1887

Abstract

The vaccinia virus (VACV) K1 protein inhibits dsRNA-dependent protein kinase (PKR) activation. A consequence of this function is that K1 inhibits PKR-induced NF-κB activation during VACV infection. However, transient expression of K1 also inhibits Toll-like receptor (TLR)-induced NF-κB activation. This suggests that K1 has a second NF-κB inhibitory mechanism that is PKR-independent. This possibility was explored by expressing K1 independently of infection and stimulating NF-κB under conditions that minimized or excluded PKR activation. K1 inhibited both TNF- and phorbol 12-myristate 13-acetate (PMA)-induced NF-κB activation, as detected by transcription of synthetic (e.g. luciferase) and natural (e.g. ) genes controlled by NF-κB. K1 also inhibited NF-κB activity in PKR cells, cells that have greatly decreased amounts of PKR. K1 no longer prevented IκBα degradation or NF-κB nuclear translocation in the absence of PKR, suggesting that K1 acted on a nuclear event. Indeed, K1 was present in the nucleus and cytoplasm of stimulated and unstimulated cells. K1 inhibited acetylation of the RelA (p65) subunit of NF-κB, a nuclear event known to be required for NF-κB activation. Moreover, p65–CBP (CREB-binding protein) interactions were blocked in the presence of K1. However, K1 did not preclude NF-κB binding to oligonucleotides containing κB-binding sites. The current interpretation of these data is that NF-κB–promoter interactions still occur in the presence of K1, but NF-κB cannot properly trigger transcriptional activation because K1 antagonizes acetylation of RelA. Thus, in comparison to all known VACV NF-κB inhibitory proteins, K1 acts at one of the most downstream events of NF-κB activation.

Keyword(s): ankyrin , K1 , NF-κB , poxvirus , RelA and vaccinia
Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000576
2016-10-13
2020-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/10/2691.html?itemId=/content/journal/jgv/10.1099/jgv.0.000576&mimeType=html&fmt=ahah

References

  1. Aravalli R. N., Hu S., Lokensgard J. R.. 2008; Inhibition of toll-like receptor signaling in primary murine microglia. J Neuroimmune Pharmacol3:5–11 [CrossRef][PubMed]
    [Google Scholar]
  2. Bhatt D., Ghosh S.. 2014; Regulation of the NF-κB-mediated transcription of inflammatory genes. Front Immunol5:71 [CrossRef][PubMed]
    [Google Scholar]
  3. Bitra K., Suderman R. J., Strand M. R.. 2012; Polydnavirus Ank proteins bind NF-κB homodimers and inhibit processing of Relish. PLoS Pathog8:e1002722 [CrossRef][PubMed]
    [Google Scholar]
  4. Bowie A., Kiss-Toth E., Symons J. A., Smith G. L., Dower S. K., O'Neill L. A.. 2000; A46R and A52R from vaccinia virus are antagonists of host IL-1 and toll-like receptor signaling. Proc Natl Acad Sci U S A97:10162–10167 [CrossRef][PubMed]
    [Google Scholar]
  5. Burles K., van Buuren N., Barry M.. 2014; Ectromelia virus encodes a family of Ankyrin/F-box proteins that regulate NFκB. Virology468-470:351–362 [CrossRef][PubMed]
    [Google Scholar]
  6. Buttigieg K., Laidlaw S. M., Ross C., Davies M., Goodbourn S., Skinner M. A.. 2013; Genetic screen of a library of chimeric poxviruses identifies an ankyrin repeat protein involved in resistance to the avian type I interferon response. J Virol87:5028–5040 [CrossRef][PubMed]
    [Google Scholar]
  7. Cabanski M., Steinmüller M., Marsh L. M., Surdziel E., Seeger W., Lohmeyer J.. 2008; PKR regulates TLR2/TLR4-dependent signaling in murine alveolar macrophages. Am J Respir Cell Mol Biol38:26–31 [CrossRef][PubMed]
    [Google Scholar]
  8. Camus-Bouclainville C., Fiette L., Bouchiha S., Pignolet B., Counor D., Filipe C., Gelfi J., Messud-Petit F.. 2004; A virulence factor of myxoma virus colocalizes with NF- B in the nucleus and interferes with inflammation. J Virol78:2510–2516 [CrossRef]
