1887

Abstract

Poxviruses comprise a group of large dsDNA viruses that include members relevant to human and animal health, such as variola virus, monkeypox virus, cowpox virus and vaccinia virus (VACV). Poxviruses are remarkable for their unique replication cycle, which is restricted to the cytoplasm of infected cells. The independence from the host nucleus requires poxviruses to encode most of the enzymes involved in DNA replication, transcription and processing. Here, we use the CRISPR/Cas9 genome engineering system to induce DNA damage to VACV (strain Western Reserve) genomes. We show that targeting CRISPR/Cas9 to essential viral genes limits virus replication efficiently. Although VACV is a strictly cytoplasmic pathogen, we observed extensive viral genome editing at the target site; this is reminiscent of a non-homologous end-joining DNA repair mechanism. This pathway was not dependent on the viral DNA ligase, but critically involved the cellular DNA ligase IV. Our data show that DNA ligase IV can act outside of the nucleus to allow repair of dsDNA breaks in poxvirus genomes. This pathway might contribute to the introduction of mutations within the genome of poxviruses and may thereby promote the evolution of these viruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.001034
2018-04-20
2019-09-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/99/6/790.html?itemId=/content/journal/jgv/10.1099/jgv.0.001034&mimeType=html&fmt=ahah

References

  1. McFadden G. Poxvirus tropism. Nat Rev Microbiol 2005; 3: 201– 213 [CrossRef] [PubMed]
    [Google Scholar]
  2. Essbauer S, Pfeffer M, Meyer H. Zoonotic poxviruses. Vet Microbiol 2010; 140: 229– 236 [CrossRef] [PubMed]
    [Google Scholar]
  3. Kim M. Replicating poxviruses for human cancer therapy. J Microbiol 2015; 53: 209– 218 [CrossRef] [PubMed]
    [Google Scholar]
  4. Gómez CE, Nájera JL, Krupa M, Perdiguero B, Esteban M. MVA and NYVAC as vaccines against emergent infectious diseases and cancer. Curr Gene Ther 2011; 11: 189– 217 [CrossRef] [PubMed]
    [Google Scholar]
  5. Volz A, Sutter G. Modified vaccinia virus Ankara: history, value in basic research, and current perspectives for vaccine development. Adv Virus Res 2017; 97: 187– 243 [CrossRef] [PubMed]
    [Google Scholar]
  6. Katsafanas GC, Moss B. Colocalization of transcription and translation within cytoplasmic poxvirus factories coordinates viral expression and subjugates host functions. Cell Host Microbe 2007; 2: 221– 228 [CrossRef] [PubMed]
    [Google Scholar]
  7. Moss B. Poxvirus DNA replication. Cold Spring Harb Perspect Biol 2013; 5: a010199 [CrossRef] [PubMed]
    [Google Scholar]
  8. Kerr SM, Johnston LH, Odell M, Duncan SA, Law KM et al. Vaccinia DNA ligase complements Saccharomyces cerevisiae cdc9, localizes in cytoplasmic factories and affects virulence and virus sensitivity to DNA damaging agents. EMBO J 1991; 10: 4343– 4350 [PubMed]
    [Google Scholar]
  9. Senkevich TG, Koonin EV, Moss B. Predicted poxvirus FEN1-like nuclease required for homologous recombination, double-strand break repair and full-size genome formation. Proc Natl Acad Sci USA 2009; 106: 17921– 17926 [CrossRef] [PubMed]
    [Google Scholar]
