1887

Abstract

Viruses from the diverse family of Paramyxoviridae include important pathogens and are applied in gene therapy and for cancer treatment. The Tupaia paramyxovirus (TPMV), isolated from the kidney of a tree shrew, does not infect human cells and neutralizing antibodies against other Paramyxoviridae do not cross-react with TPMV. Here, we present a vector system for de novo generation of infectious TPMV that allows for insertion of additional genes as well as targeting using antibody single-chain variable fragments. We show that the recombinant TPMV specifically infect cells expressing the targeted receptor and replicate in human cells. This vector system provides a valuable tool for both basic research and therapeutic applications.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000887
2017-09-08
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/98/9/2248.html?itemId=/content/journal/jgv/10.1099/jgv.0.000887&mimeType=html&fmt=ahah

References

  1. Pfaller CK, Cattaneo R, Schnell MJ. Reverse genetics of Mononegavirales: How they work, new vaccines, and new cancer therapeutics. Virology 2015;479-480:331–344 [CrossRef][PubMed]
    [Google Scholar]
  2. Fields BN, Knipe DM, Howley PM. Fields Virology Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2013
    [Google Scholar]
  3. Tidona CA, Kurz HW, Gelderblom HR, Darai G. Isolation and molecular characterization of a novel cytopathogenic paramyxovirus from tree shrews. Virology 1999;258:425–434 [CrossRef][PubMed]
    [Google Scholar]
  4. Springfeld C, von Messling V, Tidona CA, Darai G, Cattaneo R. Envelope targeting: hemagglutinin attachment specificity rather than fusion protein cleavage-activation restricts Tupaia paramyxovirus tropism. J Virol 2005;79:10155–10163 [CrossRef][PubMed]
    [Google Scholar]
  5. Hudacek AW, Navaratnarajah CK, Cattaneo R. Development of measles virus-based shielded oncolytic vectors: suitability of other paramyxovirus glycoproteins. Cancer Gene Ther 2013;20:109–116 [CrossRef][PubMed]
    [Google Scholar]
  6. Schneider U, Bullough F, Vongpunsawad S, Russell SJ, Cattaneo R. Recombinant measles viruses efficiently entering cells through targeted receptors. J Virol 2000;74:9928–9936 [CrossRef][PubMed]
    [Google Scholar]
  7. Friedrich K, Hanauer JR, Prüfer S, Münch RC, Völker I et al. DARPin-targeting of measles virus: unique bispecificity, effective oncolysis, and enhanced safety. Mol Ther 2013;21:849–859 [CrossRef][PubMed]
    [Google Scholar]
  8. Nakamura T, Peng KW, Vongpunsawad S, Harvey M, Mizuguchi H et al. Antibody-targeted cell fusion. Nat Biotechnol 2004;22:331–336 [CrossRef][PubMed]
    [Google Scholar]
  9. Enkirch T, Kneissl S, Hoyler B, Ungerechts G, Stremmel W et al. Targeted lentiviral vectors pseudotyped with the Tupaia paramyxovirus glycoproteins. Gene Ther 2013;20:16–23 [CrossRef][PubMed]
    [Google Scholar]
  10. Nakamura T, Peng KW, Harvey M, Greiner S, Lorimer IA et al. Rescue and propagation of fully retargeted oncolytic measles viruses. Nat Biotechnol 2005;23:209–214 [CrossRef][PubMed]
    [Google Scholar]
  11. Aguilar HC, Lee B. Emerging paramyxoviruses: molecular mechanisms and antiviral strategies. Expert Rev Mol Med 2011;13:e6 [CrossRef][PubMed]
    [Google Scholar]
  12. Zeltina A, Bowden TA, Lee B. Emerging Paramyxoviruses: receptor tropism and zoonotic potential. PLoS Pathog 2016;12:e1005390 [CrossRef][PubMed]
    [Google Scholar]
  13. Radecke F, Spielhofer P, Schneider H, Kaelin K, Huber M et al. Rescue of measles viruses from cloned DNA. Embo J 1995;14:5773–5784[PubMed]
    [Google Scholar]
  14. Martin A, Staeheli P, Schneider U. RNA polymerase II-controlled expression of antigenomic RNA enhances the rescue efficacies of two different members of the Mononegavirales independently of the site of viral genome replication. J Virol 2006;80:5708–5715 [CrossRef][PubMed]
    [Google Scholar]