    [Google Scholar]
  9. Chang S. J., Hsiao J. C., Sonnberg S., Chiang C. T., Yang M. H., Tzou D. L., Mercer A. A., Chang W.. 2009; Poxvirus host range protein CP77 contains an F-box-like domain that is necessary to suppress NF-kappaB activation by tumor necrosis factor alpha but is independent of its host range function. J Virol83:4140–4152 [CrossRef][PubMed]
    [Google Scholar]
  10. Chen J., Chen L. F.. 2015; Methods to detect NF-κB acetylation and methylation. Methods Mol Biol1280:395–409 [CrossRef][PubMed]
    [Google Scholar]
  11. Chen L., Fischle W., Verdin E., Greene W. C.. 2001; Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science293:1653–1657 [CrossRef][PubMed]
    [Google Scholar]
  12. Chen R. A., Ryzhakov G., Cooray S., Randow F., Smith G. L.. 2008; Inhibition of IkappaB kinase by vaccinia virus virulence factor B14. PLoS Pathog4:e22 [CrossRef][PubMed]
    [Google Scholar]
  13. Chen Z., Hagler J., Palombella V. J., Melandri F., Scherer D., Ballard D., Maniatis T.. 1995; Signal-induced site-specific phosphorylation targets I kappa B alpha to the ubiquitin-proteasome pathway. Genes Dev9:1586–1597 [CrossRef][PubMed]
    [Google Scholar]
  14. da Silva Correia J., Ulevitch R. J.. 2002; MD-2 and TLR4 N-linked glycosylations are important for a functional lipopolysaccharide receptor. J Biol Chem277:1845–1854 [CrossRef][PubMed]
    [Google Scholar]
  15. Diel D. G., Luo S., Delhon G., Peng Y., Flores E. F., Rock D. L.. 2011; A nuclear inhibitor of NF-kappaB encoded by a poxvirus. J Virol85:264–275 [CrossRef][PubMed]
    [Google Scholar]
  16. DiPerna G., Stack J., Bowie A. G., Boyd A., Kotwal G., Zhang Z., Arvikar S., Latz E., Fitzgerald K. A. et al. 2004; Poxvirus protein N1L targets the I-kappaB kinase complex, inhibits signaling to NF-kappaB by the tumor necrosis factor superfamily of receptors, and inhibits NF-kappaB and IRF3 signaling by toll-like receptors. J Biol Chem279:36570–36578 [CrossRef][PubMed]
    [Google Scholar]
  17. Dreyfus D. H., Liu Y., Ghoda L. Y., Chang J. T.. 2011; Analysis of an ankyrin-like region in Epstein Barr Virus encoded (EBV) BZLF-1 (ZEBRA) protein: implications for interactions with NF-κB and p53. Virol J8:422 [CrossRef][PubMed]
    [Google Scholar]
  18. Drillien R., Koehren F., Kirn A.. 1981; Host range deletion mutant of vaccinia virus defective in human cells. Virology111:488–499 [CrossRef][PubMed]
    [Google Scholar]
  19. Ember S. W., Ren H., Ferguson B. J., Smith G. L.. 2012; Vaccinia virus protein C4 inhibits NF-κB activation and promotes virus virulence. J Gen Virol93:2098–2108 [CrossRef][PubMed]
    [Google Scholar]
  20. Friedrich K., Hanauer J. R., Prüfer S., Münch R. C., Völker I., Filippis C., Jost C., Hanschmann K. M., Cattaneo R. et al. 2013; DARPin-targeting of measles virus: unique bispecificity, effective oncolysis, and enhanced safety. Mol Ther21:849–859 [CrossRef][PubMed]
    [Google Scholar]
  21. Gates L. T., Shisler J. L.. 2016; cFLIPL interrupts IRF3-CBP-DNA interactions to inhibit IRF3-driven transcription. J Immunol197:923–933 [CrossRef][PubMed]
    [Google Scholar]
  22. Gedey R., Jin X. L., Hinthong O., Shisler J. L.. 2006; Poxviral regulation of the host NF-kappaB response: the vaccinia virus M2L protein inhibits induction of NF-kappaB activation via an ERK2 pathway in virus-infected human embryonic kidney cells. J Virol80:8676–8685 [CrossRef][PubMed]
    [Google Scholar]
  23. Gerritsen M. E., Williams A. J., Neish A. S., Moore S., Shi Y., Collins T.. 1997; CREB-binding protein/p300 are transcriptional coactivators of p65. Proc Natl Acad Sci U S A94:2927–2932 [CrossRef][PubMed]
    [Google Scholar]
  24. Gilbert S. C.. 2013; Clinical development of modified vaccinia virus ankara vaccines. Vaccine31:4241–4246 [CrossRef][PubMed]
    [Google Scholar]