  10. Colinas RJ, Goebel SJ, Davis SW, Johnson GP, Norton EK et al. A DNA ligase gene in the Copenhagen strain of vaccinia virus is nonessential for viral replication and recombination. Virology 1990; 179: 267– 275 [CrossRef] [PubMed]
    [Google Scholar]
  11. Kerr SM, Smith GL. Vaccinia virus DNA ligase is nonessential for virus replication: recovery of plasmids from virus-infected cells. Virology 1991; 180: 625– 632 [CrossRef] [PubMed]
    [Google Scholar]
  12. Paran N, de Silva FS, Senkevich TG, Moss B. Cellular DNA ligase I is recruited to cytoplasmic vaccinia virus factories and masks the role of the vaccinia ligase in viral DNA replication. Cell Host Microbe 2009; 6: 563– 569 [CrossRef] [PubMed]
    [Google Scholar]
  13. Parks RJ, Winchcombe-Forhan C, Delange AM, Xing X, Evans DH. DNA ligase gene disruptions can depress viral growth and replication in poxvirus-infected cells. Virus Res 1998; 56: 135– 147 [CrossRef] [PubMed]
    [Google Scholar]
  14. Klein B, Filon AR, van Zeeland AA, van der Eb AJ. Survival of UV-irradiated vaccinia virus in normal and xeroderma pigmentosum fibroblasts; evidence for repair of UV-damaged viral DNA. Mutat Res 1994; 307: 25– 32 [CrossRef] [PubMed]
    [Google Scholar]
  15. Závadová Z. Host-cell repair of vaccinia virus and of double stranded RNA of encephalomyocarditis virus. Nat New Biol 1971; 233: 123 [CrossRef] [PubMed]
    [Google Scholar]
  16. Cleaver JE, Lam ET, Revet I. Disorders of nucleotide excision repair: the genetic and molecular basis of heterogeneity. Nat Rev Genet 2009; 10: 756– 768 [CrossRef] [PubMed]
    [Google Scholar]
  17. Lytle CD, Aaronson SA, Harvey E. Host-cell reactivation in mammalian cells. II. Survival of herpes simplex virus and vaccinia virus in normal human and xeroderma pigmentosum cells. Int J Radiat Biol Relat Stud Phys Chem Med 1972; 22: 159– 165 [PubMed] [Crossref]
    [Google Scholar]
  18. Timson DJ, Singleton MR, Wigley DB. DNA ligases in the repair and replication of DNA. Mutat Res 2000; 460: 301– 318 [CrossRef] [PubMed]
    [Google Scholar]
  19. Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 2010; 79: 181– 211 [CrossRef] [PubMed]
    [Google Scholar]
  20. Davis AJ, Chen DJ. DNA double strand break repair via non-homologous end-joining. Transl Cancer Res 2013; 2: 130– 143 [CrossRef] [PubMed]
    [Google Scholar]
  21. Deriano L, Roth DB. Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage. Annu Rev Genet 2013; 47: 433– 455 [CrossRef] [PubMed]
    [Google Scholar]
  22. Ceccaldi R, Rondinelli B, D'Andrea AD. Repair Pathway Choices and Consequences at the Double-Strand Break. Trends Cell Biol 2016; 26: 52– 64 [CrossRef] [PubMed]
    [Google Scholar]
  23. Carroll D. Genome editing by targeted chromosomal mutagenesis. Methods Mol Biol 2015; 1239: 1– 13 [CrossRef] [PubMed]
    [Google Scholar]
  24. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337: 816– 821 [CrossRef] [PubMed]
    [Google Scholar]
  25. Mali P, Esvelt KM, Church GM. Cas9 as a versatile tool for engineering biology. Nat Methods 2013; 10: 957– 963 [CrossRef] [PubMed]
    [Google Scholar]
  26. Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014; 157: 1262– 1278 [CrossRef] [PubMed]
    [Google Scholar]
  27. Sternberg SH, Doudna JA. Expanding the biologist's toolkit with CRISPR-Cas9. Mol Cell 2015; 58: 568– 574 [CrossRef] [PubMed]
    [Google Scholar]
