1887

Abstract

Simian immunodeficiency virus (SIV) infection models in cynomolgus macaques are important for analysis of the pathogenesis of immunodeficiency virus and for studies on the efficacy of new vaccine candidates. However, very little is known about the pathogenesis of SIV or simian human immunodeficiency virus (SHIV) in cynomolgus macaques from different Asian countries. In the present study, we analysed the infectivity and pathogenicity of CCR5-tropic SIVmac and those of dual-tropic SHIV89.6P inoculated into cynomolgus macaques in Indonesian, Malaysian or Philippine origin. The plasma viral loads in macaques infected with either SIVmac239 or SHIV89.6P were maintained at high levels. CD4 T cell levels in macaques infected with SIVmac239 gradually decreased. All of the macaques infected with SHIV89.6P showed greatly reduced CD4 T-cell numbers within 6 weeks of infection. Eight of the 11 macaques infected with SIVmac239 were killed due to AIDS symptoms after 2–4.5 years, while four of the five macaques infected with SHIV89.6P were killed due to AIDS symptoms after 1–3.5 years. We also analysed cynomolgus macaques infected intrarectally with repeated low, medium or high doses of SIVmac239, SIVmac251 or SHIV89.6P. Infection was confirmed by quantitative RT-PCR at more than 5000, 300 and 500 TCID50 for SIVmac239, SIVmac251 and SHIV89.6P, respectively. The present study indicates that cynomolgus macaques of Asian origin are highly susceptible to SIVmac and SHIV infection by both intravenous and mucosal routes. These models will be useful for studies on virus pathogenesis, vaccination and therapeutics against human immunodeficiency virus/AIDS.

Keyword(s): AIDS , cynomolgus macaque and SIV
Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000641
2016-12-16
2019-08-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/12/3413.html?itemId=/content/journal/jgv/10.1099/jgv.0.000641&mimeType=html&fmt=ahah

References

  1. Aarnink A., Dereuddre-Bosquet N., Vaslin B., Le Grand R., Winterton P., Apoil P. A., Blancher A..( 2011;). Influence of the MHC genotype on the progression of experimental SIV infection in the Mauritian cynomolgus macaque. . Immunogenetics63:267–274. [CrossRef][PubMed]
    [Google Scholar]
  2. Allen T. M., Mothé B. R., Sidney J., Jing P., Dzuris J. L., Liebl M. E., Vogel T. U., O'Connor D. H., Wang X. et al.( 2001;). CD8(+) lymphocytes from simian immunodeficiency virus-infected rhesus macaques recognize 14 different epitopes bound by the major histocompatibility complex class I molecule mamu-A*01: implications for vaccine design and testing. . J Virol75:738–749. [CrossRef][PubMed]
    [Google Scholar]
  3. Antony J. M., MacDonald K. S..( 2015;). A critical analysis of the cynomolgus macaque, Macaca fascicularis, as a model to test HIV-1/SIV vaccine efficacy. . Vaccine33:3073–3083. [CrossRef][PubMed]
    [Google Scholar]
  4. Berry N., Ham C., Mee E. T., Rose N. J., Mattiuzzo G., Jenkins A., Page M., Elsley W., Robinson M. et al.( 2011;). Early potent protection against heterologous SIVsmE660 challenge following live attenuated SIV vaccination in Mauritian cynomolgus macaques. . PLoS One6:e23092. [CrossRef][PubMed]
    [Google Scholar]
  5. Bimber B. N., Burwitz B. J., O'Connor S., Detmer A., Gostick E., Lank S. M., Price D. A., Hughes A., O'Connor D..( 2009;). Ultradeep pyrosequencing detects complex patterns of CD8+ T-lymphocyte escape in simian immunodeficiency virus-infected macaques. . J Virol83:8247–8253. [CrossRef][PubMed]
    [Google Scholar]
  6. Boyson J. E., Shufflebotham C., Cadavid L. F., Urvater J. A., Knapp L. A., Hughes A. L., Watkins D. I..( 1996;). The MHC class I genes of the rhesus monkey. Different evolutionary histories of MHC class I and II genes in primates. . J Immunol156:4656–4665.[PubMed]
    [Google Scholar]
  7. Brennan G., Kozyrev Y., Hu S. L..( 2008;). TRIMCyp expression in Old World primates Macaca nemestrina and Macaca fascicularis. . Proc Natl Acad Sci U S A105:3569–3574. [CrossRef][PubMed]
