1887

Abstract

The vaccinia virus (VACV) K1 protein inhibits dsRNA-dependent protein kinase (PKR) activation. A consequence of this function is that K1 inhibits PKR-induced NF-κB activation during VACV infection. However, transient expression of K1 also inhibits Toll-like receptor (TLR)-induced NF-κB activation. This suggests that K1 has a second NF-κB inhibitory mechanism that is PKR-independent. This possibility was explored by expressing K1 independently of infection and stimulating NF-κB under conditions that minimized or excluded PKR activation. K1 inhibited both TNF- and phorbol 12-myristate 13-acetate (PMA)-induced NF-κB activation, as detected by transcription of synthetic (e.g. luciferase) and natural (e.g. CXCL8) genes controlled by NF-κB. K1 also inhibited NF-κB activity in PKR cells, cells that have greatly decreased amounts of PKR. K1 no longer prevented IκBα degradation or NF-κB nuclear translocation in the absence of PKR, suggesting that K1 acted on a nuclear event. Indeed, K1 was present in the nucleus and cytoplasm of stimulated and unstimulated cells. K1 inhibited acetylation of the RelA (p65) subunit of NF-κB, a nuclear event known to be required for NF-κB activation. Moreover, p65–CBP (CREB-binding protein) interactions were blocked in the presence of K1. However, K1 did not preclude NF-κB binding to oligonucleotides containing κB-binding sites. The current interpretation of these data is that NF-κB–promoter interactions still occur in the presence of K1, but NF-κB cannot properly trigger transcriptional activation because K1 antagonizes acetylation of RelA. Thus, in comparison to all known VACV NF-κB inhibitory proteins, K1 acts at one of the most downstream events of NF-κB activation.

Keyword(s): ankyrin , K1 , NF-κB , poxvirus , RelA and vaccinia
Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000576
2016-10-13
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/10/2691.html?itemId=/content/journal/jgv/10.1099/jgv.0.000576&mimeType=html&fmt=ahah

References

  1. Aravalli R. N., Hu S., Lokensgard J. R..( 2008;). Inhibition of toll-like receptor signaling in primary murine microglia. . J Neuroimmune Pharmacol 3: 5–11. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bhatt D., Ghosh S..( 2014;). Regulation of the NF-κB-mediated transcription of inflammatory genes. . Front Immunol 5: 71. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bitra K., Suderman R. J., Strand M. R..( 2012;). Polydnavirus Ank proteins bind NF-κB homodimers and inhibit processing of Relish. . PLoS Pathog 8:,e1002722. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bowie A., Kiss-Toth E., Symons J. A., Smith G. L., Dower S. K., O'Neill L. A..( 2000;). A46R and A52R from vaccinia virus are antagonists of host IL-1 and toll-like receptor signaling. . Proc Natl Acad Sci U S A 97: 10162–10167. [CrossRef] [PubMed]
    [Google Scholar]
  5. Burles K., van Buuren N., Barry M..( 2014;). Ectromelia virus encodes a family of Ankyrin/F-box proteins that regulate NFκB. . Virology 468-470: 351–362. [CrossRef] [PubMed]
    [Google Scholar]
  6. Buttigieg K., Laidlaw S. M., Ross C., Davies M., Goodbourn S., Skinner M. A..( 2013;). Genetic screen of a library of chimeric poxviruses identifies an ankyrin repeat protein involved in resistance to the avian type I interferon response. . J Virol 87: 5028–5040. [CrossRef] [PubMed]
    [Google Scholar]
  7. Cabanski M., Steinmüller M., Marsh L. M., Surdziel E., Seeger W., Lohmeyer J..( 2008;). PKR regulates TLR2/TLR4-dependent signaling in murine alveolar macrophages. . Am J Respir Cell Mol Biol 38: 26–31. [CrossRef] [PubMed]
    [Google Scholar]
  8. Camus-Bouclainville C., Fiette L., Bouchiha S., Pignolet B., Counor D., Filipe C., Gelfi J., Messud-Petit F..( 2004;). A virulence factor of myxoma virus colocalizes with NF- B in the nucleus and interferes with inflammation. . J Virol 78: 2510–2516. [CrossRef]