  28. Soppe JA, Lebbink RJ. Antiviral goes viral: harnessing CRISPR/Cas9 to combat viruses in humans. Trends Microbiol 2017; 25: 833– 850 [CrossRef] [PubMed]
    [Google Scholar]
  29. Bi Y, Sun L, Gao D, Ding C, Li Z et al. High-efficiency targeted editing of large viral genomes by RNA-guided nucleases. PLoS Pathog 2014; 10: e1004090 [CrossRef] [PubMed]
    [Google Scholar]
  30. Russell TA, Stefanovic T, Tscharke DC. Engineering herpes simplex viruses by infection-transfection methods including recombination site targeting by CRISPR/Cas9 nucleases. J Virol Methods 2015; 213: 18– 25 [CrossRef] [PubMed]
    [Google Scholar]
  31. Suenaga T, Kohyama M, Hirayasu K, Arase H. Engineering large viral DNA genomes using the CRISPR-Cas9 system. Microbiol Immunol 2014; 58: 513– 522 [CrossRef] [PubMed]
    [Google Scholar]
  32. Yuan M, Zhang W, Wang J, Al Yaghchi C, Ahmed J et al. Efficiently editing the vaccinia virus genome by using the CRISPR-Cas9 system. J Virol 2015; 89: 5176– 5179 [CrossRef] [PubMed]
    [Google Scholar]
  33. Ebina H, Misawa N, Kanemura Y, Koyanagi Y. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep 2013; 3: 2510 [CrossRef] [PubMed]
    [Google Scholar]
  34. Hu W, Kaminski R, Yang F, Zhang Y, Cosentino L et al. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc Natl Acad Sci USA 2014; 111: 11461– 11466 [CrossRef] [PubMed]
    [Google Scholar]
  35. Kaminski R, Chen Y, Fischer T, Tedaldi E, Napoli A et al. Elimination of HIV-1 genomes from human T-lymphoid cells by CRISPR/Cas9 gene editing. Sci Rep 2016; 6: 22555 [CrossRef] [PubMed]
    [Google Scholar]
  36. Liao HK, Gu Y, Diaz A, Marlett J, Takahashi Y et al. Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells. Nat Commun 2015; 6: 6413 [CrossRef] [PubMed]
    [Google Scholar]
  37. Wang Z, Pan Q, Gendron P, Zhu W, Guo F et al. CRISPR/Cas9-derived mutations both inhibit HIV-1 replication and accelerate viral escape. Cell Rep 2016; 15: 481– 489 [CrossRef] [PubMed]
    [Google Scholar]
  38. Zhu W, Lei R, Le Duff Y, Li J, Guo F et al. The CRISPR/Cas9 system inactivates latent HIV-1 proviral DNA. Retrovirology 2015; 12: 22 [CrossRef] [PubMed]
    [Google Scholar]
  39. Lebbink RJ, de Jong DC, Wolters F, Kruse EM, van Ham PM et al. A combinational CRISPR/Cas9 gene-editing approach can halt HIV replication and prevent viral escape. Sci Rep 2017; 7: 41968 [CrossRef] [PubMed]
    [Google Scholar]
  40. Wang J, Quake SR. RNA-guided endonuclease provides a therapeutic strategy to cure latent herpesviridae infection. Proc Natl Acad Sci USA 2014; 111: 13157– 13162 [CrossRef] [PubMed]
    [Google Scholar]
  41. van Diemen FR, Kruse EM, Hooykaas MJ, Bruggeling CE, Schürch AC et al. CRISPR/Cas9-Mediated genome editing of herpesviruses limits productive and latent infections. PLoS Pathog 2016; 12: e1005701 [CrossRef] [PubMed]
    [Google Scholar]
  42. Roehm PC, Shekarabi M, Wollebo HS, Bellizzi A, He L et al. Inhibition of HSV-1 replication by gene editing strategy. Sci Rep 2016; 6: 23146 [CrossRef] [PubMed]
    [Google Scholar]
  43. Kennedy EM, Kornepati AV, Goldstein M, Bogerd HP, Poling BC et al. Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells by using a bacterial CRISPR/Cas RNA-guided endonuclease. J Virol 2014; 88: 11965– 11972 [CrossRef] [PubMed]
    [Google Scholar]