  15. Lin SL, Greene JJ, Ts'o PO, Carter WA. Sensitivity and resistance of human tumor cells to interferon and rIn . rCn. Nature 1982;297:417–419 [CrossRef][PubMed]
    [Google Scholar]
  16. Tsukiyama-Kohara K, Kohara M. Tupaia belangeri as an experimental animal model for viral infection. Exp Anim 2014;63:367–374 [CrossRef][PubMed]
    [Google Scholar]
  17. Tong Y, Hao J, Tu Q, Yu H, Yan L et al. A tree shrew glioblastoma model recapitulates features of human glioblastoma. Oncotarget 2017;8:17897-17907 [CrossRef][PubMed]
    [Google Scholar]
  18. Young DF, Didcock L, Goodbourn S, Randall RE. Paramyxoviridae use distinct virus-specific mechanisms to circumvent the interferon response. Virology 2000;269:383–390 [CrossRef][PubMed]
    [Google Scholar]
  19. Parisien JP, Lau JF, Horvath CM. STAT2 acts as a host range determinant for species-specific paramyxovirus interferon antagonism and simian virus 5 replication. J Virol 2002;76:6435–6441 [CrossRef][PubMed]
    [Google Scholar]
  20. Horvath CM. Silencing STATs: lessons from paramyxovirus interferon evasion. Cytokine Growth Factor Rev 2004;15:117–127 [CrossRef][PubMed]
    [Google Scholar]
  21. Drexler JF, Corman VM, Müller MA, Maganga GD, Vallo P et al. Bats host major mammalian paramyxoviruses. Nat Commun 2012;3:796 [CrossRef][PubMed]
    [Google Scholar]
  22. Mortlock M, Kuzmin IV, Weyer J, Gilbert AT, Agwanda B et al. Novel paramyxoviruses in bats from sub-Saharan Africa, 2007-2012. Emerg Infect Dis 2015;21:1840–1843 [CrossRef][PubMed]
    [Google Scholar]
  23. Lambeth LS, Yu M, Anderson DE, Crameri G, Eaton BT et al. Complete genome sequence of Nariva virus, a rodent paramyxovirus. Arch Virol 2009;154:199–207 [CrossRef][PubMed]
    [Google Scholar]
  24. Miller PJ, Boyle DB, Eaton BT, Wang LF. Full-length genome sequence of Mossman virus, a novel paramyxovirus isolated from rodents in Australia. Virology 2003;317:330–344 [CrossRef][PubMed]
    [Google Scholar]
  25. Miest TS, Yaiw KC, Frenzke M, Lampe J, Hudacek AW et al. Envelope-chimeric entry-targeted measles virus escapes neutralization and achieves oncolysis. Mol Ther 2011;19:1813–1820 [CrossRef][PubMed]
    [Google Scholar]
  26. Conzelmann KK. Reverse genetics of mononegavirales. Curr Top Microbiol Immunol 2004;283:1–41[PubMed]
    [Google Scholar]
  27. Calain P, Roux L. The rule of six, a basic feature for efficient replication of sendai virus defective interfering RNA. J Virol 1993;67:4822–4830[PubMed]
    [Google Scholar]
  28. Zaoui K, Bossow S, Grossardt C, Leber MF, Springfeld C et al. Chemovirotherapy for head and neck squamous cell carcinoma with EGFR-targeted and CD/UPRT-armed oncolytic measles virus. Cancer Gene Ther 2012;19:181–191 [CrossRef][PubMed]
    [Google Scholar]
  29. Ungerechts G, Springfeld C, Frenzke ME, Lampe J, Johnston PB et al. Lymphoma chemovirotherapy: CD20-targeted and convertase-armed measles virus can synergize with fludarabine. Cancer Res 2007;67:10939–10947 [CrossRef][PubMed]
    [Google Scholar]
  30. Darai G, Matz B, Flügel RM, Grafe A, Gelderblom H et al. An adenovirus from Tupaia (tree shrew): growth of the virus, characterization of viral DNA, and transforming ability. Virology 1980;104:122–138 [CrossRef][PubMed]
    [Google Scholar]
  31. Engeland CE, Grossardt C, Veinalde R, Bossow S, Lutz D et al. CTLA-4 and PD-L1 checkpoint blockade enhances oncolytic measles virus therapy. Mol Ther 2014;22:1949–1959 [CrossRef][PubMed]
    [Google Scholar]
  32. Bucheit AD, Kumar S, Grote DM, Lin Y, von Messling V et al. An oncolytic measles virus engineered to enter cells through the CD20 antigen. Mol Ther 2003;7:62–72 [CrossRef][PubMed]
    [Google Scholar]
  33. Dulbecco R, Vogt M. Plaque formation and isolation of pure lines with poliomyelitis viruses. J Exp Med 1954;99:167–182 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000887
Loading
/content/journal/jgv/10.1099/jgv.0.000887
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error