    [Google Scholar]
  9. Chang S. J., Hsiao J. C., Sonnberg S., Chiang C. T., Yang M. H., Tzou D. L., Mercer A. A., Chang W..( 2009;). Poxvirus host range protein CP77 contains an F-box-like domain that is necessary to suppress NF-kappaB activation by tumor necrosis factor alpha but is independent of its host range function. . J Virol 83: 4140–4152. [CrossRef] [PubMed]
    [Google Scholar]
  10. Chen J., Chen L. F..( 2015;). Methods to detect NF-κB acetylation and methylation. . Methods Mol Biol 1280: 395–409. [CrossRef] [PubMed]
    [Google Scholar]
  11. Chen L., Fischle W., Verdin E., Greene W. C..( 2001;). Duration of nuclear NF-kappaB action regulated by reversible acetylation. . Science 293: 1653–1657. [CrossRef] [PubMed]
    [Google Scholar]
  12. Chen R. A., Ryzhakov G., Cooray S., Randow F., Smith G. L..( 2008;). Inhibition of IkappaB kinase by vaccinia virus virulence factor B14. . PLoS Pathog 4:,e22. [CrossRef] [PubMed]
    [Google Scholar]
  13. Chen Z., Hagler J., Palombella V. J., Melandri F., Scherer D., Ballard D., Maniatis T..( 1995;). Signal-induced site-specific phosphorylation targets I kappa B alpha to the ubiquitin-proteasome pathway. . Genes Dev 9: 1586–1597. [CrossRef] [PubMed]
    [Google Scholar]
  14. da Silva Correia J., Ulevitch R. J..( 2002;). MD-2 and TLR4 N-linked glycosylations are important for a functional lipopolysaccharide receptor. . J Biol Chem 277: 1845–1854. [CrossRef] [PubMed]
    [Google Scholar]
  15. Diel D. G., Luo S., Delhon G., Peng Y., Flores E. F., Rock D. L..( 2011;). A nuclear inhibitor of NF-kappaB encoded by a poxvirus. . J Virol 85: 264–275. [CrossRef] [PubMed]
    [Google Scholar]
  16. DiPerna G., Stack J., Bowie A. G., Boyd A., Kotwal G., Zhang Z., Arvikar S., Latz E., Fitzgerald K. A. et al.( 2004;). Poxvirus protein N1L targets the I-kappaB kinase complex, inhibits signaling to NF-kappaB by the tumor necrosis factor superfamily of receptors, and inhibits NF-kappaB and IRF3 signaling by toll-like receptors. . J Biol Chem 279: 36570–36578. [CrossRef] [PubMed]
    [Google Scholar]
  17. Dreyfus D. H., Liu Y., Ghoda L. Y., Chang J. T..( 2011;). Analysis of an ankyrin-like region in Epstein Barr Virus encoded (EBV) BZLF-1 (ZEBRA) protein: implications for interactions with NF-κB and p53. . Virol J 8: 422. [CrossRef] [PubMed]
    [Google Scholar]
  18. Drillien R., Koehren F., Kirn A..( 1981;). Host range deletion mutant of vaccinia virus defective in human cells. . Virology 111: 488–499. [CrossRef] [PubMed]
    [Google Scholar]
  19. Ember S. W., Ren H., Ferguson B. J., Smith G. L..( 2012;). Vaccinia virus protein C4 inhibits NF-κB activation and promotes virus virulence. . J Gen Virol 93: 2098–2108. [CrossRef] [PubMed]
    [Google Scholar]
  20. Friedrich K., Hanauer J. R., Prüfer S., Münch R. C., Völker I., Filippis C., Jost C., Hanschmann K. M., Cattaneo R. et al.( 2013;). DARPin-targeting of measles virus: unique bispecificity, effective oncolysis, and enhanced safety. . Mol Ther 21: 849–859. [CrossRef] [PubMed]
    [Google Scholar]
  21. Gates L. T., Shisler J. L..( 2016;). cFLIPL interrupts IRF3-CBP-DNA interactions to inhibit IRF3-driven transcription. . J Immunol 197: 923–933. [CrossRef] [PubMed]
    [Google Scholar]
  22. Gedey R., Jin X. L., Hinthong O., Shisler J. L..( 2006;). Poxviral regulation of the host NF-kappaB response: the vaccinia virus M2L protein inhibits induction of NF-kappaB activation via an ERK2 pathway in virus-infected human embryonic kidney cells. . J Virol 80: 8676–8685. [CrossRef] [PubMed]
    [Google Scholar]
  23. Gerritsen M. E., Williams A. J., Neish A. S., Moore S., Shi Y., Collins T..( 1997;). CREB-binding protein/p300 are transcriptional coactivators of p65. . Proc Natl Acad Sci U S A 94: 2927–2932. [CrossRef] [PubMed]
    [Google Scholar]