  25. Hayden M. S., Ghosh S.. 2008; Shared principles in NF-kappaB signaling. Cell132:344–362 [CrossRef][PubMed]
    [Google Scholar]
  26. Hayden M. S., Ghosh S.. 2014; Regulation of NF-κB by TNF family cytokines. Semin Immunol26:253–266 [CrossRef][PubMed]
    [Google Scholar]
  27. Herbert M. H., Squire C. J., Mercer A. A.. 2015; Poxviral ankyrin proteins. Viruses7:709–738 [CrossRef][PubMed]
    [Google Scholar]
  28. Hinz M., Arslan SÇ., Scheidereit C.. 2012; It takes two to tango: IκBs, the multifunctional partners of NF-κB. Immunol Rev246:59–76 [CrossRef][PubMed]
    [Google Scholar]
  29. Hinz M., Scheidereit C.. 2014; The IκB kinase complex in NF-κB regulation and beyond. EMBO Rep15:46–61 [CrossRef][PubMed]
    [Google Scholar]
  30. Huang B., Yang X. D., Lamb A., Chen L. F.. 2010; Posttranslational modifications of NF-kappaB: another layer of regulation for NF-kappaB signaling pathway. Cell Signal22:1282–1290 [CrossRef][PubMed]
    [Google Scholar]
  31. Hyndman B. D., Thompson P., Bayly R., Côté G. P., LeBrun D. P.. 2012; E2A proteins enhance the histone acetyltransferase activity of the transcriptional co-activators CBP and p300. Biochim Biophys Acta1819:446–453 [CrossRef][PubMed]
    [Google Scholar]
  32. Li J., Mahajan A., Tsai M. D.. 2006; Ankyrin repeat: a unique motif mediating protein-protein interactions. Biochemistry45:15168–15178 [CrossRef][PubMed]
    [Google Scholar]
  33. Li Y., Meng X., Xiang Y., Deng J.. 2010; Structure function studies of vaccinia virus host range protein k1 reveal a novel functional surface for ankyrin repeat proteins. J Virol84:3331–3338 [CrossRef][PubMed]
    [Google Scholar]
  34. Livak K. J., Schmittgen T. D.. 2001; Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods25:402–408 [CrossRef][PubMed]
    [Google Scholar]
  35. Mansur D. S., Maluquer de Motes C., Unterholzner L., Sumner R. P., Ferguson B. J., Ren H., Strnadova P., Bowie A. G., Smith G. L.. 2013; Poxvirus targeting of E3 ligase β-TrCP by molecular mimicry: a mechanism to inhibit NF-κB activation and promote immune evasion and virulence. PLoS Pathog9:e1003183 [CrossRef][PubMed]
    [Google Scholar]
  36. McCraith S., Holtzman T., Moss B., Fields S.. 2000; Genome-wide analysis of vaccinia virus protein-protein interactions. Proc Natl Acad Sci U S A97:4879–4884 [CrossRef][PubMed]
    [Google Scholar]
  37. Meng X., Xiang Y.. 2006; Vaccinia virus K1L protein supports viral replication in human and rabbit cells through a cell-type-specific set of its ankyrin repeat residues that are distinct from its binding site for ACAP2. Virology353:220–233 [CrossRef][PubMed]
    [Google Scholar]
  38. Meng X., Schoggins J., Rose L., Cao J., Ploss A., Rice C. M., Xiang Y.. 2012; C7L family of poxvirus host range genes inhibits antiviral activities induced by type I interferons and interferon regulatory factor 1. J Virol86:4538–4547 [CrossRef][PubMed]
    [Google Scholar]
  39. Mohamed M. R., Rahman M. M., Lanchbury J. S., Shattuck D., Neff C., Dufford M., van Buuren N., Fagan K., Barry M. et al. 2009; Proteomic screening of variola virus reveals a unique NF-kappaB inhibitor that is highly conserved among pathogenic orthopoxviruses. Proc Natl Acad Sci U S A106:9045–9050 [CrossRef][PubMed]
    [Google Scholar]
  40. Mosavi L. K., Cammett T. J., Desrosiers D. C., Peng Z. Y.. 2004; The ankyrin repeat as molecular architecture for protein recognition. Protein Sci13:1435–1448 [CrossRef][PubMed]
    [Google Scholar]
  41. Moss B.. 2013; Poxviridae. In Fields Virology, 6th edn. pp.2129–2159 Edited by David P. M. H., Knipe M.. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  42. Mukherjee S. P., Behar M., Birnbaum H. A., Hoffmann A., Wright P. E., Ghosh G.. 2013; Analysis of the RelA:CBP/p300 interaction reveals its involvement in NF-κB-driven transcription. PLoS Biol11:e1001647 [CrossRef][PubMed]
    [Google Scholar]