    [Google Scholar]
  8. Budde M. L., Greene J. M., Chin E. N., Ericsen A. J., Scarlotta M., Cain B. T., Pham N. H., Becker E. A., Harris M. et al.( 2012;). Specific CD8+ T cell responses correlate with control of simian immunodeficiency virus replication in Mauritian cynomolgus macaques. . J Virol86:7596–7604. [CrossRef][PubMed]
    [Google Scholar]
  9. Burwitz B. J., Pendley C. J., Greene J. M., Detmer A. M., Lhost J. J., Karl J. A., Piaskowski S. M., Rudersdorf R. A., Wallace L. T. et al.( 2009;). Mauritian cynomolgus macaques share two exceptionally common major histocompatibility complex class I alleles that restrict simian immunodeficiency virus-specific CD8+ T cells. . J Virol83:6011–6019. [CrossRef][PubMed]
    [Google Scholar]
  10. Carlsson H. E., Schapiro S. J., Farah I., Hau J..( 2004;). Use of primates in research: a global overview. . Am J Primatol63:225–237. [CrossRef][PubMed]
    [Google Scholar]
  11. Cumont M. C., Diop O., Vaslin B., Elbim C., Viollet L., Monceaux V., Lay S., Silvestri G., Le Grand R. et al.( 2008;). Early divergence in lymphoid tissue apoptosis between pathogenic and nonpathogenic simian immunodeficiency virus infections of nonhuman primates. . J Virol82:1175–1184. [CrossRef][PubMed]
    [Google Scholar]
  12. Feinberg M. B., Moore J. P..( 2002;). AIDS vaccine models: challenging challenge viruses. . Nat Med8:207–210. [CrossRef][PubMed]
    [Google Scholar]
  13. Evans D. T., Silvestri G..( 2013;). Nonhuman primate models in AIDS research. . Curr Opin HIV AIDS8:255–261. [CrossRef][PubMed]
    [Google Scholar]
  14. Greene J. M., Weiler A. M., Reynolds M. R., Cain B. T., Pham N. H., Ericsen A. J., Peterson E. J., Crosno K., Brunner K. et al.( 2014;). Rapid, repeated, low-dose challenges with SIVmac239 infect animals in a condensed challenge window. . Retrovirology11:66. [CrossRef][PubMed]
    [Google Scholar]
  15. Honjo S..( 1985;). The Japanese Tsukuba Primate Center for Medical Science (TPC): an outline. . J Med Primatol14:75–89.[PubMed]
    [Google Scholar]
  16. Honjo S., Cho F., Terao K..( 1984;). Establishing the cynomolgus monkey as laboratory animal: research on non-human primate. . In Advance in Veterinary Science and Comparative Medicine, pp. 51–79. Edited by Hendrickxed A. G.. New York:: USA Academic Press;.
    [Google Scholar]
  17. Inaba K., Fukazawa Y., Matsuda K., Himeno A., Matsuyama M., Ibuki K., Miura Y., Koyanagi Y., Nakajima A. et al.( 2010;). Small intestine CD4+ cell reduction and enteropathy in simian/human immunodeficiency virus KS661-infected rhesus macaques in the presence of low viral load. . J Gen Virol91:773–781. [CrossRef][PubMed]
    [Google Scholar]
  18. Karlsson I., Malleret B., Brochard P., Delache B., Calvo J., Le Grand R., Vaslin B..( 2007;). Dynamics of T-cell responses and memory T cells during primary simian immunodeficiency virus infection in cynomolgus macaques. . J Virol81:13456–13468. [CrossRef][PubMed]
    [Google Scholar]
  19. Keele B. F., Li H., Learn G. H., Hraber P., Giorgi E. E., Grayson T., Sun C., Chen Y., Yeh W. W. et al.( 2009;). Low-dose rectal inoculation of rhesus macaques by SIVsmE660 or SIVmac251 recapitulates human mucosal infection by HIV-1. . J Exp Med206:1117–1134. [CrossRef][PubMed]
    [Google Scholar]
  20. Kirmaier A., Wu F., Newman R. M., Hall L. R., Morgan J. S., O'Connor S., Marx P. A., Meythaler M., Goldstein S. et al.( 2010;). TRIM5 suppresses cross-species transmission of a primate immunodeficiency virus and selects for emergence of resistant variants in the new species. . PLoS Biol8:e1000462. [CrossRef][PubMed]
    [Google Scholar]
  21. Letvin N. L., Mascola J. R., Sun Y., Gorgone D. A., Buzby A. P., Xu L., Yang Z. Y., Chakrabarti B., Rao S. S. et al.( 2006;). Preserved CD4+ central memory T cells and survival in vaccinated SIV-challenged monkeys. . Science312:1530–1533. [CrossRef][PubMed]
    [Google Scholar]
