1887

Abstract

A high prevalence of G12 rotavirus strains has previously been reported in southern Mozambique. In this study, the full genomes of five Mozambican G12 strains were determined directly from stool using an Illumina Miseq platform. One sample (0060) contained an intergenogroup co-infection of a G12P[8] Wa-like strain and a GXP[14] DS-1-like strain. The sequences of seven genome segments, detected for the GXP[14] strain, clustered with a diverse group of mostly animal strains, suggesting co-infection with a strain of possible animal origin. The stool samples contained G12P[6] rotavirus strains with Wa-like backbones. Phylogenetic analyses of the VP4 and VP7 encoding segments of the G12P[6] strains suggested that they were reassortants containing backbones that are similar to that of the G12P[8] strain. The study confirms previous observations of interspecies transmission and emphasizes the importance of whole-genome sequencing in order to evaluate rotavirus co-infections and reassortants.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.001270
2019-05-29
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/100/6/932.html?itemId=/content/journal/jgv/10.1099/jgv.0.001270&mimeType=html&fmt=ahah

References

  1. Troeger C, Khalil IA, Rao PC, Cao S, Blacker BF et al. Rotavirus vaccination and the global burden of rotavirus diarrhea among children younger than 5 years. JAMA Pediatr 2018; 172:958–965 [View Article]
    [Google Scholar]
  2. Estes M, Rotaviruses GH et al. Fields Virology In Knipe DM, Howley PM. (editors), 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2013 pp 1347–1401
    [Google Scholar]
  3. Nakagomi T, Nakagomi O. RNA-RNA hybridization identifies a human rotavirus that is genetically related to feline rotavirus. J Virol 1989; 63:1431–1434
    [Google Scholar]
  4. Matthijnssens J, Ciarlet M, Rahman M, Attoui H, Bányai K et al. Recommendations for the classification of group A rotaviruses using all 11 genomic RNA segments. Arch Virol 2008; 153:1621–1629 [View Article]
    [Google Scholar]
  5. Matthijnssens J, Ciarlet M, Heiman E, Arijs I, Delbeke T et al. Full genome-based classification of rotaviruses reveals a common origin between human Wa-like and porcine rotavirus strains and human DS-1-like and bovine rotavirus strains. J Virol 2008; 82:3204–3219 [View Article]
    [Google Scholar]
  6. Gautam R, Mijatovic-Rustempasic S, Roy S, Esona MD, Lopez B et al. Full genomic characterization and phylogenetic analysis of a zoonotic human G8P[14] rotavirus strain detected in a sample from Guatemala. Infect Genet Evol 2015; 33:206–211 [View Article]
    [Google Scholar]
  7. Dóró R, Farkas SL, Martella V, Bányai K. Zoonotic transmission of rotavirus: surveillance and control. Expert Rev Anti Infect Ther 2015; 13:1337–1350 [View Article]
    [Google Scholar]
  8. Navarro R, Aung MS, Cruz K, Ketzis J, Gallagher CA et al. Whole genome analysis provides evidence for porcine-to-simian interspecies transmission of rotavirus-A. Infect Genet Evol 2017; 49:21–31 [View Article]
    [Google Scholar]
  9. Martella V, Bányai K, Matthijnssens J, Buonavoglia C, Ciarlet M. Zoonotic aspects of rotaviruses. Vet Microbiol 2010; 140:246–255 [View Article]
    [Google Scholar]
  10. Bányai K, Esona MD, Mijatovic S, Kerin TK, Pedreira C et al. Zoonotic bovine rotavirus strain in a diarrheic Child, Nicaragua. J Clin Virol 2009; 46:391–393 [View Article]
    [Google Scholar]
  11. Doan YH, Nakagomi T, Aboudy Y, Silberstein I, Behar-Novat E et al. Identification by full-genome analysis of a bovine rotavirus transmitted directly to and causing diarrhea in a human child. J Clin Microbiol 2013; 51:182–189 [View Article]
    [Google Scholar]