  43. Myskiw C., Arsenio J., van Bruggen R., Deschambault Y., Cao J.. 2009; Vaccinia virus E3 suppresses expression of diverse cytokines through inhibition of the PKR, NF-kappaB, and IRF3 pathways. J Virol83:6757–6768 [CrossRef][PubMed]
    [Google Scholar]
  44. Oda S., Schröder M., Khan A. R.. 2009; Structural basis for targeting of human RNA helicase DDX3 by poxvirus protein K7. Structure17:1528–1537 [CrossRef][PubMed]
    [Google Scholar]
  45. Oie K. L., Pickup D. J.. 2001; Cowpox virus and other members of the orthopoxvirus genus interfere with the regulation of NF-kappaB activation. Virology288:175–187 [CrossRef][PubMed]
    [Google Scholar]
  46. Orphanides G., Lagrange T., Reinberg D.. 1996; The general transcription factors of RNA polymerase II. Genes Dev10:2657–2683 [CrossRef][PubMed]
    [Google Scholar]
  47. Perkus M. E., Panicali D., Mercer S., Paoletti E.. 1986; Insertion and deletion mutants of vaccinia virus. Virology152:285–297 [CrossRef][PubMed]
    [Google Scholar]
  48. Randall C. M., Jokela J. A., Shisler J. L.. 2012; The MC159 protein from the molluscum contagiosum poxvirus inhibits NF-κB activation by interacting with the IκB kinase complex. J Immunol188:2371–2379 [CrossRef][PubMed]
    [Google Scholar]
  49. Randall C. M., Biswas S., Selen C., Shisler J. L.. 2014; Inhibition of interferon gene activation by death-effector domain-containing proteins from the molluscum contagiosum virus. Proc Natl Acad Sci U S A111:E265272 [CrossRef][PubMed]
    [Google Scholar]
  50. Revilla Y., Callejo M., Rodriguez J. M., Culebras E., Nogal M. L., Salas M. L., Vinuela E., Fresno M.. 1998; Inhibition of nuclear factor kappa B activation by a virus-encoded Ikappa B-like protein. J Biol Chem273:5405–5411[CrossRef]
    [Google Scholar]
  51. Sánchez-Sampedro L., Perdiguero B., Mejías-Pérez E., García-Arriaza J., Di Pilato M., Esteban M.. 2015; The evolution of poxvirus vaccines. Viruses7:1726–1803 [CrossRef][PubMed]
    [Google Scholar]
  52. Scherer D. C., Brockman J. A., Chen Z., Maniatis T., Ballard D. W.. 1995; Signal-induced degradation of I kappa B alpha requires site-specific ubiquitination. Proc Natl Acad Sci U S A92:11259–11263 [CrossRef][PubMed]
    [Google Scholar]
  53. Schröder M., Baran M., Bowie A. G.. 2008; Viral targeting of DEAD box protein 3 reveals its role in TBK1/IKKepsilon-mediated IRF activation. EMBO J27:2147–2157 [CrossRef][PubMed]
    [Google Scholar]
  54. Schweizer A., Rusert P., Berlinger L., Ruprecht C. R., Mann A., Corthésy S., Turville S. G., Aravantinou M., Fischer M. et al. 2008; CD4-specific designed ankyrin repeat proteins are novel potent HIV entry inhibitors with unique characteristics. PLoS Pathog4:e1000109 [CrossRef][PubMed]
    [Google Scholar]
  55. Sette A., Grey H., Oseroff C., Peters B., Moutaftsi M., Crotty S., Assarsson E., Greenbaum J., Kim Y. et al. 2009; Definition of epitopes and antigens recognized by vaccinia specific immune responses: their conservation in variola virus sequences, and use as a model system to study complex pathogens. Vaccine27:G21–G26 [CrossRef][PubMed]
    [Google Scholar]
  56. Shisler J. L., Jin X. L.. 2004; The vaccinia virus K1L gene product inhibits host NF-kappaB activation by preventing IkappaBalpha degradation. J Virol78:3553–3560[PubMed][CrossRef]
    [Google Scholar]
  57. Sivan G., Ormanoglu P., Buehler E. C., Martin S. E., Moss B.. 2015; Identification of restriction factors by human genome-wide rna interference screening of viral host range mutants exemplified by discovery of SAMD9 and WDR6 as inhibitors of the vaccinia virus K1L-C7L- Mutant. MBio6:e01122 [CrossRef][PubMed]
    [Google Scholar]
  58. Smith G. L., Benfield C. T., Maluquer de Motes C., Mazzon M., Ember S. W., Ferguson B. J., Sumner R. P.. 2013; Vaccinia virus immune evasion: mechanisms, virulence and immunogenicity. J Gen Virol94:2367–2392 [CrossRef][PubMed]