  44. Zhen S, Hua L, Takahashi Y, Narita S, Liu YH et al. In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by CRISPR/Cas9. Biochem Biophys Res Commun 2014; 450: 1422– 1426 [CrossRef] [PubMed]
    [Google Scholar]
  45. Lin SR, Yang HC, Kuo YT, Liu CJ, Yang TY et al. The CRISPR/Cas9 system facilitates clearance of the intrahepatic HBV templates in vivo. Mol Ther Nucleic Acids 2014; 3: e186 [CrossRef] [PubMed]
    [Google Scholar]
  46. Kennedy EM, Bassit LC, Mueller H, Kornepati AV, Bogerd HP et al. Suppression of hepatitis B virus DNA accumulation in chronically infected cells using a bacterial CRISPR/Cas RNA-guided DNA endonuclease. Virology 2015; 476: 196– 205 [CrossRef] [PubMed]
    [Google Scholar]
  47. Price AA, Sampson TR, Ratner HK, Grakoui A, Weiss DS. Cas9-mediated targeting of viral RNA in eukaryotic cells. Proc Natl Acad Sci USA 2015; 112: 6164– 6169 [CrossRef] [PubMed]
    [Google Scholar]
  48. Wollebo HS, Bellizzi A, Kaminski R, Hu W, White MK et al. CRISPR/Cas9 System as an agent for eliminating polyomavirus JC infection. PLoS One 2015; 10: e0136046 [CrossRef] [PubMed]
    [Google Scholar]
  49. Cong L, Ran FA, Cox D, Lin S, Barretto R et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013; 339: 819– 823 [CrossRef] [PubMed]
    [Google Scholar]
  50. Dickinson DJ, Ward JD, Reiner DJ, Goldstein B. Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Methods 2013; 10: 1028– 1034 [CrossRef] [PubMed]
    [Google Scholar]
  51. Tsien RY. The green fluorescent protein. Annu Rev Biochem 1998; 67: 509– 544 [CrossRef] [PubMed]
    [Google Scholar]
  52. Nakano E, Panicali D, Paoletti E. Molecular genetics of vaccinia virus: demonstration of marker rescue. Proc Natl Acad Sci USA 1982; 79: 1593– 1596 [CrossRef] [PubMed]
    [Google Scholar]
  53. Yao XD, Evans DH. Effects of DNA structure and homology length on vaccinia virus recombination. J Virol 2001; 75: 6923– 6932 [CrossRef] [PubMed]
    [Google Scholar]
  54. Yao XD, Evans DH. Construction of recombinant vaccinia viruses using leporipoxvirus-catalyzed recombination and reactivation of orthopoxvirus DNA. Methods Mol Biol 2004; 269: 51– 64 [CrossRef] [PubMed]
    [Google Scholar]
  55. Domi A, Moss B. Cloning the vaccinia virus genome as a bacterial artificial chromosome in Escherichia coli and recovery of infectious virus in mammalian cells. Proc Natl Acad Sci USA 2002; 99: 12415– 12420 [CrossRef] [PubMed]
    [Google Scholar]
  56. Falkner FG, Moss B. Transient dominant selection of recombinant vaccinia viruses. J Virol 1990; 64: 3108– 3111 [PubMed]
    [Google Scholar]
  57. Mackett M, Smith GL, Moss B. General method for production and selection of infectious vaccinia virus recombinants expressing foreign genes. J Virol 1984; 49: 857– 864 [PubMed]
    [Google Scholar]
  58. Willer DO, Yao XD, Mann MJ, Evans DH. In vitro concatemer formation catalyzed by vaccinia virus DNA polymerase. Virology 2000; 278: 562– 569 [CrossRef] [PubMed]
    [Google Scholar]
  59. Irwin CR, Farmer A, Willer DO, Evans DH. In-fusion® cloning with vaccinia virus DNA polymerase. Methods Mol Biol 2012; 890: 23– 35 [CrossRef] [PubMed]
    [Google Scholar]
  60. Xu Z, Zikos D, Osterrieder N, Tischer BK. Generation of a complete single-gene knockout bacterial artificial chromosome library of cowpox virus and identification of its essential genes. J Virol 2014; 88: 490– 502 [CrossRef] [PubMed]
