1887

Abstract

Viruses, as a class of pathogenic microbe, remain a significant health burden globally. Viral infections result in significant morbidity and mortality annually and many remain in need of novel vaccine and anti-viral strategies. The development of effective novel anti-viral therapeutics, in particular, requires detailed understanding of the mechanism of viral infection, and the host response, including the innate and adaptive arms of the immune system. In recent years, the role of glycans and lectins in pathogen–host interactions has become an increasingly relevant issue. This review focuses on the interactions between a specific lectin family, galectins, and the broad range of viral infections in which they play a role. Discussed are the diverse activities that galectins play in interacting directly with virions or the cells they infect, to promote or inhibit viral infection. In addition we describe how galectin expression is regulated both transcriptionally and post-transcriptionally by viral infections. We also compare the contribution of known galectin-mediated immune modulation, across a range of innate and adaptive immune anti-viral responses, to the outcome of viral infections.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.001208
2019-01-16
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/100/3/333.html?itemId=/content/journal/jgv/10.1099/jgv.0.001208&mimeType=html&fmt=ahah

References

  1. Leffler H, Carlsson S, Hedlund M, Qian Y, Poirier F et al. Introduction to galectins. Glycoconj J 2002;19:433–440 [CrossRef][PubMed]
    [Google Scholar]
  2. Barondes SH, Castronovo V, Cooper DN, Cummings RD, Drickamer K et al. Galectins: a family of animal beta-galactoside-binding lectins. Cell 1994;76:597–598 [CrossRef][PubMed]
    [Google Scholar]
  3. di Lella S, Sundblad V, Cerliani JP, Guardia CM, Estrin DA et al. When galectins recognize glycans: from biochemistry to physiology and back again. Biochemistry 2011;50:7842–7857 [CrossRef][PubMed]
    [Google Scholar]
  4. Yang RY, Hill PN, Hsu DK, Liu FT. Role of the carboxyl-terminal lectin domain in self-association of galectin-3. Biochemistry 1998;37:4086–4092 [CrossRef][PubMed]
    [Google Scholar]
  5. Lepur A, Salomonsson E, Nilsson UJ, Leffler H. Ligand induced galectin-3 protein self-association. J Biol Chem 2012;287:21751–21756 [CrossRef][PubMed]
    [Google Scholar]
  6. Garner OB, Baum LG. Galectin-glycan lattices regulate cell-surface glycoprotein organization and signalling. Biochem Soc Trans 2008;36:1472–1477 [CrossRef][PubMed]
    [Google Scholar]
  7. Vasta GR, Ahmed H, Nita-Lazar M, Banerjee A, Pasek M et al. Galectins as self/non-self recognition receptors in innate and adaptive immunity: an unresolved paradox. Front Immunol 2012;3:199 [CrossRef][PubMed]
    [Google Scholar]
  8. Chen HY, Weng IC, Hong MH, Liu FT. Galectins as bacterial sensors in the host innate response. Curr Opin Microbiol 2014;17:75–81 [CrossRef][PubMed]
    [Google Scholar]
  9. Wilson TJ, Firth MN, Powell JT, Harrison FL. The sequence of the mouse 14 kDa beta-galactoside-binding lectin and evidence for its synthesis on free cytoplasmic ribosomes. Biochem J 1989;261:847–852 [CrossRef][PubMed]
    [Google Scholar]
  10. Rabinovich GA, Ramhorst RE, Rubinstein N, Corigliano A, Daroqui MC et al. Induction of allogenic T-cell hyporesponsiveness by galectin-1-mediated apoptotic and non-apoptotic mechanisms. Cell Death & Differentiation 2002;9:661–670 [CrossRef]
    [Google Scholar]
  11. Elola MT, Wolfenstein-Todel C, Troncoso MF, Vasta GR, Rabinovich GA. Galectins: matricellular glycan-binding proteins linking cell adhesion, migration, and survival. Cell Mol Life Sci 2007;64:1679–1700 [CrossRef][PubMed]
    [Google Scholar]
  12. Nickel W. The mystery of nonclassical protein secretion. A current view on cargo proteins and potential export routes. Eur J Biochem 2003;270:2109–2119[PubMed]
    [Google Scholar]
  13. Cho M, Cummings RD. Galectin-1, a β-Galactoside-binding Lectin in Chinese Hamster Ovary Cells. J Biol Chem 1995;270:5207–5212 [CrossRef]
    [Google Scholar]
  14. Sato S, St-Pierre C, Bhaumik P, Nieminen J. Galectins in innate immunity: dual functions of host soluble beta-galactoside-binding lectins as damage-associated molecular patterns (DAMPs) and as receptors for pathogen-associated molecular patterns (PAMPs). Immunol Rev 2009;230:172–187 [CrossRef][PubMed]
    [Google Scholar]
  15. Liu FT, Rabinovich GA. Galectins: regulators of acute and chronic inflammation. Ann N Y Acad Sci 2010;1183:158–182 [CrossRef][PubMed]
