1887

Abstract

Viruses from the diverse family of include important pathogens and are applied in gene therapy and for cancer treatment. The Tupaia paramyxovirus (TPMV), isolated from the kidney of a tree shrew, does not infect human cells and neutralizing antibodies against other do not cross-react with TPMV. Here, we present a vector system for generation of infectious TPMV that allows for insertion of additional genes as well as targeting using antibody single-chain variable fragments. We show that the recombinant TPMV specifically infect cells expressing the targeted receptor and replicate in human cells. This vector system provides a valuable tool for both basic research and therapeutic applications.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000887
2017-09-01
2020-04-08
Loading full text...

Full text loading...

/deliver/fulltext/jgv/98/9/2248.html?itemId=/content/journal/jgv/10.1099/jgv.0.000887&mimeType=html&fmt=ahah

References

  1. Pfaller CK, Cattaneo R, Schnell MJ. Reverse genetics of Mononegavirales: How they work, new vaccines, and new cancer therapeutics. Virology 2015;479-480:331–344 [CrossRef][PubMed]
    [Google Scholar]
  2. Fields BN, Knipe DM, Howley PM. Fields Virology Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2013
    [Google Scholar]
  3. Tidona CA, Kurz HW, Gelderblom HR, Darai G. Isolation and molecular characterization of a novel cytopathogenic paramyxovirus from tree shrews. Virology 1999;258:425–434 [CrossRef][PubMed]
    [Google Scholar]
  4. Springfeld C, von Messling V, Tidona CA, Darai G, Cattaneo R. Envelope targeting: hemagglutinin attachment specificity rather than fusion protein cleavage-activation restricts Tupaia paramyxovirus tropism. J Virol 2005;79:10155–10163 [CrossRef][PubMed]
    [Google Scholar]
  5. Hudacek AW, Navaratnarajah CK, Cattaneo R. Development of measles virus-based shielded oncolytic vectors: suitability of other paramyxovirus glycoproteins. Cancer Gene Ther 2013;20:109–116 [CrossRef][PubMed]
    [Google Scholar]
  6. Schneider U, Bullough F, Vongpunsawad S, Russell SJ, Cattaneo R. Recombinant measles viruses efficiently entering cells through targeted receptors. J Virol 2000;74:9928–9936 [CrossRef][PubMed]
    [Google Scholar]
  7. Friedrich K, Hanauer JR, Prüfer S, Münch RC, Völker I et al. DARPin-targeting of measles virus: unique bispecificity, effective oncolysis, and enhanced safety. Mol Ther 2013;21:849–859 [CrossRef][PubMed]
    [Google Scholar]
  8. Nakamura T, Peng KW, Vongpunsawad S, Harvey M, Mizuguchi H et al. Antibody-targeted cell fusion. Nat Biotechnol 2004;22:331–336 [CrossRef][PubMed]
    [Google Scholar]
  9. Enkirch T, Kneissl S, Hoyler B, Ungerechts G, Stremmel W et al. Targeted lentiviral vectors pseudotyped with the Tupaia paramyxovirus glycoproteins. Gene Ther 2013;20:16–23 [CrossRef][PubMed]
    [Google Scholar]
  10. Nakamura T, Peng KW, Harvey M, Greiner S, Lorimer IA et al. Rescue and propagation of fully retargeted oncolytic measles viruses. Nat Biotechnol 2005;23:209–214 [CrossRef][PubMed]
    [Google Scholar]
  11. Aguilar HC, Lee B. Emerging paramyxoviruses: molecular mechanisms and antiviral strategies. Expert Rev Mol Med 2011;13:e6 [CrossRef][PubMed]
    [Google Scholar]
  12. Zeltina A, Bowden TA, Lee B. Emerging Paramyxoviruses: receptor tropism and zoonotic potential. PLoS Pathog 2016;12:e1005390 [CrossRef][PubMed]
    [Google Scholar]
  13. Radecke F, Spielhofer P, Schneider H, Kaelin K, Huber M et al. Rescue of measles viruses from cloned DNA. Embo J 1995;14:5773–5784[PubMed]
    [Google Scholar]
  14. Martin A, Staeheli P, Schneider U. RNA polymerase II-controlled expression of antigenomic RNA enhances the rescue efficacies of two different members of the Mononegavirales independently of the site of viral genome replication. J Virol 2006;80:5708–5715 [CrossRef][PubMed]
    [Google Scholar]