  12. Dennis FE, Fujii Y, Haga K, Damanka S, Lartey B et al. Identification of novel Ghanaian G8P[6] human-bovine reassortant rotavirus strain by next generation sequencing. PLoS One 2014; 9:e100699–11 [View Article]
    [Google Scholar]
  13. Chitambar SD, Arora R, Chhabra P. Molecular characterization of a rare G1P[19] rotavirus strain from India: evidence of reassortment between human and porcine rotavirus strains. J Med Microbiol 2009; 58:1611–1615 [View Article]
    [Google Scholar]
  14. Bwogi J, Jere KC, Karamagi C, Byarugaba DK, Namuwulya P et al. Whole genome analysis of selected human and animal rotaviruses identified in Uganda from 2012 to 2014 reveals complex genome reassortment events between human, bovine, caprine and porcine strains. PLoS One 2017; 12:e0178855–23 [View Article]
    [Google Scholar]
  15. Park S-I, Matthijnssens J, Saif LJ, Kim H-J, Park J-G et al. Reassortment among bovine, porcine and human rotavirus strains results in G8P[7] and G6P[7] strains isolated from cattle in South Korea. Vet Microbiol 2011; 152:55–66 [View Article]
    [Google Scholar]
  16. Komoto S, Tacharoenmuang R, Guntapong R, Ide T, Tsuji T et al. Reassortment of human and animal rotavirus gene segments in emerging DS-1-like G1P[8] rotavirus strains. PLoS One 2016; 11:e0148416 [View Article]
    [Google Scholar]
  17. Matthijnssens J, Rahman M, Van Ranst M. Two out of the 11 genes of an unusual human G6P[6] rotavirus isolate are of bovine origin. J Gen Virol 2008; 89:2630–2635 [View Article]
    [Google Scholar]
  18. Jere KC, Mlera L, O'Neill HG, Potgieter AC, Page NA et al. Whole genome analyses of African G2, G8, G9, and G12 rotavirus strains using sequence-independent amplification and 454® pyrosequencing. J Med Virol 2011; 83:2018–2042 [View Article]
    [Google Scholar]
  19. Phan MVT, Anh PH, Cuong NV, Munnink BBO, van der Hoek L et al. Unbiased whole-genome deep sequencing of human and porcine stool samples reveals circulation of multiple groups of rotaviruses and a putative zoonotic infection. Virus Evol 2016; 2:vew027 [View Article]
    [Google Scholar]
  20. Stucker KM, Stockwell TB, Nyaga MM, Halpin RA, Fedorova N et al. Complete genomic sequence for an avian group G rotavirus from South Africa. Genome Announc 2015; 3:2–3 [View Article]
    [Google Scholar]
  21. Jere KC, Mlera L, Page NA, van Dijk AA, O'Neill HG. Whole genome analysis of multiple rotavirus strains from a single stool specimen using sequence-independent amplification and 454® pyrosequencing reveals evidence of intergenotype genome segment recombination. Infect Genet Evol 2011; 11:2072–2082 [View Article]
    [Google Scholar]
  22. Nyaga MM, Tan Y, Seheri ML, Halpin RA, Akopov A et al. Whole-genome sequencing and analyses identify high genetic heterogeneity, diversity and endemicity of rotavirus genotype P[6] strains circulating in Africa. Infect Genet Evol 2018; 63:79–88 [View Article]
    [Google Scholar]
  23. Taniguchi K, Urasawa T, Kobayashi N, Gorziglia M, Urasawa S. Nucleotide sequence of VP4 and VP7 genes of human rotaviruses with subgroup I specificity and long RNA pattern: implication for new G serotype specificity. J Virol 1990; 64:5640–5644
    [Google Scholar]
  24. Matthijnssens J, Heylen E, Zeller M, Rahman M, Lemey P et al. Phylodynamic analyses of rotavirus genotypes G9 and G12 underscore their potential for swift global spread. Mol Biol Evol 2010; 27:2431–2436 [View Article]
    [Google Scholar]
  25. Pongsuwanna Y, Guntapong R, Chiwakul M, Tacharoenmuang R, Onvimala N et al. Detection of a human rotavirus with G12 and P[9] specificity in Thailand. J Clin Microbiol 2002; 40:1390–1394 [View Article]
    [Google Scholar]
  26. Rahman M, Matthijnssens J, Yang X, Delbeke T, Arijs I et al. Evolutionary history and global spread of the emerging G12 human rotaviruses. J Virol 2007; 81:2382–2390 [View Article]