    [Google Scholar]
  61. Heljasvaara R, Rodríguez D, Risco C, Carrascosa JL, Esteban M et al. The major core protein P4a (A10L gene) of vaccinia virus is essential for correct assembly of viral DNA into the nucleoprotein complex to form immature viral particles. J Virol 2001; 75: 5778– 5795 [CrossRef] [PubMed]
    [Google Scholar]
  62. Warren RD, Cotter CA, Moss B. Reverse genetics analysis of poxvirus intermediate transcription factors. J Virol 2012; 86: 9514– 9519 [CrossRef] [PubMed]
    [Google Scholar]
  63. Seo D, Kim NY, Lee JA, Han KR, Hur GH et al. Protection against lethal vaccinia virus infection in mice using an siRNA targeting the A5R gene. Antivir Ther 2016; 21: 397– 404 [CrossRef] [PubMed]
    [Google Scholar]
  64. Rempel RE, Traktman P. Vaccinia virus B1 kinase: phenotypic analysis of temperature-sensitive mutants and enzymatic characterization of recombinant proteins. J Virol 1992; 66: 4413– 4426 [PubMed]
    [Google Scholar]
  65. Stuart DT, Upton C, Higman MA, Niles EG, McFadden G. A poxvirus-encoded uracil DNA glycosylase is essential for virus viability. J Virol 1993; 67: 2503– 2512 [PubMed]
    [Google Scholar]
  66. Evans E, Traktman P. Characterization of vaccinia virus DNA replication mutants with lesions in the D5 gene. Chromosoma 1992; 102: S72– S82 [CrossRef] [PubMed]
    [Google Scholar]
  67. Szajner P, Jaffe H, Weisberg AS, Moss B. Vaccinia virus G7L protein Interacts with the A30L protein and is required for association of viral membranes with dense viroplasm to form immature virions. J Virol 2003; 77: 3418– 3429 [CrossRef] [PubMed]
    [Google Scholar]
  68. Hamilton MD, Evans DH. Enzymatic processing of replication and recombination intermediates by the vaccinia virus DNA polymerase. Nucleic Acids Res 2005; 33: 2259– 2268 [CrossRef] [PubMed]
    [Google Scholar]
  69. Goetz JD, Motycka TA, Han M, Jasin M, Tomkinson AE. Reduced repair of DNA double-strand breaks by homologous recombination in a DNA ligase I-deficient human cell line. DNA Repair 2005; 4: 649– 654 [CrossRef] [PubMed]
    [Google Scholar]
  70. Salzman NP. The rate of formation of vaccinia deoxyribonucleic acid and vaccinia virus. Virology 1960; 10: 150– 152 [CrossRef] [PubMed]
    [Google Scholar]
  71. Gammon DB, Evans DH. The 3′-to-5′ exonuclease activity of vaccinia virus DNA polymerase is essential and plays a role in promoting virus genetic recombination. J Virol 2009; 83: 4236– 4250 [CrossRef] [PubMed]
    [Google Scholar]
  72. Ball LA. Fidelity of homologous recombination in vaccinia virus DNA. Virology 1995; 209: 688– 691 [CrossRef] [PubMed]
    [Google Scholar]
  73. Qin L, Evans DH. Genome scale patterns of recombination between coinfecting vaccinia viruses. J Virol 2014; 88: 5277– 5286 [CrossRef] [PubMed]
    [Google Scholar]
  74. Chu VT, Weber T, Wefers B, Wurst W, Sander S et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol 2015; 33: 543– 548 [CrossRef] [PubMed]
    [Google Scholar]
  75. Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR et al. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol 2015; 33: 538– 542 [CrossRef] [PubMed]
    [Google Scholar]
  76. Zhang Y, Hefferin ML, Chen L, Shim EY, Tseng HM et al. Role of Dnl4-Lif1 in nonhomologous end-joining repair complex assembly and suppression of homologous recombination. Nat Struct Mol Biol 2007; 14: 639– 646 [CrossRef] [PubMed]