    [Google Scholar]
  16. Rabinovich GA, Liu FT, Hirashima M, Anderson A. An emerging role for galectins in tuning the immune response: lessons from experimental models of inflammatory disease, autoimmunity and cancer. Scand J Immunol 2007;66:143–158 [CrossRef][PubMed]
    [Google Scholar]
  17. Blidner AG, Méndez-Huergo SP, Cagnoni AJ, Rabinovich GA. Re-wiring regulatory cell networks in immunity by galectin-glycan interactions. FEBS Lett 2015;589:3407–3418 [CrossRef][PubMed]
    [Google Scholar]
  18. Mehul B, Hughes RC. Plasma membrane targetting, vesicular budding and release of galectin 3 from the cytoplasm of mammalian cells during secretion. J Cell Sci 1997;110:1169[PubMed]
    [Google Scholar]
  19. van Breedam W, Pöhlmann S, Favoreel HW, de Groot RJ, Nauwynck HJ. Bitter-sweet symphony: glycan–lectin interactions in virus biology. FEMS Microbiol Rev 2014;38:598–632 [CrossRef]
    [Google Scholar]
  20. Fettig J, Swaminathan M, Murrill CS, Kaplan JE. Global epidemiology of HIV. Infect Dis Clin North Am 2014;28:323–337 [CrossRef][PubMed]
    [Google Scholar]
  21. Granich R, Gupta S, Hersh B, Williams B, Montaner J et al. Trends in AIDS deaths, new infections and ART coverage in the Top 30 Countries with the highest AIDS mortality burden; 1990-2013. PLoS One 2015;10:e0131353 [CrossRef][PubMed]
    [Google Scholar]
  22. Ouellet M, Mercier S, Pelletier I, Bounou S, Roy J et al. Galectin-1 acts as a soluble host factor that promotes HIV-1 infectivity through stabilization of virus attachment to host cells. J Immunol 2005;174:4120–4126 [CrossRef][PubMed]
    [Google Scholar]
  23. St-Pierre C, Manya H, Ouellet M, Clark GF, Endo T et al. Host-soluble galectin-1 promotes HIV-1 replication through a direct interaction with glycans of viral gp120 and host CD4. J Virol 2011;85:11742–11751 [CrossRef][PubMed]
    [Google Scholar]
  24. Mercier S, St-Pierre C, Pelletier I, Ouellet M, Tremblay MJ et al. Galectin-1 promotes HIV-1 infectivity in macrophages through stabilization of viral adsorption. Virology 2008;371:121–129 [CrossRef][PubMed]
    [Google Scholar]
  25. Lantéri M, Giordanengo V, Hiraoka N, Fuzibet JG, Auberger P et al. Altered T cell surface glycosylation in HIV-1 infection results in increased susceptibility to galectin-1-induced cell death. Glycobiology 2003;13:909–918 [CrossRef][PubMed]
    [Google Scholar]
  26. Wilen CB, Tilton JC, Doms RW. HIV: cell binding and entry. Cold Spring Harb Perspect Med 2012;2:a006866 [CrossRef][PubMed]
    [Google Scholar]
  27. Seilhamer JJ, Baum LG, Pace KE, Perillo NL. Apoptosis of T cells mediated by galectin-1. Nature 1995;378:736–739
    [Google Scholar]
  28. Stillman BN, Hsu DK, Pang M, Brewer CF, Johnson P et al. Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death. J Immunol 2006;176:778–789 [CrossRef][PubMed]
    [Google Scholar]
  29. Pace KE, Lee C, Stewart PL, Baum LG. Restricted receptor segregation into membrane microdomains occurs on human T cells during apoptosis induced by galectin-1. J Immunol 1999;163:3801–3811[PubMed]
    [Google Scholar]
  30. Krishnamoorthy L, Bess JW, Preston AB, Nagashima K, Mahal LK. HIV-1 and microvesicles from T cells share a common glycome, arguing for a common origin. Nat Chem Biol 2009;5:244–250 [CrossRef]
    [Google Scholar]
  31. St-Pierre C, Ouellet M, Giguère D, Ohtake R, Roy R et al. Galectin-1-specific inhibitors as a new class of compounds to treat HIV-1 infection. Antimicrob Agents Chemother 2012;56:154–162 [CrossRef][PubMed]
    [Google Scholar]
  32. Wang S-F, Tsao C-H, Lin Y-T, Hsu DK, Chiang M-L et al. Galectin-3 promotes HIV-1 budding via association with Alix and Gag p6. Glycobiology 2014;24:1022–1035 [CrossRef]
    [Google Scholar]
  33. Kulkarni R, Prasad A. Exosomes derived from HIV-1 infected DCs mediate viral trans-infection via fibronectin and galectin-3. Sci Rep 2017;7:1–14 [CrossRef]
    [Google Scholar]
  34. Xue J, Fu C, Cong Z, Peng L, Peng Z et al. Galectin-3 promotes caspase-independent cell death of HIV-1-infected macrophages. FEBS J 2017;284:97–113 [CrossRef][PubMed]
    [Google Scholar]
  35. Hsu DK, Yang RY, Liu FT. Galectins in apoptosis. Methods Enzymol 2006;256–273
    [Google Scholar]
  36. Elahi S, Niki T, Hirashima M, Horton H. Galectin-9 binding to Tim-3 renders activated human CD4+ T cells less susceptible to HIV-1 infection. Blood 2012;119:4192–4204 [CrossRef]
    [Google Scholar]
  37. Bi S, Hong PW, Lee B, Baum LG. Galectin-9 binding to cell surface protein disulfide isomerase regulates the redox environment to enhance T-cell migration and HIV entry. Proc Natl Acad Sci USA 2011;108:10650–10655 [CrossRef][PubMed]
