D, Santer FR, Zwerschke W, Jansen-Durr P. Identification of the FHL2 transcriptional coactivator as a new functional target of the E7 oncoprotein of human papillomavirus type 16. J Virol 2007; 81: 1027 1032 [CrossRef] [PubMed]
    [Google Scholar]
  326. Luscher-Firzlaff JM, Westendorf JM, Zwicker J, Burkhardt H, Henriksson M et al. Interaction of the fork head domain transcription factor MPP2 with the human papilloma virus 16 E7 protein: enhancement of transformation and transactivation. Oncogene 1999; 18: 5620 5630 [CrossRef] [PubMed]
    [Google Scholar]
  327. Mileo AM, Abbruzzese C, Vico C, Bellacchio E, Matarrese P et al. The human papillomavirus-16 E7 oncoprotein exerts antiapoptotic effects via its physical interaction with the actin-binding protein gelsolin. Carcinogenesis 2013; 34: 2424 2433 [CrossRef] [PubMed]
    [Google Scholar]
  328. Ajiro M, Zheng ZM. E6^E7, a novel splice isoform protein of human papillomavirus 16, stabilizes viral E6 and E7 oncoproteins via Hsp90 and GRP78. mBio 2015; 6: e02068 14 [CrossRef] [PubMed]
    [Google Scholar]
  329. Mileo AM, Abbruzzese C, Mattarocci S, Bellacchio E, Pisano P et al. Human papillomavirus-16 E7 interacts with glutathione S-transferase P1 and enhances its role in cell survival. PLoS One 2009; 4: e7254 [CrossRef] [PubMed]
    [Google Scholar]
  330. Bodily JM, Mehta KP, Laimins LA. Human papillomavirus E7 enhances hypoxia-inducible factor 1-mediated transcription by inhibiting binding of histone deacetylases. Cancer Res 2011; 71: 1187 1195 [CrossRef] [PubMed]
    [Google Scholar]
  331. Clawson GA, Bui V, Xin P, Wang N, Pan W. Intracellular localization of the tumor suppressor HtrA1/Prss11 and its association with HPV16 E6 and E7 proteins. J Cell Biochem 2008; 105: 81 88 [CrossRef] [PubMed]
    [Google Scholar]
  332. Mannhardt B, Weinzimer SA, Wagner M, Fiedler M, Cohen P et al. Human papillomavirus type 16 E7 oncoprotein binds and inactivates growth-inhibitory insulin-like growth factor binding protein 3. Mol Cell Biol 2000; 20: 6483 6495 [CrossRef] [PubMed]
    [Google Scholar]
  333. Spitkovsky D, Hehner SP, Hofmann TG, Moller A, Schmitz ML. The human papillomavirus oncoprotein E7 attenuates NF-kappa B activation by targeting the Ikappa B kinase complex. J Biol Chem 2002; 277: 25576 25582 [CrossRef] [PubMed]
    [Google Scholar]
  334. Guo Y, Zhang X, Xu Q, Gong F, Shi X et al. Human papillomavirus 16 oncoprotein E7 retards mitotic progression by blocking Mps1-MAP4 signaling cascade. Oncogene 2019; 38: 5959 5970 [CrossRef] [PubMed]
    [Google Scholar]
  335. Morandell D, Kaiser A, Herold S, Rostek U, Lechner S et al. The human papillomavirus type 16 E7 oncoprotein targets Myc-interacting zinc-finger protein-1. Virology 2012; 422: 242 253 [CrossRef] [PubMed]
    [Google Scholar]
  336. Mileo AM, Piombino E, Severino A, Tritarelli A, Paggi MG et al. Multiple interference of the human papillomavirus-16 E7 oncoprotein with the functional role of the metastasis suppressor Nm23-H1 protein. J Bioenerg Biomembr 2006; 38: 215 225 [CrossRef] [PubMed]
    [Google Scholar]
  337. Luo X, Donnelly CR, Gong W, Heath BR, Hao Y et al. HPV16 drives cancer immune escape via NLRX1-mediated degradation of sting. J Clin Invest 2020; 130: 1635 1652 [CrossRef] [PubMed]
    [Google Scholar]
  338. Nguyen CL, Munger K. Human papillomavirus E7 protein deregulates mitosis via an association with nuclear mitotic apparatus protein 1. J Virol 2009; 83: 1700 1707 [CrossRef] [PubMed]
    [Google Scholar]
  339. Eberhard J, Onder Z, Moroianu J. Nuclear import of high risk HPV16 E7 oncoprotein is mediated by its zinc-binding domain via hydrophobic interactions with Nup62. Virology 2013; 446: 334 345 [CrossRef] [PubMed]
    [Google Scholar]
  340. Panayiotou T, Michael S, Zaravinos A, Demirag E, Achilleos C et al. Human papillomavirus E7 binds Oct4 and regulates its activity in HPV-associated cervical cancers. PLoS Pathog 2020; 16: e1008468 [CrossRef] [PubMed]
