1887

Abstract

Recombination events are frequently inferred from the increasing number of sequenced viral genomes, but their impact on natural viral populations has rarely been evidenced. TYLCV-IS76 is a recombinant (Begomovirus,Geminiviridae) between the Israel strain of tomato yellow leaf curl virus (TYLCV-IL) and the Spanish strain of tomato yellow leaf curl Sardinia virus (TYLCSV-ES) that was generated most probably in the late 1990s in southern Morocco (Souss). Its emergence in the 2000s coincided with the increasing use of resistant tomato cultivars bearing the Ty-1 gene, and led eventually to the entire displacement of both parental viruses in the Souss. Here, we provide compelling evidence that this viral population shift was associated with selection of TYLCV-IS76 viruses in tomato plants and particularly in Ty-1-bearing cultivars. Real-time quantitative PCR (qPCR) monitoring revealed that TYLCV-IS76 DNA accumulation in Ty-1-bearing plants was significantly higher than that of representatives of the parental virus species in single infection or competition assays. This advantage of the recombinant in Ty-1-bearing plants was not associated with a fitness cost in a susceptible, nearly isogenic, cultivar. In competition assays in the resistant cultivar, the DNA accumulation of the TYLCV-IL clone – the parent less affected by the Ty-1 gene in single infection – dropped below the qPCR detection level at 120 days post-infection (p.i.) and below the whitefly vector (Bemisia tabaci) transmissibility level at 60 days p.i. The molecular basis of the selective advantage of TYLCV-IS76 is discussed in relation to its non-canonical recombination pattern, and the RNA-dependent RNA polymerase encoded by the Ty-1 gene.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000633
2016-12-16
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/12/3433.html?itemId=/content/journal/jgv/10.1099/jgv.0.000633&mimeType=html&fmt=ahah

References

  1. Barbieri M., Acciarri N., Sabatini E., Sardo L., Accotto G., Pecchioni N..( 2010;). Introgression of resistance to two Mediterranean virus species causing tomato yellow leaf curl into a valuable traditional tomato variety. . J Plant Pathol92:485–493.
    [Google Scholar]
  2. Belabess Z., Dallot S., El-Montaser S., Granier M., Majde M., Tahiri A., Blenzar A., Urbino C., Peterschmitt M..( 2015;). Monitoring the dynamics of emergence of a non-canonical recombinant of Tomato yellow leaf curl virus and displacement of its parental viruses in tomato. . Virology486:291–306. [CrossRef][PubMed]
    [Google Scholar]
  3. Butterbach P., Verlaan M. G., Dullemans A., Lohuis D., Visser R. G., Bai Y., Kormelink R..( 2014;). Tomato yellow leaf curl virus resistance by Ty-1 involves increased cytosine methylation of viral genomes and is compromised by cucumber mosaic virus infection. . Proc Natl Acad Sci U S A111:12942–12947. [CrossRef][PubMed]
    [Google Scholar]
  4. Carrasco P., de la Iglesia F., Elena S. F..( 2007;). Distribution of fitness and virulence effects caused by single-nucleotide substitutions in Tobacco Etch virus. . J Virol81:12979–12984. [CrossRef][PubMed]
    [Google Scholar]
  5. Chakraborty S., Vanitharani R., Chattopadhyay B., Fauquet C. M..( 2008;). Supervirulent pseudorecombination and asymmetric synergism between genomic components of two distinct species of begomovirus associated with severe tomato leaf curl disease in India. . J Gen Virol89:818–828. [CrossRef][PubMed]
    [Google Scholar]
  6. Condra J. H., Schleif W. A., Blahy O. M., Gabryelski L. J., Graham D. J., Quintero J. C., Rhodes A., Robbins H. L., Roth E. et al.( 1995;). In vivo emergence of HIV-1 variants resistant to multiple protease inhibitors. . Nature374:569–571. [CrossRef][PubMed]
    [Google Scholar]
  7. Davino S., Napoli C., Dellacroce C., Miozzi L., Noris E., Davino M., Accotto G. P..( 2009;). Two new natural begomovirus recombinants associated with the tomato yellow leaf curl disease co-exist with parental viruses in tomato epidemics in Italy. . Virus Res143:15–23. [CrossRef][PubMed]
    [Google Scholar]
  8. Davino S., Miozzi L., Panno S., Rubio L., Davino M., Accotto G. P..( 2012;). Recombination profiles between tomato yellow leaf curl virus and tomato yellow leaf curl Sardinia virus in laboratory and field conditions: evolutionary and taxonomic implications. . J Gen Virol93:2712–2717. [CrossRef][PubMed]
    [Google Scholar]
  9. Dellaporta S. L., Wood J., Hicks J. B..( 1983;). A plant DNA minipreparation: Version II. . Plant Mol Biol Report1:19–21. [CrossRef]