  22. Liao C. H., Kuang Y. Q., Liu H. L., Zheng Y. T., Su B..( 2007;). A novel fusion gene, TRIM5-Cyclophilin A in the pig-tailed macaque determines its susceptibility to HIV-1 infection. . AIDS21:S19–S26. [CrossRef][PubMed]
    [Google Scholar]
  23. Ling B., Veazey R. S., Luckay A., Penedo C., Xu K., Lifson J. D., Marx P. A..( 2002;). SIV(mac) pathogenesis in rhesus macaques of Chinese and Indian origin compared with primary HIV infections in humans. . AIDS16:1489–1496. [CrossRef][PubMed]
    [Google Scholar]
  24. Loffredo J. T., Friedrich T. C., León E. J., Stephany J. J., Rodrigues D. S., Spencer S. P., Bean A. T., Beal D. R., Burwitz B. J. et al.( 2007;). CD8+ T cells from SIV elite controller macaques recognize Mamu-B*08-bound epitopes and select for widespread viral variation. . PLoS One2:e1152. [CrossRef][PubMed]
    [Google Scholar]
  25. Mattiuzzo G., Rose N. J., Almond N., Towers G. J., Berry N..( 2013;). Upregulation of TRIM5α gene expression after live-attenuated simian immunodeficiency virus vaccination in Mauritian cynomolgus macaques, but TRIM5α genotype has no impact on virus acquisition or vaccination outcome. . J Gen Virol94:606–611. [CrossRef][PubMed]
    [Google Scholar]
  26. McDermott A. B., Mitchen J., Piaskowski S., De Souza I., Yant L. J., Stephany J., Furlott J., Watkins D..( 2004;). Repeated low-dose mucosal simian immunodeficiency virus SIVmac239 challenge results in the same viral and immunological kinetics as high-dose challenge: a model for the evaluation of vaccine efficacy in nonhuman primates. . J Virol78:3140–3144. [CrossRef][PubMed]
    [Google Scholar]
  27. Mee E. T., Berry N., Ham C., Sauermann U., Maggiorella M. T., Martinon F., Verschoor E. J., Heeney J. L., Le Grand R. et al.( 2009;). Mhc haplotype H6 is associated with sustained control of SIVmac251 infection in Mauritian cynomolgus macaques. . Immunogenetics61:327–339. [CrossRef][PubMed]
    [Google Scholar]
  28. Mori K., Yasutomi Y., Ohgimoto S., Nakasone T., Takamura S., Shioda T., Nagai Y..( 2001;). Quintuple deglycosylation mutant of simian immunodeficiency virus SIVmac239 in rhesus macaques: robust primary replication, tightly contained chronic infection, and elicitation of potent immunity against the parental wild-type strain. . J Virol75:4023–4028. [CrossRef][PubMed]
    [Google Scholar]
  29. Mothé B. R., Horton H., Carter D. K., Allen T. M., Liebl M. E., Skinner P., Vogel T. U., Fuenger S., Vielhuber K. et al.( 2002;). Dominance of CD8 responses specific for epitopes bound by a single major histocompatibility complex class I molecule during the acute phase of viral infection. . J Virol76:875–884. [CrossRef][PubMed]
    [Google Scholar]
  30. Mothé B. R., Weinfurter J., Wang C., Rehrauer W., Wilson N., Allen T. M., Allison D. B., Watkins D..( 2003;). Expression of the major histocompatibility complex class I molecule Mamu-A*01 is associated with control of simian immunodeficiency virus SIVmac239 replication. . J Virol77:2736–2740. [CrossRef][PubMed]
    [Google Scholar]
  31. Mühl T., Krawczak M., ten Haaft P., Hunsmann G., Sauermann U..( 2002;). MHC class I alleles influence set-point viral load and survival time in simian immunodeficiency virus-infected rhesus monkeys. . J Immunol169:3438–3446. [CrossRef][PubMed]
    [Google Scholar]
  32. Newman R. M., Hall L., Kirmaier A., Pozzi L. A., Pery E., Farzan M., O'Neil S. P., Johnson W., O’Neil S. P..( 2008;). Evolution of a TRIM5-CypA splice isoform in old world monkeys. . PLoS Pathog4:e1000003. [CrossRef][PubMed]
    [Google Scholar]
  33. Nomura T., Yamamoto H., Shiino T., Takahashi N., Nakane T., Iwamoto N., Ishii H., Tsukamoto T., Kawada M. et al.( 2012;). Association of major histocompatibility complex class I haplotypes with disease progression after simian immunodeficiency virus challenge in burmese rhesus macaques. . J Virol86:6481–6490. [CrossRef][PubMed]
    [Google Scholar]
  34. Pendley C. J., Becker E. A., Karl J. A., Blasky A. J., Wiseman R. W., Hughes A. L., O'Connor S. L., O'Connor D. H..( 2008;). MHC class I characterization of Indonesian cynomolgus macaques. . Immunogenetics60:339–351. [CrossRef][PubMed]