    [Google Scholar]
  27. Ide T, Komoto S, Higo-Moriguchi K, Htun KW, Myint YY et al. Whole genomic analysis of human G12P[6] and G12P[8] rotavirus strains that have emerged in Myanmar. PLoS One 2015; 10:e0124965 [View Article]
    [Google Scholar]
  28. Saikruang W, Khamrin P, Malasao R, Kumthip K, Ushijima H et al. Complete genome analysis of a rare G12P[6] rotavirus isolated in Thailand in 2012 reveals a prototype strain of DS-1-like constellation. Virus Res 2016; 224:38–45 [View Article]
    [Google Scholar]
  29. Almeida TNV, de Sousa TT, da Silva RA, Fiaccadori FS, Souza M et al. Phylogenetic analysis of G1P[8] and G12P[8] rotavirus A samples obtained in the pre- and post-vaccine periods, and molecular modeling of VP4 and VP7 proteins. Acta Trop 2017; 173:153–159 [View Article]
    [Google Scholar]
  30. Komoto S, Wandera Apondi E, Shah M, Odoyo E, Nyangao J et al. Whole genomic analysis of human G12P[6] and G12P[8] rotavirus strains that have emerged in Kenya: identification of porcine-like NSP4 genes. Infect Genet Evol 2014; 27:277–293 [View Article]
    [Google Scholar]
  31. Steyer A, Sagadin M, Kolenc M, Poljšak-Prijatelj M. Molecular characterization of rotavirus strains from pre- and post-vaccination periods in a country with low vaccination coverage: the case of Slovenia. Infect Genet Evo 2014; 28:413–425 [View Article]
    [Google Scholar]
  32. Mwenda JM, Tate JE, Parashar UD, Mihigo R, Agócs M et al. African rotavirus surveillance network: a brief overview. Pediatr Infect Dis J 2014; 33:S6–8 [View Article]
    [Google Scholar]
  33. Seheri LM, Magagula NB, Peenze I, Rakau K, Ndadza A et al. Rotavirus strain diversity in eastern and southern African countries before and after vaccine introduction. Vaccine 2018; 36:7222–7230 [View Article]
    [Google Scholar]
  34. João ED, Strydom A, O'Neill HG, Cuamba A, Cassocera M et al. Rotavirus A strains obtained from children with acute gastroenteritis in Mozambique, 2012-2013: G and P genotypes and phylogenetic analysis of VP7 and partial VP4 genes. Arch Virol 2018; 163:153–165 [View Article]
    [Google Scholar]
  35. de Deus N, João E, Cuamba A, Cassocera M, Luís L et al. Epidemiology of rotavirus infection in children from a rural and urban area, in Maputo, southern Mozambique, before vaccine introduction. J Trop Pediatr 2018; 64:141–145 [View Article]
    [Google Scholar]
  36. Potgieter AC, Page NA, Liebenberg J, Wright IM, Landt O et al. Improved strategies for sequence-independent amplification and sequencing of viral double-stranded RNA genomes. J Gen Virol 2009; 90:1423–1432 [View Article]
    [Google Scholar]
  37. Pickett BE, Sadat EL, Zhang Y, Noronha JM, Squires RB et al. ViPR: an open bioinformatics database and analysis resource for virology research. Nucleic Acids Res 2012; 40:D593–D598 [View Article]
    [Google Scholar]
  38. Tamura K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol Biol Evol 1992; 9:678–687 [View Article]
    [Google Scholar]
  39. Nei M, Kumar S. Molecular Evolution and Phylogenetics New York: Oxford University Press; 2000
    [Google Scholar]
  40. Doan YH, Nakagomi T, Agbemabiese CA, Nakagomi O. Changes in the distribution of lineage constellations of G2P[4] Rotavirus A strains detected in Japan over 32 years (1980-2011). Infect Genet Evol 2015; 34:423–433 [View Article]
    [Google Scholar]
  41. Agbemabiese CA, Nakagomi T, Doan YH, Do LP, Damanka S et al. Genomic constellation and evolution of Ghanaian G2P[4] rotavirus strains from a global perspective. Infect Genet Evol 2016; 45:122–131 [View Article]
    [Google Scholar]
  42. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article]
    [Google Scholar]