    [Google Scholar]
  38. Fenouillet E, Barbouche R, Jones IM. Cell entry by enveloped viruses: redox considerations for HIV and SARS-coronavirus. Antioxid Redox Signal 2007;9:1009–1034 [CrossRef][PubMed]
    [Google Scholar]
  39. Hogg PJ. Disulfide bonds as switches for protein function. Trends Biochem Sci 2003;28:210–214 [CrossRef]
    [Google Scholar]
  40. Jordan PA, Gibbins JM. Extracellular disulfide exchange and the regulation of cellular function. Antioxid Redox Signal 2006;8:312–324 [CrossRef][PubMed]
    [Google Scholar]
  41. Chagan-Yasutan H, Saitoh H, Ashino Y, Arikawa T, Hirashima M et al. Persistent elevation of plasma osteopontin levels in HIV patients despite highly active antiretroviral therapy. Tohoku J Exp Med 2009;218:285–292 [CrossRef][PubMed]
    [Google Scholar]
  42. Saitoh H, Ashino Y, Chagan-Yasutan H, Niki T, Hirashima M et al. Rapid decrease of plasma galectin-9 levels in patients with acute HIV infection after therapy. Tohoku J Exp Med 2012;228:157–161 [CrossRef][PubMed]
    [Google Scholar]
  43. Jost S, Moreno-Nieves UY, Garcia-Beltran WF, Rands K, Reardon J et al. Dysregulated Tim-3 expression on natural killer cells is associated with increased Galectin-9 levels in HIV-1 infection. Retrovirology 2013;10:74 [CrossRef]
    [Google Scholar]
  44. Tandon R, Chew GM, Byron MM, Borrow P, Niki T et al. Galectin-9 is rapidly released during acute HIV-1 infection and remains sustained at high levels despite viral suppression even in elite controllers. AIDS Res Hum Retroviruses 2014;30:654–664 [CrossRef][PubMed]
    [Google Scholar]
  45. Abdel-Mohsen M, Chavez L, Tandon R, Chew GM, Deng X et al. Human galectin-9 is a potent mediator of HIV transcription and reactivation. PLoS Pathog 2016;12:e1005677 [CrossRef][PubMed]
    [Google Scholar]
  46. de Thé G, Kazanji M. An HTLV-I/II vaccine: from animal models to clinical trials?. J Acquir Immune Defic Syndr Hum Retrovirol 1996;13:S191–S198 [CrossRef][PubMed]
    [Google Scholar]
  47. Uchiyama T, Yodoi J, Sagawa K, Takatsuki K, Uchino H. Adult T-cell leukemia: clinical and hematologic features of 16 cases. Blood 1977;50:481–492
    [Google Scholar]
  48. Gauthier S, Pelletier I, Ouellet M, Vargas A, Tremblay MJ et al. Induction of galectin-1 expression by HTLV-I Tax and its impact on HTLV-I infectivity. Retrovirology 2008;5:105 [CrossRef][PubMed]
    [Google Scholar]
  49. Wong KT, Shieh W-J, Kumar S, Norain K, Abdullah W et al. Nipah virus infection: pathology and pathogenesis of an emerging paramyxoviral zoonosis. AM J Pathol 2002;161:2153–2167
    [Google Scholar]
  50. Wong KT, Shieh W-J, Kumar S, Norain K, Abdullah W et al. Nipah virus infection: pathology and pathogenesis of an emerging paramyxoviral zoonosis. Am J Pathol 2002;161:2153
    [Google Scholar]
  51. Levroney EL, Aguilar HC, Fulcher JA, Kohatsu L, Pace KE et al. Novel innate immune functions for galectin-1: galectin-1 inhibits cell fusion by Nipah virus envelope glycoproteins and augments dendritic cell secretion of proinflammatory cytokines. J Immunol 2005;175:413–420 [CrossRef][PubMed]
    [Google Scholar]
  52. Garner OB, Aguilar HC, Fulcher JA, Levroney EL, Harrison R et al. Endothelial galectin-1 binds to specific glycans on nipah virus fusion protein and inhibits maturation, mobility, and function to block syncytia formation. PLoS Pathog 2010;6:e1000993 [CrossRef][PubMed]
    [Google Scholar]
  53. Garner OB, Yun T, Pernet O, Aguilar HC, Park A et al. Timing of Galectin-1 Exposure Differentially Modulates Nipah Virus Entry and Syncytium Formation in Endothelial Cells. J Virol 2015;89:2520–2529 [CrossRef]
    [Google Scholar]
  54. Arvin AM. Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis Cambridge: Cambridge University Press; 2007
    [Google Scholar]
  55. Woodward AM, Mauris J, Argüeso P. Binding of transmembrane mucins to galectin-3 limits herpesvirus 1 infection of human corneal keratinocytes. J Virol 2013;87:5841–5847 [CrossRef][PubMed]
    [Google Scholar]
  56. King RD, Lubinski JM, Friedman HM. Herpes simplex virus type 1 infection increases the carbohydrate binding activity and the secretion of cellular galectin-3. Arch Virol 2009;154:609–618 [CrossRef][PubMed]
    [Google Scholar]
  57. Yang M-L, Chen Y-H, Wang S-W, Huang Y-J, Leu C-H et al. Galectin-1 binds to influenza virus and ameliorates influenza virus pathogenesis. J Virol 2011;85:10010–10020 [CrossRef]
    [Google Scholar]