    [Google Scholar]
  35. Pham V. L., Nakayama M., Itoh Y., Ishigaki H., Kitano M., Arikata M., Ishida H., Kitagawa N., Shichinohe S. et al.( 2013;). Pathogenicity of pandemic H1N1 influenza A virus in immunocompromised cynomolgus macaques. . PLoS One8:e75910. [CrossRef]
    [Google Scholar]
  36. Reimann K. A., Watson A., Dailey P. J., Lin W., Lord C. I., Steenbeke T. D., Parker R. A., Axthelm M. K., Karlsson G. B..( 1999;). Viral burden and disease progression in rhesus monkeys infected with chimeric simian-human immunodeficiency viruses. . Virology256:15–21. [CrossRef][PubMed]
    [Google Scholar]
  37. Reimann K. A., Parker R. A., Seaman M. S., Beaudry K., Beddall M., Peterson L., Williams K. C., Veazey R. S., Montefiori D. C. et al.( 2005;). Pathogenicity of simian-human immunodeficiency virus SHIV-89.6P and SIVmac is attenuated in cynomolgus macaques and associated with early T-lymphocyte responses. . J Virol79:8878–8885. [CrossRef][PubMed]
    [Google Scholar]
  38. Saito A., Kono K., Nomaguchi M., Yasutomi Y., Adachi A., Shioda T., Akari H., Nakayama E. E..( 2012a;). Geographical, genetic and functional diversity of antiretroviral host factor TRIMCyp in cynomolgus macaque (Macaca fascicularis). . J Gen Virol93:594–602. [CrossRef][PubMed]
    [Google Scholar]
  39. Saito Y., Naruse T. K., Akari H., Matano T., Kimura A..( 2012b;). Diversity of MHC class I haplotypes in cynomolgus macaques. . Immunogenetics64:131–141. [CrossRef][PubMed]
    [Google Scholar]
  40. Saito N., Chono H., Shibata H., Ageyama N., Yasutomi Y., Mineno J..( 2014;). CD4(+) T cells modified by the endoribonuclease MazF are safe and can persist in SHIV-infected Rhesus macaques. . Mol Ther Nucleic Acids3:e168. [CrossRef][PubMed]
    [Google Scholar]
  41. Smits S. L., van den Brand J. M., de Lang A., Leijten L. M., van Ijcken W. F., van Amerongen G., Osterhaus A. D., Andeweg A. C., Haagmans B. L..( 2011;). Distinct severe acute respiratory syndrome coronavirus-induced acute lung injury pathways in two different nonhuman primate species. . J Virol85:4234–4245. [CrossRef][PubMed]
    [Google Scholar]
  42. Varela M., Landskron L., Lai R. P., McKinley T. J., Bogers W. M., Verschoor E. J., Dubbes R., Barnett S. W., Frost S. D., Heeney J. L..( 2011;). Molecular evolution analysis of the human immunodeficiency virus type 1 envelope in simian/human immunodeficiency virus-infected macaques: implications for challenge dose selection. . J Virol85:10332–10345. [CrossRef][PubMed]
    [Google Scholar]
  43. Wilson N. A., Reed J., Napoe G. S., Piaskowski S., Szymanski A., Furlott J., Gonzalez E. J., Yant L. J., Maness N. J. et al.( 2006;). Vaccine-induced cellular immune responses reduce plasma viral concentrations after repeated low-dose challenge with pathogenic simian immunodeficiency virus SIVmac239. . J Virol80:5875–5885. [CrossRef][PubMed]
    [Google Scholar]
  44. Wiseman R. W., Wojcechowskyj J. A., Greene J. M., Blasky A. J., Gopon T., Soma T., Friedrich T. C., O'Connor S. L., O'Connor D. H..( 2007;). Simian immunodeficiency virus SIVmac239 infection of major histocompatibility complex-identical cynomolgus macaques from Mauritius. . J Virol81:349–361. [CrossRef][PubMed]
    [Google Scholar]
  45. Yant L. J., Friedrich T. C., Johnson R. C., May G. E., Maness N. J., Enz A. M., Lifson J. D., O'Connor D. H., Carrington M., Watkins D. I..( 2006;). The high-frequency major histocompatibility complex class I allele Mamu-B*17 is associated with control of simian immunodeficiency virus SIVmac239 replication. . J Virol80:5074–5077. [CrossRef][PubMed]
    [Google Scholar]
  46. Yasutomi Y..( 2010;). Establishment of specific pathogen-free macaque colonies in Tsukuba Primate Research Center of Japan for AIDS research. . Vaccine28:B75–B77. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000641
Loading
/content/journal/jgv/10.1099/jgv.0.000641
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error