    [Google Scholar]
  341. Hu T, Ferril S, Snider A, Barbosa M. In-Vivo analysis of HPV E7 protein association with pRb, p107 and p130. Int J Oncol 1995; 6: 167 174 [CrossRef] [PubMed]
    [Google Scholar]
  342. Todorovic B, Nichols AC, Chitilian JM, Myers MP, Shepherd TG et al. The human papillomavirus E7 proteins associate with p190RhoGAP and alter its function. J Virol 2014; 88: 3653 3663 [CrossRef] [PubMed]
    [Google Scholar]
  343. Berezutskaya E, Bagchi S. The human papillomavirus E7 oncoprotein functionally interacts with the S4 subunit of the 26S proteasome. J Biol Chem 1997; 272: 30135 30140 [CrossRef] [PubMed]
    [Google Scholar]
  344. Zwerschke W, Mazurek S, Massimi P, Banks L, Eigenbrodt E et al. Modulation of type M2 pyruvate kinase activity by the human papillomavirus type 16 E7 oncoprotein. Proc Natl Acad Sci U S A 1999; 96: 1291 1296 [CrossRef] [PubMed]
    [Google Scholar]
  345. Bischof O, Nacerddine K, Dejean A. Human papillomavirus oncoprotein E7 targets the promyelocytic leukemia protein and circumvents cellular senescence via the Rb and p53 tumor suppressor pathways. Mol Cell Biol 2005; 25: 1013 1024 [CrossRef] [PubMed]
    [Google Scholar]
  346. Pim D, Massimi P, Dilworth SM, Banks L. Activation of the protein kinase B pathway by the HPV-16 E7 oncoprotein occurs through a mechanism involving interaction with PP2A. Oncogene 2005; 24: 7830 7838 [CrossRef] [PubMed]
    [Google Scholar]
  347. De Luca A, Mangiacasale R, Severino A, Malquori L, Baldi A et al. E1A deregulates the centrosome cycle in a Ran GTPase-dependent manner. Cancer Res 2003; 63: 1430 1437 [PubMed]
    [Google Scholar]
  348. Angeline M, Merle E, Moroianu J. The E7 oncoprotein of high-risk human papillomavirus type 16 enters the nucleus via a nonclassical Ran-dependent pathway. Virology 2003; 317: 13 23 [CrossRef] [PubMed]
    [Google Scholar]
  349. Severino A, Abbruzzese C, Manente L, Valderas AA, Mattarocci S et al. Human papillomavirus-16 E7 interacts with Siva-1 and modulates apoptosis in HaCaT human immortalized keratinocytes. J Cell Physiol 2007; 212: 118 125 [CrossRef] [PubMed]
    [Google Scholar]
  350. Habig M, Smola H, Dole VS, Derynck R, Pfister H et al. E7 proteins from high- and low-risk human papillomaviruses bind to TGF-beta-regulated Smad proteins and inhibit their transcriptional activity. Arch Virol 2006; 151: 1961 1972 [CrossRef] [PubMed]
    [Google Scholar]
  351. Prathapam T, Kuhne C, Banks L. The HPV-16 E7 oncoprotein binds SKIP and suppresses its transcriptional activity. Oncogene 2001; 20: 7677 7685 [CrossRef] [PubMed]
    [Google Scholar]
  352. Mazzarelli JM, Atkins GB, Geisberg JV, Ricciardi RP. The viral oncoproteins Ad5 E1A, HPV16 E7 and SV40 tag bind a common region of the TBP-associated factor-110. Oncogene 1995; 11: 1859 1864 [PubMed]
    [Google Scholar]
  353. Vambutas A, DeVoti J, Pinn W, Steinberg BM, Bonagura VR. Interaction of human papillomavirus type 11 E7 protein with TAP-1 results in the reduction of ATP-dependent peptide transport. Clin Immunol 2001; 101: 94 99 [CrossRef] [PubMed]
    [Google Scholar]
  354. Massimi P, Pim D, Storey A, Banks L. HPV-16 E7 and adenovirus E1A complex formation with TATA box binding protein is enhanced by casein kinase II phosphorylation. Oncogene 1996; 12: 2325 2330 [PubMed]
    [Google Scholar]
  355. Jeon JH, Choi KH, Cho SY, Kim CW, Shin DM et al. Transglutaminase 2 inhibits Rb binding of human papillomavirus E7 by incorporating polyamine. Embo J 2003; 22: 5273 5282 [CrossRef] [PubMed]
    [Google Scholar]
  356. Zwerschke W, Mannhardt B, Massimi P, Nauenburg S, Pim D et al. Allosteric activation of acid alpha-glucosidase by the human papillomavirus E7 protein. J Biol Chem 2000; 275: 9534 9541 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.001540
Loading
/content/journal/jgv/10.1099/jgv.0.001540
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error