  58. Chen Y, Zhou J, Cheng Z, Yang S, Chu H et al. Functional variants regulating LGALS1 (Galectin 1) expression affect human susceptibility to influenza A(H7N9). Sci Rep 2015;5:8517 [CrossRef]
    [Google Scholar]
  59. Sw L, Yang TC, Lai CC, Huang SH, Liao JM et al. Antiviral activity of aloe-emodin against influenza A virus via galectin-3 up-regulation. Eur J Pharmacol 2014;738:125–132
    [Google Scholar]
  60. Jeon SB, Yoon HJ, Chang CY, Koh HS, Jeon SH et al. Galectin-3 exerts cytokine-like regulatory actions through the JAK-STAT pathway. J Immunol 2010;185:7037–7046 [CrossRef][PubMed]
    [Google Scholar]
  61. Hattori T, Arikawa T, Fujioka Y, Maruyama J, Nakayama Y et al. Inhibition of influenza A virus infection by Galectin-9. Jpn J Vet Res 2013;61:5–18
    [Google Scholar]
  62. Dengue GDJ. Urbanization and globalization: the unholy trinity of the 21st century. Tropical Medicine and Health 2011;39:S3–S11
    [Google Scholar]
  63. Toledo KA, Fermino ML, Andrade CC, Riul TB, Alves RT et al. Galectin-1 exerts inhibitory effects during DENV-1 infection. PLoS One 2014;9:e112474 [CrossRef][PubMed]
    [Google Scholar]
  64. Lee PH, Liu CM, Ho TS, Tsai YC, Lin CC et al. Enterovirus 71 virion-associated galectin-1 facilitates viral replication and stability. PLoS One 2015;10:e0116278 [CrossRef][PubMed]
    [Google Scholar]
  65. Huang WC, Chen HL, Chen HY, Peng KP, Lee Y et al. Galectin-3 and Its Genetic Variation rs4644 Modulate Enterovirus 71 Infection. PLoS One 2016;11:e0168627 [CrossRef][PubMed]
    [Google Scholar]
  66. Slobedman B, Cao JZ, Avdic S, Webster B, McAllery S et al. Human cytomegalovirus latent infection and associated viral gene expression. Future Microbiol 2010;5:883–900 [CrossRef]
    [Google Scholar]
  67. Machala EA, Avdic S, Stern L, Zajonc DM, Benedict CA et al. Restriction of human cytomegalovirus infection by galectin-9. J Virol 2018;01746–18 [CrossRef][PubMed]
    [Google Scholar]
  68. Nita-Lazar M, Mancini J, Feng C, González-Montalbán N, Ravindran C et al. The zebrafish galectins Drgal1-L2 and Drgal3-L1 bind in vitro to the infectious hematopoietic necrosis virus (IHNV) glycoprotein and reduce viral adhesion to fish epithelial cells. Dev Comp Immunol 2016;55:241–252 [CrossRef][PubMed]
    [Google Scholar]
  69. Fang S, Zhang K, Wang T, Wang X, Lu X et al. Primary study on the lesions and specific proteins in BEAS-2B cells induced with the 2009 A (H1N1) influenza virus. Appl Microbiol Biotechnol 2014;98:9691–9701 [CrossRef]
    [Google Scholar]
  70. Cornelissen M, van der Kuyl AC, van den Burg R, Zorgdrager F, van Noesel CJM et al. Gene expression profile of AIDS-related Kaposi's sarcoma. BMC Cancer 2003;3:7 [CrossRef]
    [Google Scholar]
  71. Croci DO, Salatino M, Rubinstein N, Cerliani JP, Cavallin LE et al. Disrupting galectin-1 interactions with N-glycans suppresses hypoxia-driven angiogenesis and tumorigenesis in Kaposi's sarcoma. J Exp Med 2012;209:1985–2000 [CrossRef][PubMed]
    [Google Scholar]
  72. Gandhi MK, Moll G, Smith C, Dua U, Lambley E et al. Galectin-1 mediated suppression of Epstein-Barr virus specific T-cell immunity in classic Hodgkin lymphoma. Blood 2007;110:1326–1329 [CrossRef]
    [Google Scholar]
  73. Juszczynski P, Ouyang J, Monti S, Rodig SJ, Takeyama K et al. The AP1-dependent secretion of galectin-1 by Reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma. Proc Natl Acad Sci USA 2007;104:13134–13139 [CrossRef][PubMed]
    [Google Scholar]
  74. Gonzalez MI, Rubinstein N, Ilarregui JM, Toscano MA, Sanjuan NA et al. Regulated expression of galectin-1 after in vitro productive infection with herpes simplex virus type 1: implications for T cell apoptosis. Int J Immunopathol Pharmacol 2005;18:615–623 [CrossRef][PubMed]
    [Google Scholar]
  75. Alcendor DJ, Knobel SM, Desai P, Zhu WQ, Vigil HE et al. KSHV downregulation of galectin-3 in Kaposi's sarcoma. Glycobiology 2010;20:521–532 [CrossRef]
    [Google Scholar]
  76. Schröder Hc UH, Theis C, Sève Ap HJ et al. Expression of nuclear lectin carbohydrate-binding protein 35 in human immunodeficiency virus type 1-infected Molt-3 cells. Acquir Immune Defic Syndr Hum Retrovirol 1995;9:340–348
    [Google Scholar]
  77. Hsu DK, Hammes SR, Kuwabara I, Greene WC, Liu FT. Human T lymphotropic virus-I infection of human T lymphocytes induces expression of the beta-galactoside-binding lectin, galectin-3. Am J Pathol 1996;148:1661–1670
    [Google Scholar]
  78. Fogel S, Guittaut M, Legrand A, Monsigny M, Hébert E. The tat protein of HIV-1 induces galectin-3 expression. Glycobiology 1999;9:383–387 [CrossRef][PubMed]