    [Google Scholar]
  77. Liang L, Deng L, Nguyen SC, Zhao X, Maulion CD et al. Human DNA ligases I and III, but not ligase IV, are required for microhomology-mediated end joining of DNA double-strand breaks. Nucleic Acids Res 2008; 36: 3297– 3310 [CrossRef] [PubMed]
    [Google Scholar]
  78. Lu G, Duan J, Shu S, Wang X, Gao L et al. Ligase I and ligase III mediate the DNA double-strand break ligation in alternative end-joining. Proc Natl Acad Sci USA 2016; 113: 1256– 1260 [CrossRef] [PubMed]
    [Google Scholar]
  79. Paul K, Wang M, Mladenov E, Bencsik-Theilen A, Bednar T et al. DNA ligases I and III cooperate in alternative non-homologous end-joining in vertebrates. PLoS One 2013; 8: e59505 [CrossRef] [PubMed]
    [Google Scholar]
  80. Simsek D, Brunet E, Wong SY, Katyal S, Gao Y et al. DNA ligase III promotes alternative nonhomologous end-joining during chromosomal translocation formation. PLoS Genet 2011; 7: e1002080 [CrossRef] [PubMed]
    [Google Scholar]
  81. Soni A, Siemann M, Grabos M, Murmann T, Pantelias GE et al. Requirement for Parp-1 and DNA ligases 1 or 3 but not of Xrcc1 in chromosomal translocation formation by backup end joining. Nucleic Acids Res 2014; 42: 6380– 6392 [CrossRef] [PubMed]
    [Google Scholar]
  82. Bétermier M, Bertrand P, Lopez BS. Is non-homologous end-joining really an inherently error-prone process?. PLoS Genet 2014; 10: e1004086 [CrossRef] [PubMed]
    [Google Scholar]
  83. Frit P, Barboule N, Yuan Y, Gomez D, Calsou P. Alternative end-joining pathway(s): bricolage at DNA breaks. DNA Repair 2014; 17: 81– 97 [CrossRef] [PubMed]
    [Google Scholar]
  84. Guirouilh-Barbat J, Huck S, Bertrand P, Pirzio L, Desmaze C et al. Impact of the KU80 pathway on NHEJ-induced genome rearrangements in mammalian cells. Mol Cell 2004; 14: 611– 623 [CrossRef] [PubMed]
    [Google Scholar]
  85. Guirouilh-Barbat J, Rass E, Plo I, Bertrand P, Lopez BS. Defects in XRCC4 and KU80 differentially affect the joining of distal nonhomologous ends. Proc Natl Acad Sci USA 2007; 104: 20902– 20907 [CrossRef] [PubMed]
    [Google Scholar]
  86. Rass E, Grabarz A, Plo I, Gautier J, Bertrand P et al. Role of Mre11 in chromosomal nonhomologous end joining in mammalian cells. Nat Struct Mol Biol 2009; 16: 819– 824 [CrossRef] [PubMed]
    [Google Scholar]
  87. Girard PM, Kysela B, Härer CJ, Doherty AJ, Jeggo PA. Analysis of DNA ligase IV mutations found in LIG4 syndrome patients: the impact of two linked polymorphisms. Hum Mol Genet 2004; 13: 2369– 2376 [CrossRef] [PubMed]
    [Google Scholar]
  88. Tadi SK, Sebastian R, Dahal S, Babu RK, Choudhary B et al. Microhomology-mediated end joining is the principal mediator of double-strand break repair during mitochondrial DNA lesions. Mol Biol Cell 2016; 27: 223– 235 [CrossRef] [PubMed]
    [Google Scholar]
  89. Berg E, Christensen MO, Dalla Rosa I, Wannagat E, Jänicke RU et al. XRCC4 controls nuclear import and distribution of ligase IV and exchanges faster at damaged DNA in complex with Ligase IV. DNA Repair 2011; 10: 1232– 1242 [CrossRef] [PubMed]
    [Google Scholar]
  90. Francis DB, Kozlov M, Chavez J, Chu J, Malu S et al. DNA ligase IV regulates XRCC4 nuclear localization. DNA Repair 2014; 21: 36– 42 [CrossRef] [PubMed]