    [Google Scholar]
  59. Sonnberg S., Seet B. T., Pawson T., Fleming S. B., Mercer A. A.. 2008; Poxvirus ankyrin repeat proteins are a unique class of F-box proteins that associate with cellular SCF1 ubiquitin ligase complexes. Proc Natl Acad Sci U S A105:10955–10960 [CrossRef][PubMed]
    [Google Scholar]
  60. Sperling K. M., Schwantes A., Schnierle B. S., Sutter G.. 2008; The highly conserved orthopoxvirus 68k ankyrin-like protein is part of a cellular SCF ubiquitin ligase complex. Virology374:234–239 [CrossRef][PubMed]
    [Google Scholar]
  61. Stumpp M. T., Amstutz P.. 2007; DARPins: a true alternative to antibodies. Curr Opin Drug Discov Devel10:153–159[PubMed]
    [Google Scholar]
  62. Sumner R. P., Maluquer de Motes C., Veyer D. L., Smith G. L.. 2014; Vaccinia virus inhibits NF-κB-dependent gene expression downstream of p65 translocation. J Virol88:3092–3102 [CrossRef][PubMed]
    [Google Scholar]
  63. Takada Y., Ichikawa H., Pataer A., Swisher S., Aggarwal B. B.. 2007; Genetic deletion of PKR abrogates TNF-induced activation of IkappaBalpha kinase, JNK, Akt and cell proliferation but potentiates p44/p42 MAPK and p38 MAPK activation. Oncogene26:1201–1212 [CrossRef][PubMed]
    [Google Scholar]
  64. Van Antwerp D. J., Verma I. M.. 1996; Signal-induced degradation of I(kappa)B(alpha): association with NF-kappaB and the PEST sequence in I(kappa)B(alpha) are not required. Mol Cell Biol16:6037–6045 [CrossRef][PubMed]
    [Google Scholar]
  65. van Buuren N., Couturier B., Xiong Y., Barry M.. 2008; Ectromelia virus encodes a novel family of F-box proteins that interact with the SCF complex. J Virol82:9917–9927 [CrossRef][PubMed]
    [Google Scholar]
  66. Wang R., Brattain M. G.. 2007; The maximal size of protein to diffuse through the nuclear pore is larger than 60kDa. FEBS Lett581:3164–3170 [CrossRef][PubMed]
    [Google Scholar]
  67. Werden S. J., Lanchbury J., Shattuck D., Neff C., Dufford M., McFadden G.. 2009; The myxoma virus m-t5 ankyrin repeat host range protein is a novel adaptor that coordinately links the cellular signaling pathways mediated by Akt and Skp1 in virus-infected cells. J Virol83:12068–12083 [CrossRef][PubMed]
    [Google Scholar]
  68. Willis K. L., Patel S., Xiang Y., Shisler J. L.. 2009; The effect of the vaccinia K1 protein on the PKR-eIF2alpha pathway in RK13 and HeLa cells. Virology394:73–81 [CrossRef][PubMed]
    [Google Scholar]
  69. Willis K. L., Langland J. O., Shisler J. L.. 2011; Viral dsRNAs from vaccinia virus early or intermediate gene transcripts possess PKR activating function, resulting in NF-{kappa}B activation, when the K1 protein is absent or mutated. J Biol Chem286:7765–7778 [CrossRef][PubMed]
    [Google Scholar]
  70. Yim H. C., Williams B. R.. 2014; Protein kinase R and the inflammasome. J Interferon Cytokine Res34:447–454 [CrossRef][PubMed]
    [Google Scholar]
  71. Zamanian-Daryoush M., Mogensen T. H., DiDonato J. A., Williams B. R.. 2000; NF-kappaB activation by double-stranded-RNA-activated protein kinase (PKR) is mediated through NF-kappaB-inducing kinase and IkappaB kinase. Mol Cell Biol20:1278–1290 [CrossRef][PubMed]
    [Google Scholar]
  72. Zhang P., Jacobs B. L., Samuel C. E.. 2008; Loss of protein kinase PKR expression in human HeLa cells complements the vaccinia virus E3L deletion mutant phenotype by restoration of viral protein synthesis. J Virol82:840–848 [CrossRef][PubMed]
    [Google Scholar]
  73. Zhou Y., Chase B. I., Whitmore M., Williams B. R., Zhou A.. 2005; Double-stranded RNA-dependent protein kinase (PKR) is downregulated by phorbol ester. FEBS J272:1568–1576 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000576
Loading
/content/journal/jgv/10.1099/jgv.0.000576
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error