    [Google Scholar]
  79. Chen YJ, Wang SF, Weng IC, Hong MH, Lo TH et al. Galectin-3 Enhances Avian H5N1 Influenza A Virus-Induced Pulmonary Inflammation by Promoting NLRP3 Inflammasome Activation. Am J Pathol 2018;188:1031–1042 [CrossRef][PubMed]
    [Google Scholar]
  80. Ulu M, Alacacioglu A, Yuksel E, Pamukk BO, Bozkaya G et al. Prognostic significance of serum galectin-3 levels in patients with hepatocellular cancer and chronic viral hepatitis. Saudi J Gastroenterol 2015;21:47–50 [CrossRef][PubMed]
    [Google Scholar]
  81. Hsu DK, Dowling CA, Jeng KC, Chen JT, Yang RY et al. Galectin-3 expression is induced in cirrhotic liver and hepatocellular carcinoma. Int J Cancer 1999;81:519–526 [CrossRef][PubMed]
    [Google Scholar]
  82. Uluca U, Sen V, Ece A, Tan I, Karabel D et al. Serum galectin-3 levels in children with chronic hepatitis B infection and inactive hepatitis B carriers. Med Sci Monit 2015;21:1376–1380
    [Google Scholar]
  83. Takasaki I, Taniguchi K, Komatsu F, Sasaki A, Andoh T et al. Contribution of spinal galectin-3 to acute herpetic allodynia in mice. Pain 2012;153:585–592 [CrossRef]
    [Google Scholar]
  84. Kobayashi K, Niwa M, Hoshi M, Saito K, Hisamatsu K et al. Early microlesion of viral encephalitis confirmed by galectin-3 expression after a virus inoculation. Neurosci Lett 2015;592:107–112 [CrossRef]
    [Google Scholar]
  85. Giusti CJD, Alberdi L, Frik J, Ferrer MF, Scharrig E et al. Galectin-3 is upregulated in activated glia during Junin virus-induced murine encephalitis. Neurosci Lett 2011;501:163–166 [CrossRef]
    [Google Scholar]
  86. Ö T, Schmitt H, Fadle N, Pfreundschuh M, Sahin U. Molecular definition of a novel human galectin which is immunogenic in patients with hodgkin's disease. J Biol Chem 1997;272:6416–6422
    [Google Scholar]
  87. Warke RV, Xhaja K, Martin KJ, Fournier MF, Shaw SK et al. Dengue virus induces novel changes in gene expression of human umbilical vein endothelial cells. J Virol 2003;77:11822–11832 [CrossRef]
    [Google Scholar]
  88. Chagan-Yasutan H, Ndhlovu LC, Lacuesta TL, Kubo T, Leano PS et al. Galectin-9 plasma levels reflect adverse hematological and immunological features in acute dengue virus infection. J Clin Virol 2013;58:635–640 [CrossRef][PubMed]
    [Google Scholar]
  89. Hsu YL, Wang MY, Ho LJ, Huang CY, Lai JH. Up-regulation of galectin-9 induces cell migration in human dendritic cells infected with dengue virus. J Cell Mol Med 2015;19:1065–1076 [CrossRef][PubMed]
    [Google Scholar]
  90. Liu KT, Liu YH, Chen YH, Lin CY, Huang CH et al. Serum Galectin-9 and Galectin-3-binding protein in acute dengue virus infection. Int J Mol Sci 2016;17:832 [CrossRef][PubMed]
    [Google Scholar]
  91. Sharma S, Sundararajan A, Suryawanshi A, Kumar N, Veiga-Parga T et al. T cell immunoglobulin and mucin protein-3 (Tim-3)/Galectin-9 interaction regulates influenza A virus-specific humoral and CD8 T-cell responses. Proc Natl Acad Sci USA 2011;108:19001–19006 [CrossRef][PubMed]
    [Google Scholar]
  92. Katoh S, Ikeda M, Shimizu H, Mouri K, Obase Y et al. Increased levels of plasma galectin-9 in patients with influenza virus infection. Tohoku J Exp Med 2014;232:263–267 [CrossRef][PubMed]
    [Google Scholar]
  93. Nebbia G, Peppa D, Schurich A, Khanna P, Singh HD et al. Upregulation of the Tim-3/galectin-9 pathway of T cell exhaustion in chronic hepatitis B virus infection. PLoS One 2012;7:e47648 [CrossRef][PubMed]
    [Google Scholar]
  94. Nan Y-M, Su S-S, Niu X-M, Zhao S-X, Zhang Y-G et al. Tim-3 suppression combined with TLR3 activation enhances antiviral immune response in patients with chronic HCV infection. J Int Med Res 2016;44:806–816 [CrossRef][PubMed]
    [Google Scholar]
  95. McSharry BP, Forbes SK, Cao JZ, Avdic S, Machala EA et al. Human cytomegalovirus upregulates expression of the lectin galectin 9 via induction of beta interferon. J Virol 2014;88:10990–10994 [CrossRef][PubMed]
    [Google Scholar]
  96. Xj J, Cj M, Wang JM, Xy W, Niki T et al. HCV-infected hepatocytes drive CD4+ CD25+ Foxp3+ regulatory T-cell development through the Tim-3/Gal-9 pathway. Eur J Immunol 2013;43:458–467
    [Google Scholar]
  97. Carter KL, Cahir-McFarland E, Kieff E. Epstein-barr virus-induced changes in B-lymphocyte gene expression. J Virol 2002;76:10427–10436 [CrossRef]
    [Google Scholar]
  98. Reddy PB, Sehrawat S, Suryawanshi A, Rajasagi NK, Mulik S et al. Influence of galectin-9/Tim-3 interaction on herpes simplex virus-1 latency. J Immunol 2011;187:5745–5755 [CrossRef][PubMed]