    [Google Scholar]
  91. Windhofer F, Wu W, Iliakis G. Low levels of DNA ligases III and IV sufficient for effective NHEJ. J Cell Physiol 2007; 213: 475– 483 [CrossRef] [PubMed]
    [Google Scholar]
  92. Prescott DM, Kates J, Kirkpatrick JB. Replication of vaccinia virus DNA in enucleated L-cells. J Mol Biol 1971; 59: 505– 508 [CrossRef] [PubMed]
    [Google Scholar]
  93. Pennington TH, Follett EA. Vaccinia virus replication in enucleate BSC-1 cells: particle production and synthesis of viral DNA and proteins. J Virol 1974; 13: 488– 493 [PubMed]
    [Google Scholar]
  94. Sivan G, Martin SE, Myers TG, Buehler E, Szymczyk KH et al. Human genome-wide RNAi screen reveals a role for nuclear pore proteins in poxvirus morphogenesis. Proc Natl Acad Sci USA 2013; 110: 3519– 3524 [CrossRef] [PubMed]
    [Google Scholar]
  95. Lin YC, Li J, Irwin CR, Jenkins H, Delange L et al. Vaccinia virus DNA ligase recruits cellular topoisomerase II to sites of viral replication and assembly. J Virol 2008; 82: 5922– 5932 [CrossRef] [PubMed]
    [Google Scholar]
  96. Hsiao JC, Chao CC, Young MJ, Chang YT, Cho EC et al. A poxvirus host range protein, CP77, binds to a cellular protein, HMG20A, and regulates its dissociation from the vaccinia virus genome in CHO-K1 cells. J Virol 2006; 80: 7714– 7728 [CrossRef] [PubMed]
    [Google Scholar]
  97. Oh J, Broyles SS. Host cell nuclear proteins are recruited to cytoplasmic vaccinia virus replication complexes. J Virol 2005; 79: 12852– 12860 [CrossRef] [PubMed]
    [Google Scholar]
  98. Ferguson BJ, Mansur DS, Peters NE, Ren H, Smith GL. DNA-PK is a DNA sensor for IRF-3-dependent innate immunity. Elife 2012; 1: e00047 [CrossRef] [PubMed]
    [Google Scholar]
  99. Peters NE, Ferguson BJ, Mazzon M, Fahy AS, Krysztofinska E et al. A mechanism for the inhibition of DNA-PK-mediated DNA sensing by a virus. PLoS Pathog 2013; 9: e1003649 [CrossRef] [PubMed]
    [Google Scholar]
  100. Allen C, Ashley AK, Hromas R, Nickoloff JA. More forks on the road to replication stress recovery. J Mol Cell Biol 2011; 3: 4– 12 [CrossRef] [PubMed]
    [Google Scholar]
  101. Hendriks G, Calléja F, Vrieling H, Mullenders LH, Jansen JG et al. Gene transcription increases DNA damage-induced mutagenesis in mammalian stem cells. DNA Repair 2008; 7: 1330– 1339 [CrossRef] [PubMed]
    [Google Scholar]
  102. Mehta A, Haber JE. Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harb Perspect Biol 2014; 6: a016428 [CrossRef] [PubMed]
    [Google Scholar]
  103. Kavanagh JN, Redmond KM, Schettino G, Prise KM. DNA double strand break repair: a radiation perspective. Antioxid Redox Signal 2013; 18: 2458– 2472 [CrossRef] [PubMed]
    [Google Scholar]
  104. Sharma V, Collins LB, Chen TH, Herr N, Takeda S et al. Oxidative stress at low levels can induce clustered DNA lesions leading to NHEJ mediated mutations. Oncotarget 2016; 7: 25377-90 [CrossRef] [PubMed]
    [Google Scholar]
  105. Coulson D, Upton C. Characterization of indels in poxvirus genomes. Virus Genes 2011; 42: 171– 177 [CrossRef] [PubMed]
    [Google Scholar]
  106. Elde NC, Child SJ, Eickbush MT, Kitzman JO, Rogers KS et al. Poxviruses deploy genomic accordions to adapt rapidly against host antiviral defenses. Cell 2012; 150: 831– 841 [CrossRef] [PubMed]