    [Google Scholar]
  10. Fernández-Cuartero B., Burgyán J., Aranda M. A., Salánki K., Moriones E., García-Arenal F..( 1994;). Increase in the relative fitness of a plant virus RNA associated with its recombinant nature. . Virology203:373–377. [CrossRef][PubMed]
    [Google Scholar]
  11. Fondong V. N., Pita J. S., Rey M. E., de Kochko A., Beachy R. N., Fauquet C. M..( 2000;). Evidence of synergism between African cassava mosaic virus and a new double-recombinant geminivirus infecting cassava in Cameroon. . J Gen Virol81:287–297. [CrossRef][PubMed]
    [Google Scholar]
  12. García-Andrés S., Tomás D. M., Navas-Castillo J., Moriones E..( 2009;). Resistance-driven selection of begomoviruses associated with the tomato yellow leaf curl disease. . Virus Res146:66–72. [CrossRef][PubMed]
    [Google Scholar]
  13. García-Andrés S., Monci F., Navas-Castillo J., Moriones E..( 2006;). Begomovirus genetic diversity in the native plant reservoir Solanum nigrum: evidence for the presence of a new virus species of recombinant nature. . Virology350:433–442. [CrossRef][PubMed]
    [Google Scholar]
  14. García-Andrés S., Accotto G. P., Navas-Castillo J., Moriones E..( 2007a;). Founder effect, plant host, and recombination shape the emergent population of begomoviruses that cause the tomato yellow leaf curl disease in the Mediterranean basin. . Virology359:302–312. [CrossRef]
    [Google Scholar]
  15. García-Andrés S., Tomás D. M., Sánchez-Campos S., Navas-Castillo J., Moriones E..( 2007b;). Frequent occurrence of recombinants in mixed infections of tomato yellow leaf curl disease-associated begomoviruses. . Virology365:210–219. [CrossRef]
    [Google Scholar]
  16. Gómez P., Sempere R. N., Elena S. F., Aranda M. A..( 2009;). Mixed infections of Pepino mosaic virus strains modulate the evolutionary dynamics of this emergent virus. . J Virol83:12378–12387. [CrossRef][PubMed]
    [Google Scholar]
  17. Hillung J., Cuevas J. M., Elena S. F..( 2015;). Evaluating the within-host fitness effects of mutations fixed during virus adaptation to different ecotypes of a new host. . Philos Trans R Soc B Biol Sci370:20140292. [CrossRef]
    [Google Scholar]
  18. Lapidot M., Friedmann M., Pilowsky M., Ben-Joseph R., Cohen S..( 2001;). Effect of host plant resistance to Tomato yellow leaf curl virus (TYLCV) on virus acquisition and transmission by its whitefly vector. . Phytopathology91:1209–1213. [CrossRef][PubMed]
    [Google Scholar]
  19. Larder B. A..( 1994;). Interactions between drug resistance mutations in human immunodeficiency virus type 1 reverse transcriptase. . J Gen Virol75:951–957. [CrossRef][PubMed]
    [Google Scholar]
  20. Lefeuvre P., Moriones E..( 2015;). Recombination as a motor of host switches and virus emergence: geminiviruses as case studies. . Curr Opin Virol10:14–19. [CrossRef][PubMed]
    [Google Scholar]
  21. Michelson I., Zamir D., Czosnek H..( 1994;). Accumulation and translocation of Tomato yellow Leaf curl virus (TYLCV) in a Lycopersicon esculentum breeding line containing the L. chilense TYLCV tolerance gene Ty-1. . Phytopathology84:928–933. [CrossRef]
    [Google Scholar]
  22. Monci F., Sánchez-Campos S., Navas-Castillo J., Moriones E..( 2002;). A natural recombinant between the geminiviruses Tomato yellow leaf curl Sardinia virus and Tomato yellow leaf curl virus exhibits a novel pathogenic phenotype and is becoming prevalent in Spanish populations. . Virology303:317–326. [CrossRef][PubMed]
    [Google Scholar]
  23. Moudy R. M., Meola M. A., Morin L. L., Ebel G. D., Kramer L. D..( 2007;). A newly emergent genotype of West Nile virus is transmitted earlier and more efficiently by Culex mosquitoes. . Am J Trop Med Hyg77:365–370.[PubMed]
    [Google Scholar]
  24. Pérez de Castro A., Díez M. J., Nuez F..( 2005;). Evaluation of breeding tomato lines partially resistant to Tomato yellow leaf curl Sardinia virus and Tomato yellow leaf curl virus derived from Lycopersicon chilense. . Can J Plant Pathol27:268–275. [CrossRef]
    [Google Scholar]
  25. Péréfarres F., Thébaud G., Lefeuvre P., Chiroleu F., Rimbaud L., Hoareau M., Reynaud B., Lett J.-M..( 2014;). Frequency-dependent assistance as a way out of competitive exclusion between two strains of an emerging virus. . Proc Biol Sci281:20133374. [CrossRef][PubMed]
    [Google Scholar]
  26. R_Development_Core_Team..( 2010;). R: A Language and Environment for Statistical Computing. Vienna:: R Foundation for Statistical Computing;.