    [Google Scholar]
  99. Shaw AE, Hughes J, Gu Q, Behdenna A, Singer JB et al. Fundamental properties of the mammalian innate immune system revealed by multispecies comparison of type I interferon responses. PLoS Biol 2017;15:e2004086 [CrossRef][PubMed]
    [Google Scholar]
  100. de Kivit S, Lempsink LJ, Plants J, Martinson J, Keshavarzian A et al. Modulation of TIM-3 expression on NK and T cell subsets in HIV immunological non-responders. Clin Immunol 2015;156:28–35 [CrossRef][PubMed]
    [Google Scholar]
  101. Trujillo-Ochoa JL, Corral-Jara KF, Charles-Niño CL, Panduro A, Fierro NA. Conjugated bilirubin upregulates TIM-3 expression on CD4+CD25+ T cells: anti-inflammatory implications for Hepatitis A virus infection. Viral Immunol 2018;31:223–232 [CrossRef][PubMed]
    [Google Scholar]
  102. Mengshol JA, Golden-Mason L, Arikawa T, Smith M, Niki T et al. A crucial role for Kupffer cell-derived galectin-9 in regulation of T cell immunity in hepatitis C infection. PLoS One 2010;5:e9504 [CrossRef][PubMed]
    [Google Scholar]
  103. Harwood NM, Golden-Mason L, Cheng L, Rosen HR, Mengshol JA. HCV-infected cells and differentiation increase monocyte immunoregulatory galectin-9 production. J Leukoc Biol 2016;99:495–503 [CrossRef][PubMed]
    [Google Scholar]
  104. Kared H, Fabre T, Bédard N, Bruneau J, Shoukry NH. Galectin-9 and IL-21 mediate cross-regulation between Th17 and Treg cells during acute hepatitis C. PLoS Pathog 2013;9:e1003422 [CrossRef][PubMed]
    [Google Scholar]
  105. Sumida K, Shimoda S, Iwasaka S, Hisamoto S, Kawanaka H et al. Characteristics of splenic CD8+ T cell exhaustion in patients with hepatitis C. Clin Exp Immunol 2013;174:172–178 [CrossRef][PubMed]
    [Google Scholar]
  106. Li H, Wu K, Tao K, Chen L, Zheng Q et al. Tim-3/galectin-9 signaling pathway mediates T-cell dysfunction and predicts poor prognosis in patients with hepatitis B virus-associated hepatocellular carcinoma. Hepatology 2012;56:1342–1351 [CrossRef][PubMed]
    [Google Scholar]
  107. Rabinovich GA, Toscano MA. Turning 'sweet' on immunity: galectin-glycan interactions in immune tolerance and inflammation. Nat Rev Immunol 2009;9:338–352 [CrossRef][PubMed]
    [Google Scholar]
  108. Thiemann S, Baum LG. The road less traveled: regulation of leukocyte migration across vascular and lymphatic endothelium by galectins. J Clin Immunol 2011;31:2–9 [CrossRef][PubMed]
    [Google Scholar]
  109. Cooper D, Iqbal AJ, Gittens BR, Cervone C, Perretti M. The effect of galectins on leukocyte trafficking in inflammation: sweet or sour?. Ann N Y Acad Sci 2012;1253:181–192 [CrossRef][PubMed]
    [Google Scholar]
  110. Lajoie P, Goetz JG, Dennis JW, Nabi IR. Lattices, rafts, and scaffolds: domain regulation of receptor signaling at the plasma membrane. J Cell Biol 2009;185:381–385 [CrossRef][PubMed]
    [Google Scholar]
  111. Arthur CM, Baruffi MD, Cummings RD, Stowell SR. Evolving mechanistic insights into galectin functions. Methods Mol Biol 2015;1207:1–35 [CrossRef][PubMed]
    [Google Scholar]
  112. Lichtenstein RG, Rabinovich GA. Glycobiology of cell death: when glycans and lectins govern cell fate. Cell Death Differ 2013;20:976–986 [CrossRef][PubMed]
    [Google Scholar]
  113. Smith C, Beagley L, Khanna R. Acquisition of polyfunctionality by Epstein-Barr virus-specific CD8+ T cells correlates with increased resistance to galectin-1-mediated suppression. J Virol 2009;83:6192–6198 [CrossRef][PubMed]
    [Google Scholar]
  114. Almeida JR, Price DA, Papagno L, Arkoub ZA, Sauce D et al. Superior control of HIV-1 replication by CD8+ T cells is reflected by their avidity, polyfunctionality, and clonal turnover. J Exp Med 2007;204:2473–2485 [CrossRef][PubMed]
    [Google Scholar]
  115. Harari A, Cellerai C, Bellutti Enders F, Köstler J, Codarri L et al. Skewed association of polyfunctional antigen-specific CD8 T cell populations with HLA-B genotype. Proc Natl Acad Sci USA 2007;104:16233–16238 [CrossRef][PubMed]
    [Google Scholar]
  116. Precopio ML, Betts MR, Parrino J, Price DA, Gostick E et al. Immunization with vaccinia virus induces polyfunctional and phenotypically distinctive CD8(+) T cell responses. J Exp Med 2007;204:1405–1416 [CrossRef][PubMed]
    [Google Scholar]
  117. Ouyang J, Juszczynski P, Rodig SJ, Green MR, O'Donnell E et al. Viral induction and targeted inhibition of galectin-1 in EBV+ posttransplant lymphoproliferative disorders. Blood 2011;117:4315–4322 [CrossRef][PubMed]
    [Google Scholar]