  24. Gilbert S. C..( 2013;). Clinical development of modified vaccinia virus ankara vaccines. . Vaccine 31: 4241–4246. [CrossRef] [PubMed]
    [Google Scholar]
  25. Hayden M. S., Ghosh S..( 2008;). Shared principles in NF-kappaB signaling. . Cell 132: 344–362. [CrossRef] [PubMed]
    [Google Scholar]
  26. Hayden M. S., Ghosh S..( 2014;). Regulation of NF-κB by TNF family cytokines. . Semin Immunol 26: 253–266. [CrossRef] [PubMed]
    [Google Scholar]
  27. Herbert M. H., Squire C. J., Mercer A. A..( 2015;). Poxviral ankyrin proteins. . Viruses 7: 709–738. [CrossRef] [PubMed]
    [Google Scholar]
  28. Hinz M., Arslan SÇ., Scheidereit C..( 2012;). It takes two to tango: IκBs, the multifunctional partners of NF-κB. . Immunol Rev 246: 59–76. [CrossRef] [PubMed]
    [Google Scholar]
  29. Hinz M., Scheidereit C..( 2014;). The IκB kinase complex in NF-κB regulation and beyond. . EMBO Rep 15: 46–61. [CrossRef] [PubMed]
    [Google Scholar]
  30. Huang B., Yang X. D., Lamb A., Chen L. F..( 2010;). Posttranslational modifications of NF-kappaB: another layer of regulation for NF-kappaB signaling pathway. . Cell Signal 22: 1282–1290. [CrossRef] [PubMed]
    [Google Scholar]
  31. Hyndman B. D., Thompson P., Bayly R., Côté G. P., LeBrun D. P..( 2012;). E2A proteins enhance the histone acetyltransferase activity of the transcriptional co-activators CBP and p300. . Biochim Biophys Acta 1819: 446–453. [CrossRef] [PubMed]
    [Google Scholar]
  32. Li J., Mahajan A., Tsai M. D..( 2006;). Ankyrin repeat: a unique motif mediating protein-protein interactions. . Biochemistry 45: 15168–15178. [CrossRef] [PubMed]
    [Google Scholar]
  33. Li Y., Meng X., Xiang Y., Deng J..( 2010;). Structure function studies of vaccinia virus host range protein k1 reveal a novel functional surface for ankyrin repeat proteins. . J Virol 84: 3331–3338. [CrossRef] [PubMed]
    [Google Scholar]
  34. Livak K. J., Schmittgen T. D..( 2001;). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. . Methods 25: 402–408. [CrossRef] [PubMed]
    [Google Scholar]
  35. Mansur D. S., Maluquer de Motes C., Unterholzner L., Sumner R. P., Ferguson B. J., Ren H., Strnadova P., Bowie A. G., Smith G. L..( 2013;). Poxvirus targeting of E3 ligase β-TrCP by molecular mimicry: a mechanism to inhibit NF-κB activation and promote immune evasion and virulence. . PLoS Pathog 9:,e1003183. [CrossRef] [PubMed]
    [Google Scholar]
  36. McCraith S., Holtzman T., Moss B., Fields S..( 2000;). Genome-wide analysis of vaccinia virus protein-protein interactions. . Proc Natl Acad Sci U S A 97: 4879–4884. [CrossRef] [PubMed]
    [Google Scholar]
  37. Meng X., Xiang Y..( 2006;). Vaccinia virus K1L protein supports viral replication in human and rabbit cells through a cell-type-specific set of its ankyrin repeat residues that are distinct from its binding site for ACAP2. . Virology 353: 220–233. [CrossRef] [PubMed]
    [Google Scholar]
  38. Meng X., Schoggins J., Rose L., Cao J., Ploss A., Rice C. M., Xiang Y..( 2012;). C7L family of poxvirus host range genes inhibits antiviral activities induced by type I interferons and interferon regulatory factor 1. . J Virol 86: 4538–4547. [CrossRef] [PubMed]
    [Google Scholar]
  39. Mohamed M. R., Rahman M. M., Lanchbury J. S., Shattuck D., Neff C., Dufford M., van Buuren N., Fagan K., Barry M. et al.( 2009;). Proteomic screening of variola virus reveals a unique NF-kappaB inhibitor that is highly conserved among pathogenic orthopoxviruses. . Proc Natl Acad Sci U S A 106: 9045–9050. [CrossRef] [PubMed]
    [Google Scholar]
  40. Mosavi L. K., Cammett T. J., Desrosiers D. C., Peng Z. Y..( 2004;). The ankyrin repeat as molecular architecture for protein recognition. . Protein Sci 13: 1435–1448. [CrossRef] [PubMed]
    [Google Scholar]
  41. Moss B..( 2013;). Poxviridae. . In Fields Virology, , 6th edn., pp. 2129–2159. Edited by David P. M. H., Knipe M.. Philadelphia, PA:: Lippincott Williams & Wilkins;.
