1887

Abstract

Analysis of transcriptome sequence data from eggs and second-stage juveniles (J2s) of sugar beet cyst nematode (SBCN, Heterodera schachtii) identified the full-length genome of a positive-sense single-stranded RNA virus, provisionally named sugar beet cyst nematode virus 1 (SBCNV1). The SBCNV1 sequence was detected in both eggs and J2s, indicating its possible vertical transmission. The 9503-nucleotide genome sequence contains a single long open reading frame, which was predicted to encode a polyprotein with conserved domains for picornaviral structural proteins proximal to its amino terminus and RNA helicase, cysteine proteinase and RNA-dependent RNA polymerase (RdRp) conserved domains proximal to its carboxyl terminus, hallmarks of viruses belonging to the order Picornavirales. Phylogenetic analysis of the predicted SBCNV1 RdRp amino acid sequence indicated that the SBCNV1 sequence is most closely related to members of the family Secoviridae, which includes genera of nematode-transmitted plant-infecting viruses. SBCNV1 represents the first fully sequenced viral genome from SBCN.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.001139
2018-08-29
2024-10-04
Loading full text...

Full text loading...

/deliver/fulltext/jgv/99/10/1418.html?itemId=/content/journal/jgv/10.1099/jgv.0.001139&mimeType=html&fmt=ahah