  118. Horst D, Verweij MC, Davison AJ, Ressing ME, Wiertz EJ. Viral evasion of T cell immunity: ancient mechanisms offering new applications. Curr Opin Immunol 2011;23:96–103 [CrossRef][PubMed]
    [Google Scholar]
  119. Rajasagi NK, Suryawanshi A, Sehrawat S, Reddy PB, Mulik S et al. Galectin-1 reduces the severity of herpes simplex virus-induced ocular immunopathological lesions. J Immunol 2012;188:4631–4643 [CrossRef][PubMed]
    [Google Scholar]
  120. Jones RB, Ndhlovu LC, Barbour JD, Sheth PM, Jha AR et al. Tim-3 expression defines a novel population of dysfunctional T cells with highly elevated frequencies in progressive HIV-1 infection. J Exp Med 2008;205:2763–2779 [CrossRef][PubMed]
    [Google Scholar]
  121. Golden-Mason L, Palmer BE, Kassam N, Townshend-Bulson L, Livingston S et al. Negative immune regulator Tim-3 is overexpressed on T cells in hepatitis C virus infection and its blockade rescues dysfunctional CD4+ and CD8+ T cells. J Virol 2009;83:9122–9130 [CrossRef][PubMed]
    [Google Scholar]
  122. McMahan RH, Golden-Mason L, Nishimura MI, McMahon BJ, Kemper M et al. Tim-3 expression on PD-1+ HCV-specific human CTLs is associated with viral persistence, and its blockade restores hepatocyte-directed in vitro cytotoxicity. J Clin Invest 2010;120:4546–4557 [CrossRef][PubMed]
    [Google Scholar]
  123. Moorman JP, Wang JM, Zhang Y, Ji XJ, Ma CJ et al. Tim-3 pathway controls regulatory and effector T cell balance during hepatitis C virus infection. J Immunol 2012;189:755–766 [CrossRef][PubMed]
    [Google Scholar]
  124. Wu W, Shi Y, Li J, Chen F, Chen Z et al. Tim-3 expression on peripheral T cell subsets correlates with disease progression in hepatitis B infection. Virol J 2011;8:113 [CrossRef][PubMed]
    [Google Scholar]
  125. Klibi J, Niki T, Riedel A, Pioche-Durieu C, Souquere S et al. Blood diffusion and Th1-suppressive effects of galectin-9-containing exosomes released by Epstein-Barr virus-infected nasopharyngeal carcinoma cells. Blood 2009;113:1957–1966 [CrossRef][PubMed]
    [Google Scholar]
  126. Keryer-Bibens C, Pioche-Durieu C, Villemant C, Souquère S, Nishi N et al. Exosomes released by EBV-infected nasopharyngeal carcinoma cells convey the viral latent membrane protein 1 and the immunomodulatory protein galectin 9. BMC Cancer 2006;6:283 [CrossRef][PubMed]
    [Google Scholar]
  127. C-C H, Jeng W-J, Chen Y-C, Fang J-H, Huang C-H et al. Memory regulatory T cells increase only in inflammatory phase of chronic hepatitis B infection and related to galectin-9/Tim-3 interaction Sci Rep. Sci Rep 2017;7:1–-11
    [Google Scholar]
  128. Elahi S, Dinges WL, Lejarcegui N, Laing KJ, Collier AC et al. Protective HIV-specific CD8+ T cells evade Treg cell suppression. Nat Med 2011;17:989–995 [CrossRef][PubMed]
    [Google Scholar]
  129. Neumann-Haefelin C, McKiernan S, Ward S, Viazov S, Spangenberg HC et al. Dominant influence of an HLA-B27 restricted CD8+ T cell response in mediating HCV clearance and evolution. Hepatology 2006;43:563–572 [CrossRef][PubMed]
    [Google Scholar]
  130. Cannon MJ, Openshaw PJ, Askonas BA. Cytotoxic T cells clear virus but augment lung pathology in mice infected with respiratory syncytial virus. J Exp Med 1988;168:1163–1168 [CrossRef][PubMed]
    [Google Scholar]
  131. Lu X, McCoy KS, Xu J, Hu W, Chen H et al. Galectin-9 ameliorates respiratory syncytial virus-induced pulmonary immunopathology through regulating the balance between Th17 and regulatory T cells. Virus Res 2015;195:162–171 [CrossRef][PubMed]
    [Google Scholar]
  132. Bergmann CC, Altman JD, Hinton D, Stohlman SA. Inverted immunodominance and impaired cytolytic function of CD8+ T cells during viral persistence in the central nervous system. J Immunol 1999;163:3379–3387[PubMed]
    [Google Scholar]
  133. Lukacher AE, Moser JM, Hadley A, Altman JD. Visualization of polyoma virus-specific CD8+ T cells in vivo during infection and tumor rejection. J Immunol 1999;163:3369–3378[PubMed]
    [Google Scholar]
  134. Tham EL, Shrikant P, Mescher MF. Activation-induced nonresponsiveness: a Th-dependent regulatory checkpoint in the CTL response. J Immunol 2002;168:1190–1197 [CrossRef][PubMed]
    [Google Scholar]
  135. Rouse BT, Deshpande S. Viruses and autoimmunity: an affair but not a marriage contract. Rev Med Virol 2002;12:107–113 [CrossRef][PubMed]
    [Google Scholar]
  136. Zhao ZS, Granucci F, Yeh L, Schaffer PA, Cantor H. Molecular mimicry by herpes simplex virus-type 1: autoimmune disease after viral infection. Science 1998;279:1344–1347 [CrossRef][PubMed]
    [Google Scholar]