  43. Desselberger U, Huppertz HI. Immune responses to rotavirus infection and vaccination and associated correlates of protection. J Infect Dis 2011; 203:188–195 [View Article]
    [Google Scholar]
  44. Velázquez FR, Matson DO, Calva JJ, Guerrero ML, Morrow AL et al. Rotavirus infection in infants as protection against subsequent infections. N Engl J Med 1996; 335:1022–1028 [View Article]
    [Google Scholar]
  45. Matthijnssens J, Potgieter CA, Ciarlet M, Parreño V, Martella V et al. Are human P[14] rotavirus strains the result of interspecies transmissions from sheep or other ungulates that belong to the mammalian order Artiodactyla?. J Virol 2009; 83:2917–2929 [View Article]
    [Google Scholar]
  46. Matthijnssens J, Van Ranst M. Genotype constellation and evolution of group A rotaviruses infecting humans. Curr Opin Virol 2012; 2:426–433 [View Article]
    [Google Scholar]
  47. Bányai K, Martella V, Molnár P, Mihály I, Van Ranst M et al. Genetic heterogeneity in human G6P[14] rotavirus strains detected in Hungary suggests independent zoonotic origin. J Infect 2009; 59:213–215 [View Article]
    [Google Scholar]
  48. Tacharoenmuang R, Komoto S, Guntapong R, Ide T, Haga K et al. Whole genomic analysis of an unusual human G6P[14] rotavirus strain isolated from a child with diarrhea in Thailand: evidence for bovine-to-human interspecies transmission and reassortment events. PLoS One 2015; 10:e0139381 [View Article]
    [Google Scholar]
  49. Badaracco A, Matthijnssens J, Romero S, Heylen E, Zeller M et al. Discovery and molecular characterization of a group A rotavirus strain detected in an Argentinean vicuña (Vicugna vicugna). Vet Microbiol 2013; 161:247–254 [View Article]
    [Google Scholar]
  50. Nyaga MM, Jere KC, Esona MD, Seheri ML, Stucker KM et al. Whole genome detection of rotavirus mixed infections in human, porcine and bovine samples co-infected with various rotavirus strains collected from sub-Saharan Africa. Infect Genet Evol 2015; 31:321–334 [View Article]
    [Google Scholar]
  51. Hakim MS, Nirwati H, Aman AT, Soenarto Y, Pan Q. Significance of continuous rotavirus and norovirus surveillance in Indonesia. World J Pediatr 2018; 14:4–12 [View Article]
    [Google Scholar]
  52. Medici MC, Tummolo F, Bonica MB, Heylen E, Zeller M et al. Genetic diversity in three bovine-like human G8P[14] and G10P[14] rotaviruses suggests independent interspecies transmission events. J Gen Virol 2015; 96:1161–1168 [View Article]
    [Google Scholar]
  53. Donato CM, Manuelpillai NM, Cowley D, Roczo-Farkas S, Buttery JP et al. Genetic characterization of a novel G3P[14] rotavirus strain causing gastroenteritis in 12 year old Australian child. Infect Genet Evol 2014; 25:97–109 [View Article]
    [Google Scholar]
  54. Cowley D, Donato CM, Roczo-Farkas S, Kirkwood CD. Novel G10P[14] rotavirus strain, northern territory, Australia. Emerg Infect Dis 2013; 19:1324–1327 [View Article]
    [Google Scholar]
  55. Ward ML, Mijatovic-Rustempasic S, Roy S, Rungsrisuriyachai K, Boom JA et al. Molecular characterization of the first G24P[14] rotavirus strain detected in humans. Infect Genet Evol 2016; 43:338–342 [View Article]
    [Google Scholar]
  56. Do LP, Kaneko M, Nakagomi T, Gauchan P, Agbemabiese CA et al. Molecular epidemiology of Rotavirus A, causing acute gastroenteritis hospitalizations among children in Nha Trang, Vietnam, 2007-2008: Identification of rare G9P[19] and G10P[14] strains. J Med Virol 2017; 89:621–631 [View Article]
    [Google Scholar]
  57. Damanka S, Lartey B, Agbemabiese C, Dennis FE, Adiku T et al. Detection of the first G6P[14] human rotavirus strain in an infant with diarrhoea in Ghana. Virol J 2016; 13:1–7 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.001270
Loading
/content/journal/jgv/10.1099/jgv.0.001270
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error