    [Google Scholar]
  27. Richman D. D., Havlir D., Corbeil J., Looney D., Ignacio C., Spector S. A., Sullivan J., Cheeseman S., Barringer K. et al.( 1994;). Nevirapine resistance mutations of human immunodeficiency virus type 1 selected during therapy. . J Virol68:1660–1666.[PubMed]
    [Google Scholar]
  28. Rodríguez-Negrete E. A., Carrillo-Tripp J., Rivera-Bustamante R. F..( 2009;). RNA silencing against geminivirus: complementary action of posttranscriptional gene silencing and transcriptional gene silencing in host recovery. . J Virol83:1332–1340. [CrossRef][PubMed]
    [Google Scholar]
  29. Sánchez-Campos S., Navas-Castillo J., Camero R., Soria C., Díaz J. A., Moriones E..( 1999;). Displacement of tomato yellow leaf curl virus (TYLCV)-Sr by TYLCV-Is in tomato epidemics in Spain. . Phytopathology89:1038–1043. [CrossRef][PubMed]
    [Google Scholar]
  30. Sahu P. P., Sharma N., Puranik S., Prasad M..( 2014;). Post-transcriptional and epigenetic arms of RNA silencing: a defense machinery of naturally tolerant tomato plant against Tomato leaf curl New Delhi virus. . Plant Mol Biol Report32:1015–1029. [CrossRef]
    [Google Scholar]
  31. Shi M., Holmes E. C., Brar M. S., Leung F. C.-C..( 2013;). Recombination is associated with an outbreak of novel highly pathogenic porcine reproductive and respiratory syndrome viruses in China. . J Virol87:10904–10907. [CrossRef][PubMed]
    [Google Scholar]
  32. Tahiri A., Sekkat A., Bennani A., Granier M., Delvare G., Peterschmitt M..( 2006;). Distribution of tomato-infecting begomoviruses and Bemisia tabaci biotypes in Morocco. . Ann Appl Biol149:175–186. [CrossRef]
    [Google Scholar]
  33. Tahiri A., Halkett F., Granier M., Gueguen G., Peterschmitt M..( 2013;). Evidence of gene flow between sympatric populations of the Middle East-Asia Minor 1 and Mediterranean putative species of Bemisia tabaci. . Ecol Evol3:2619–2633. [CrossRef]
    [Google Scholar]
  34. Tromas N., Zwart M. P., Poulain M., Elena S. F..( 2014;). Estimation of the in vivo recombination rate for a plant RNA virus. . J Gen Virol95:724–732. [CrossRef][PubMed]
    [Google Scholar]
  35. Urbino C., Gutiérrez S., Antolik A., Bouazza N., Doumayrou J., Granier M., Martin D. P., Peterschmitt M..( 2013;). Within-host dynamics of the emergence of Tomato yellow leaf curl virus recombinants. . PLoS One8:e58375. [CrossRef][PubMed]
    [Google Scholar]
  36. Vu T. T., Holmes E. C., Duong V., Nguyen T. Q., Tran T. H., Quail M., Churcher C., Parkhill J., Cardosa J. et al.( 2010;). Emergence of the Asian 1 genotype of dengue virus serotype 2 in Viet Nam: in vivo fitness advantage and lineage replacement in South-East Asia. . PLoS Negl Trop Dis4:e757. [CrossRef][PubMed]
    [Google Scholar]
  37. Vuillaume F., Thébaud G., Urbino C., Forfert N., Granier M., Froissart R., Blanc S., Peterschmitt M..( 2011;). Distribution of the phenotypic effects of random homologous recombination between two virus species. . PLoS Pathog7:e1002028. [CrossRef][PubMed]
    [Google Scholar]
  38. Wain-Hobson S., Renoux-Elbé C., Vartanian J. P., Meyerhans A..( 2003;). Network analysis of human and simian immunodeficiency virus sequence sets reveals massive recombination resulting in shorter pathways. . J Gen Virol84:885–895. [CrossRef][PubMed]
    [Google Scholar]
  39. Worobey M., Holmes E. C..( 1999;). Evolutionary aspects of recombination in RNA viruses. . J Gen Virol80:2535–2543. [CrossRef][PubMed]
    [Google Scholar]
  40. Yadav R. K., Chattopadhyay D..( 2011;). Enhanced viral intergenic region-specific short interfering RNA accumulation and DNA methylation correlates with resistance against a geminivirus. . Mol Plant Microbe Interact24:1189–1197. [CrossRef][PubMed]
    [Google Scholar]
  41. Yang X., Wang Y., Guo W., Xie Y., Xie Q., Fan L., Zhou X..( 2011;). Characterization of small interfering RNAs derived from the geminivirus/betasatellite complex using deep sequencing. . PLoS One6:e16928. [CrossRef][PubMed]
    [Google Scholar]
  42. Zhou X., Liu Y., Calvert L., Munoz C., Otim-Nape G. W., Robinson D. J., Harrison B. D..( 1997;). Evidence that DNA-A of a geminivirus associated with severe cassava mosaic disease in Uganda has arisen by interspecific recombination. . J Gen Virol78:2101–2111. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000633
Loading
/content/journal/jgv/10.1099/jgv.0.000633
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error