    [Google Scholar]
  107. Esposito JJ, Sammons SA, Frace AM, Osborne JD, Olsen-Rasmussen M et al. Genome sequence diversity and clues to the evolution of variola (smallpox) virus. Science 2006; 313: 807– 812 [CrossRef] [PubMed]
    [Google Scholar]
  108. Qin L, Upton C, Hazes B, Evans DH. Genomic analysis of the vaccinia virus strain variants found in Dryvax vaccine. J Virol 2011; 85: 13049– 13060 [CrossRef] [PubMed]
    [Google Scholar]
  109. Smith GL, Chan YS, Howard ST. Nucleotide sequence of 42 kbp of vaccinia virus strain WR from near the right inverted terminal repeat. J Gen Virol 1991; 72: 1349– 1376 [CrossRef] [PubMed]
    [Google Scholar]
  110. Aguado B, Selmes IP, Smith GL. Nucleotide sequence of 21.8 kbp of variola major virus strain Harvey and comparison with vaccinia virus. J Gen Virol 1992; 73: 2887– 2902 [CrossRef] [PubMed]
    [Google Scholar]
  111. Haller SL, Peng C, McFadden G, Rothenburg S. Poxviruses and the evolution of host range and virulence. Infect Genet Evol 2014; 21: 15– 40 [CrossRef] [PubMed]
    [Google Scholar]
  112. Heidenreich E, Eisler H. Non-homologous end joining dependency of gamma-irradiation-induced adaptive frameshift mutation formation in cell cycle-arrested yeast cells. Mutat Res 2004; 556: 201– 208 [CrossRef] [PubMed]
    [Google Scholar]
  113. Puig M, Castellano D, Pantano L, Giner-Delgado C, Izquierdo D et al. Functional impact and evolution of a novel human polymorphic inversion that disrupts a gene and creates a fusion transcript. PLoS Genet 2015; 11: e1005495 [CrossRef] [PubMed]
    [Google Scholar]
  114. Goettel W, Messing J. Change of gene structure and function by non-homologous end-joining, homologous recombination, and transposition of DNA. PLoS Genet 2009; 5: e1000516 [CrossRef] [PubMed]
    [Google Scholar]
  115. Luteijn RD, Hoelen H, Kruse E, van Leeuwen WF, Grootens J et al. Cowpox virus protein CPXV012 eludes CTLs by blocking ATP binding to TAP. J Immunol 2014; 193: 1578– 1589 [CrossRef] [PubMed]
    [Google Scholar]
  116. Lin J, Eggensperger S, Hank S, Wycisk AI, Wieneke R et al. A negative feedback modulator of antigen processing evolved from a frameshift in the cowpox virus genome. PLoS Pathog 2014; 10: e1004554 [CrossRef] [PubMed]
    [Google Scholar]
  117. van Ham SM, Tjin EP, Lillemeier BF, Grüneberg U, van Meijgaarden KE et al. HLA-DO is a negative modulator of HLA-DM-mediated MHC class II peptide loading. Curr Biol 1997; 7: 950– 957 [CrossRef] [PubMed]
    [Google Scholar]
  118. Salter RD, Howell DN, Cresswell P. Genes regulating HLA class I antigen expression in T-B lymphoblast hybrids. Immunogenetics 1985; 21: 235– 246 [CrossRef] [PubMed]
    [Google Scholar]
  119. van de Weijer ML, Bassik MC, Luteijn RD, Voorburg CM, Lohuis MA et al. A high-coverage shRNA screen identifies TMEM129 as an E3 ligase involved in ER-associated protein degradation. Nat Commun 2014; 5: 3832 [CrossRef] [PubMed]
    [Google Scholar]
  120. Riballo E, Doherty AJ, Dai Y, Stiff T, Oettinger MA et al. Cellular and biochemical impact of a mutation in DNA ligase IV conferring clinical radiosensitivity. J Biol Chem 2001; 276: 31124– 31132 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.001034
Loading
/content/journal/jgv/10.1099/jgv.0.001034
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error