  15. Lin SL, Greene JJ, Ts'o PO, Carter WA. Sensitivity and resistance of human tumor cells to interferon and rIn . rCn. Nature 1982;297:417–419 [CrossRef][PubMed]
    [Google Scholar]
  16. Tsukiyama-Kohara K, Kohara M. Tupaia belangeri as an experimental animal model for viral infection. Exp Anim 2014;63:367–374 [CrossRef][PubMed]
    [Google Scholar]
  17. Tong Y, Hao J, Tu Q, Yu H, Yan L et al. A tree shrew glioblastoma model recapitulates features of human glioblastoma. Oncotarget 2017;8:17897-17907 [CrossRef][PubMed]
    [Google Scholar]
  18. Young DF, Didcock L, Goodbourn S, Randall RE. Paramyxoviridae use distinct virus-specific mechanisms to circumvent the interferon response. Virology 2000;269:383–390 [CrossRef][PubMed]
    [Google Scholar]
  19. Parisien JP, Lau JF, Horvath CM. STAT2 acts as a host range determinant for species-specific paramyxovirus interferon antagonism and simian virus 5 replication. J Virol 2002;76:6435–6441 [CrossRef][PubMed]
    [Google Scholar]
  20. Horvath CM. Silencing STATs: lessons from paramyxovirus interferon evasion. Cytokine Growth Factor Rev 2004;15:117–127 [CrossRef][PubMed]
    [Google Scholar]
  21. Drexler JF, Corman VM, Müller MA, Maganga GD, Vallo P et al. Bats host major mammalian paramyxoviruses. Nat Commun 2012;3:796 [CrossRef][PubMed]
    [Google Scholar]
  22. Mortlock M, Kuzmin IV, Weyer J, Gilbert AT, Agwanda B et al. Novel paramyxoviruses in bats from sub-Saharan Africa, 2007-2012. Emerg Infect Dis 2015;21:1840–1843 [CrossRef][PubMed]
    [Google Scholar]
  23. Lambeth LS, Yu M, Anderson DE, Crameri G, Eaton BT et al. Complete genome sequence of Nariva virus, a rodent paramyxovirus. Arch Virol 2009;154:199–207 [CrossRef][PubMed]
    [Google Scholar]
  24. Miller PJ, Boyle DB, Eaton BT, Wang LF. Full-length genome sequence of Mossman virus, a novel paramyxovirus isolated from rodents in Australia. Virology 2003;317:330–344 [CrossRef][PubMed]
    [Google Scholar]
  25. Miest TS, Yaiw KC, Frenzke M, Lampe J, Hudacek AW et al. Envelope-chimeric entry-targeted measles virus escapes neutralization and achieves oncolysis. Mol Ther 2011;19:1813–1820 [CrossRef][PubMed]
    [Google Scholar]
  26. Conzelmann KK. Reverse genetics of mononegavirales. Curr Top Microbiol Immunol 2004;283:1–41[PubMed]
    [Google Scholar]
  27. Calain P, Roux L. The rule of six, a basic feature for efficient replication of sendai virus defective interfering RNA. J Virol 1993;67:4822–4830[PubMed]
    [Google Scholar]
  28. Zaoui K, Bossow S, Grossardt C, Leber MF, Springfeld C et al. Chemovirotherapy for head and neck squamous cell carcinoma with EGFR-targeted and CD/UPRT-armed oncolytic measles virus. Cancer Gene Ther 2012;19:181–191 [CrossRef][PubMed]
    [Google Scholar]
  29. Ungerechts G, Springfeld C, Frenzke ME, Lampe J, Johnston PB et al. Lymphoma chemovirotherapy: CD20-targeted and convertase-armed measles virus can synergize with fludarabine. Cancer Res 2007;67:10939–10947 [CrossRef][PubMed]
    [Google Scholar]
  30. Darai G, Matz B, Flügel RM, Grafe A, Gelderblom H et al. An adenovirus from Tupaia (tree shrew): growth of the virus, characterization of viral DNA, and transforming ability. Virology 1980;104:122–138 [CrossRef][PubMed]
    [Google Scholar]
  31. Engeland CE, Grossardt C, Veinalde R, Bossow S, Lutz D et al. CTLA-4 and PD-L1 checkpoint blockade enhances oncolytic measles virus therapy. Mol Ther 2014;22:1949–1959 [CrossRef][PubMed]
    [Google Scholar]
  32. Bucheit AD, Kumar S, Grote DM, Lin Y, von Messling V et al. An oncolytic measles virus engineered to enter cells through the CD20 antigen. Mol Ther 2003;7:62–72 [CrossRef][PubMed]
    [Google Scholar]
  33. Dulbecco R, Vogt M. Plaque formation and isolation of pure lines with poliomyelitis viruses. J Exp Med 1954;99:167–182 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000887
Loading
/content/journal/jgv/10.1099/jgv.0.000887
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error