References

  1. Félix MA, Ashe A, Piffaretti J, Wu G, Nuez I et al. Natural and experimental infection of Caenorhabditis nematodes by novel viruses related to nodaviruses. PLoS Biol 2011; 9:e1000586 [View Article][PubMed]
    [Google Scholar]
  2. Franz CJ, Zhao G, Félix MA, Wang D. Complete genome sequence of Le Blanc virus, a third Caenorhabditis nematode-infecting virus. J Virol 2012; 86:11940 [View Article][PubMed]
    [Google Scholar]
  3. Cotton JA, Steinbiss S, Yokoi T, Tsai IJ, Kikuchi T. An expressed, endogenous Nodavirus-like element captured by a retrotransposon in the genome of the plant parasitic nematode Bursaphelenchus xylophilus. Sci Rep 2016; 6:39749 [View Article][PubMed]
    [Google Scholar]
  4. Bekal S, Domier LL, Gonfa B, McCoppin NK, Lambert KN et al. A novel flavivirus in the soybean cyst nematode. J Gen Virol 2014; 95:1272–1280 [View Article][PubMed]
    [Google Scholar]
  5. Bekal S, Domier LL, Niblack TL, Lambert KN. Discovery and initial analysis of novel viral genomes in the soybean cyst nematode. J Gen Virol 2011; 92:1870–1879 [View Article][PubMed]
    [Google Scholar]
  6. Ruark CL, Koenning SR, Davis EL, Opperman CH, Lommel SA et al. Soybean cyst nematode culture collections and field populations from North Carolina and Missouri reveal high incidences of infection by viruses. PLoS One 2017; 12:e0171514 [View Article][PubMed]
    [Google Scholar]
  7. Fosu-Nyarko J, Nicol P, Naz F, Gill R, Jones MG. Analysis of the transcriptome of the infective stage of the beet cyst nematode, H. schachtii. PLoS One 2016; 11:e0147511 [View Article][PubMed]
    [Google Scholar]
  8. Ruark CL, Gardner M, Mitchum MG, Davis EL, Sit TL. Novel RNA viruses within plant parasitic cyst nematodes. PLoS One 2018; 13:e0193881 [View Article][PubMed]
    [Google Scholar]
  9. Zhou Y, Wang Y, Zhu X, Liu R, Xiang P et al. Management of the soybean cyst nematode Heterodera glycines with combinations of different rhizobacterial strains on soybean. PLoS One 2017; 12:e0182654 [View Article][PubMed]
    [Google Scholar]
  10. Subbotin SA, Vierstraete A, de Ley P, Rowe J, Waeyenberge L et al. Phylogenetic relationships within the cyst-forming nematodes (Nematoda, Heteroderidae) based on analysis of sequences from the ITS regions of ribosomal DNA. Mol Phylogenet Evol 2001; 21:1–16 [View Article][PubMed]
    [Google Scholar]
  11. Muller J. The economic importance of Heterodera schachtii in Europe. Helminthologia 1999; 36:205–213
    [Google Scholar]
  12. Abawi GS. Effects of initial population densities of Heterodera schachtii on yield of cabbage and table beets in New York state. Phytopathology 1980; 70:481–485 [View Article]
    [Google Scholar]
  13. de Boer JM, Yan Y, Wang X, Smant G, Hussey RS et al. Developmental expression of secretory beta-1,4-endoglucanases in the subventral esophageal glands of Heterodera glycines. Mol Plant Microbe Interact 1999; 12:663–669 [View Article][PubMed]
    [Google Scholar]
  14. He F. Total RNA extraction from C. elegans. Bio Protoc 2011; Bio101:e47
    [Google Scholar]
  15. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 2011; 29:644–652 [View Article][PubMed]
    [Google Scholar]
  16. Elsworth B, Wasmuth J, Blaxter M. NEMBASE4: the nematode transcriptome resource. Int J Parasitol 2011; 41:881–894 [View Article][PubMed]
    [Google Scholar]
  17. Chenchik A, Zhu YY, Diatchenko L, Li R, Hill J et al. Generation and use of high-quality cDNA form small amounts of total RNA by SMART PCR. In Siebert P, Larrick J. (editors) Gene Cloning and Analysis by RT–PCR Natick, MA: Biotechniques Books; 1998 pp. 305–319
    [Google Scholar]
  18. Spiess AN, Ivell R. A highly efficient method for long-chain cDNA synthesis using trehalose and betaine. Anal Biochem 2002; 301:168–174 [View Article][PubMed]
    [Google Scholar]
  19. Liou RF, Blumenthal T. trans-spliced Caenorhabditis elegans mRNAs retain trimethylguanosine caps. Mol Cell Biol 1990; 10:1764–1768 [View Article][PubMed]
    [Google Scholar]
  20. Lall S, Friedman CC, Jankowska-Anyszka M, Stepinski J, Darzynkiewicz E et al. Contribution of trans-splicing, 5' -leader length, cap-poly(A) synergism, and initiation factors to nematode translation in an Ascaris suum embryo cell-free system. J Biol Chem 2004; 279:45573–45585 [View Article][PubMed]
    [Google Scholar]
  21. Liu W, Jankowska-Anyszka M, Piecyk K, Dickson L, Wallace A et al. Structural basis for nematode eIF4E binding an m2,2,7G-Cap and its implications for translation initiation. Nucleic Acids Res 2011; 39:8820–8832 [View Article][PubMed]
    [Google Scholar]
  22. Blumenthal T, Steward K. RNA processing and gene structure. In Riddle DL, Blumenthal T, Meyer BJ, Priess JR. (editors) C Elegans II Plainview, NY: Cold Spring Harbor Laboratory Press; 1997 pp. 117–145
    [Google Scholar]
  23. Nakagawa S, Niimura Y, Gojobori T, Tanaka H, Miura K. Diversity of preferred nucleotide sequences around the translation initiation codon in eukaryote genomes. Nucleic Acids Res 2008; 36:861–871 [View Article][PubMed]
    [Google Scholar]
  24. Thompson JR, Dasgupta I, Fuchs M, Iwanami T, Karasev AV et al. ICTV virus taxonomy profile: Secoviridae. J Gen Virol 2017; 98:529–531 [View Article][PubMed]
    [Google Scholar]
  25. Yamasaki K, Weihl CC, Roos RP. Alternative translation initiation of Theiler's murine encephalomyelitis virus. J Virol 1999; 73:8519–8526[PubMed]
    [Google Scholar]
  26. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 2016; 44:D279–D285 [View Article][PubMed]
    [Google Scholar]
  27. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  28. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  29. Le Gall O, Christian P, Fauquet CM, King AM, Knowles NJ et al. Picornavirales, a proposed order of positive-sense single-stranded RNA viruses with a pseudo-T = 3 virion architecture. Arch Virol 2008; 153:715–727 [View Article][PubMed]
    [Google Scholar]
  30. Koonin EV, Dolja VV. Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit Rev Biochem Mol Biol 1993; 28:375–430 [View Article][PubMed]
    [Google Scholar]
  31. Millán-Leiva A, Jakubowska AK, Ferré J, Herrero S. Genome sequence of SeIV-1, a novel virus from the Iflaviridae family infective to Spodoptera exigua. J Invertebr Pathol 2012; 109:127–133 [View Article][PubMed]
    [Google Scholar]
  32. Murakami R, Suetsugu Y, Kobayashi T, Nakashima N. The genome sequence and transmission of an iflavirus from the brown planthopper, Nilaparvata lugens. Virus Res 2013; 176:179–187 [View Article][PubMed]
    [Google Scholar]
  33. Saqib M, Wylie SJ, Jones MGK. Serendipitous identification of a new Iflavirus -like virus infecting tomato and its subsequent characterization. Plant Pathol 2015; 64:519–527 [View Article]
    [Google Scholar]
  34. Wang J, Czech B, Crunk A, Wallace A, Mitreva M et al. Deep small RNA sequencing from the nematode Ascaris reveals conservation, functional diversification, and novel developmental profiles. Genome Res 2011; 21:1462–1477 [View Article][PubMed]
    [Google Scholar]
  35. Hause BM, Hesse RA, Anderson GA. Identification of a novel Picornavirales virus distantly related to posavirus in swine feces. Virus Genes 2015; 51:144–147 [View Article][PubMed]
    [Google Scholar]
  36. Shan T, Li L, Simmonds P, Wang C, Moeser A et al. The fecal virome of pigs on a high-density farm. J Virol 2011; 85:11697–11708 [View Article][PubMed]
    [Google Scholar]
  37. Koonin EV, Wolf YI, Nagasaki K, Dolja VV. The Big Bang of picorna-like virus evolution antedates the radiation of eukaryotic supergroups. Nat Rev Microbiol 2008; 6:925–939 [View Article][PubMed]
    [Google Scholar]
  38. Shi M, Lin XD, Tian JH, Chen LJ, Chen X et al. Redefining the invertebrate RNA virosphere. Nature 2016; 540:539–543 [View Article][PubMed]
    [Google Scholar]
/content/journal/jgv/10.1099/jgv.0.001139
Loading
/content/journal/jgv/10.1099/jgv.0.001139
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error