  137. Sehrawat S, Suryawanshi A, Hirashima M, Rouse BT. Role of Tim-3/galectin-9 inhibitory interaction in viral-induced immunopathology: shifting the balance toward regulators. J Immunol 2009;182:3191–3201 [CrossRef][PubMed]
    [Google Scholar]
  138. Shim JA, Park S, Lee ES, Niki T, Hirashima M et al. Galectin-9 ameliorates herpes simplex virus-induced inflammation through apoptosis. Immunobiology 2012;217:657–666 [CrossRef][PubMed]
    [Google Scholar]
  139. Sehrawat S, Reddy PB, Rajasagi N, Suryawanshi A, Hirashima M et al. Galectin-9/TIM-3 interaction regulates virus-specific primary and memory CD8 T cell response. PLoS Pathog 2010;6:e1000882 [CrossRef][PubMed]
    [Google Scholar]
  140. Gleason MK, Lenvik TR, McCullar V, Felices M, O'Brien MS et al. Tim-3 is an inducible human natural killer cell receptor that enhances interferon gamma production in response to galectin-9. Blood 2012;119:3064–3072 [CrossRef][PubMed]
    [Google Scholar]
  141. Ndhlovu LC, Lopez-Vergès S, Barbour JD, Jones RB, Jha AR et al. Tim-3 marks human natural killer cell maturation and suppresses cell-mediated cytotoxicity. Blood 2012;119:3734–3743 [CrossRef][PubMed]
    [Google Scholar]
  142. Khademi M, Illés Z, Gielen AW, Marta M, Takazawa N et al. T Cell Ig- and mucin-domain-containing molecule-3 (TIM-3) and TIM-1 molecules are differentially expressed on human Th1 and Th2 cells and in cerebrospinal fluid-derived mononuclear cells in multiple sclerosis. J Immunol 2004;172:7169–7176 [CrossRef][PubMed]
    [Google Scholar]
  143. Ju Y, Hou N, Meng J, Wang X, Zhang X et al. T cell immunoglobulin- and mucin-domain-containing molecule-3 (Tim-3) mediates natural killer cell suppression in chronic hepatitis B. J Hepatol 2010;52:322–329 [CrossRef][PubMed]
    [Google Scholar]
  144. Golden-Mason L, McMahan RH, Strong M, Reisdorph R, Mahaffey S et al. Galectin-9 functionally impairs natural killer cells in humans and mice. J Virol 2013;87:4835–4845 [CrossRef][PubMed]
    [Google Scholar]
  145. Korteweg C, Gu J. Pathology, molecular biology, and pathogenesis of avian influenza A (H5N1) infection in humans. Am J Pathol 2008;172:1155–1170 [CrossRef][PubMed]
    [Google Scholar]
  146. Snelgrove RJ, Goulding J, Didierlaurent AM, Lyonga D, Vekaria S et al. A critical function for CD200 in lung immune homeostasis and the severity of influenza infection. Nat Immunol 2008;9:1074–1083 [CrossRef][PubMed]
    [Google Scholar]
  147. Lin KL, Suzuki Y, Nakano H, Ramsburg E, Gunn MD. CCR2+ monocyte-derived dendritic cells and exudate macrophages produce influenza-induced pulmonary immune pathology and mortality. J Immunol 2008;180:2562–2572 [CrossRef][PubMed]
    [Google Scholar]
  148. Dinarello CA. Biologic basis for interleukin-1 in disease. Blood 1996;87:2095–2147[PubMed]
    [Google Scholar]
  149. Nabi IR, Shankar J, Dennis JW. The galectin lattice at a glance. J Cell Sci 2015;128:2213–2219 [CrossRef][PubMed]
    [Google Scholar]
  150. Montespan C, Marvin SA, Austin S, Burrage AM, Roger B et al. Multi-layered control of Galectin-8 mediated autophagy during adenovirus cell entry through a conserved PPxY motif in the viral capsid. PLoS Pathog 2017;13:e1006217 [CrossRef][PubMed]
    [Google Scholar]
  151. Staring J, von Castelmur E, Blomen VA, van den Hengel LG, Brockmann M et al. PLA2G16 represents a switch between entry and clearance of Picornaviridae. Nature 2017;541:412–416 [CrossRef][PubMed]
    [Google Scholar]
  152. Wang X, Zhang S, Sun C, Yuan ZG, Wu X et al. Proteomic profiles of mouse neuro N2a cells infected with variant virulence of rabies viruses. J Microbiol Biotechnol 2011;21:366–373[PubMed]
    [Google Scholar]
  153. Dapat I, Pascapurnama D, Iwasaki H, Labayo H, Chagan-Yasutan H et al. Secretion of Galectin-9 as a DAMP during Dengue Virus Infection in THP-1 Cells. Int J Mol Sci 2017;18:1644 [CrossRef][PubMed]
    [Google Scholar]
  154. Bosnjak L, Sahlström P, Paquin-Proulx D, Leeansyah E, Moll M et al. Contact-dependent interference with invariant NKT cell activation by herpes simplex virus-infected cells. J Immunol 2012;188:6216–6224 [CrossRef][PubMed]
    [Google Scholar]
  155. Pioche-Durieu C, Keryer C, Souquère S, Bosq J, Faigle W et al. In nasopharyngeal carcinoma cells, Epstein-Barr virus LMP1 interacts with galectin 9 in membrane raft elements resistant to simvastatin. J Virol 2005;79:13326–13337 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.001208
Loading
/content/journal/jgv/10.1099/jgv.0.001208
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error