    [Google Scholar]
  42. Mukherjee S. P., Behar M., Birnbaum H. A., Hoffmann A., Wright P. E., Ghosh G..( 2013;). Analysis of the RelA:CBP/p300 interaction reveals its involvement in NF-κB-driven transcription. . PLoS Biol 11:,e1001647. [CrossRef] [PubMed]
    [Google Scholar]
  43. Myskiw C., Arsenio J., van Bruggen R., Deschambault Y., Cao J..( 2009;). Vaccinia virus E3 suppresses expression of diverse cytokines through inhibition of the PKR, NF-kappaB, and IRF3 pathways. . J Virol 83: 6757–6768. [CrossRef] [PubMed]
    [Google Scholar]
  44. Oda S., Schröder M., Khan A. R..( 2009;). Structural basis for targeting of human RNA helicase DDX3 by poxvirus protein K7. . Structure 17: 1528–1537. [CrossRef] [PubMed]
    [Google Scholar]
  45. Oie K. L., Pickup D. J..( 2001;). Cowpox virus and other members of the orthopoxvirus genus interfere with the regulation of NF-kappaB activation. . Virology 288: 175–187. [CrossRef] [PubMed]
    [Google Scholar]
  46. Orphanides G., Lagrange T., Reinberg D..( 1996;). The general transcription factors of RNA polymerase II. . Genes Dev 10: 2657–2683. [CrossRef] [PubMed]
    [Google Scholar]
  47. Perkus M. E., Panicali D., Mercer S., Paoletti E..( 1986;). Insertion and deletion mutants of vaccinia virus. . Virology 152: 285–297. [CrossRef] [PubMed]
    [Google Scholar]
  48. Randall C. M., Jokela J. A., Shisler J. L..( 2012;). The MC159 protein from the molluscum contagiosum poxvirus inhibits NF-κB activation by interacting with the IκB kinase complex. . J Immunol 188: 2371–2379. [CrossRef] [PubMed]
    [Google Scholar]
  49. Randall C. M., Biswas S., Selen C., Shisler J. L..( 2014;). Inhibition of interferon gene activation by death-effector domain-containing proteins from the molluscum contagiosum virus. . Proc Natl Acad Sci U S A 111:,E265272. [CrossRef] [PubMed]
    [Google Scholar]
  50. Revilla Y., Callejo M., Rodriguez J. M., Culebras E., Nogal M. L., Salas M. L., Vinuela E., Fresno M..( 1998;). Inhibition of nuclear factor kappa B activation by a virus-encoded Ikappa B-like protein. . J Biol Chem 273: 5405–5411.[CrossRef]
    [Google Scholar]
  51. Sánchez-Sampedro L., Perdiguero B., Mejías-Pérez E., García-Arriaza J., Di Pilato M., Esteban M..( 2015;). The evolution of poxvirus vaccines. . Viruses 7: 1726–1803. [CrossRef] [PubMed]
    [Google Scholar]
  52. Scherer D. C., Brockman J. A., Chen Z., Maniatis T., Ballard D. W..( 1995;). Signal-induced degradation of I kappa B alpha requires site-specific ubiquitination. . Proc Natl Acad Sci U S A 92: 11259–11263. [CrossRef] [PubMed]
    [Google Scholar]
  53. Schröder M., Baran M., Bowie A. G..( 2008;). Viral targeting of DEAD box protein 3 reveals its role in TBK1/IKKepsilon-mediated IRF activation. . EMBO J 27: 2147–2157. [CrossRef] [PubMed]
    [Google Scholar]
  54. Schweizer A., Rusert P., Berlinger L., Ruprecht C. R., Mann A., Corthésy S., Turville S. G., Aravantinou M., Fischer M. et al.( 2008;). CD4-specific designed ankyrin repeat proteins are novel potent HIV entry inhibitors with unique characteristics. . PLoS Pathog 4:,e1000109. [CrossRef] [PubMed]
    [Google Scholar]
  55. Sette A., Grey H., Oseroff C., Peters B., Moutaftsi M., Crotty S., Assarsson E., Greenbaum J., Kim Y. et al.( 2009;). Definition of epitopes and antigens recognized by vaccinia specific immune responses: their conservation in variola virus sequences, and use as a model system to study complex pathogens. . Vaccine 27: G21–G26. [CrossRef] [PubMed]
    [Google Scholar]
  56. Shisler J. L., Jin X. L..( 2004;). The vaccinia virus K1L gene product inhibits host NF-kappaB activation by preventing IkappaBalpha degradation. . J Virol 78: 3553–3560.[PubMed] [CrossRef]
    [Google Scholar]
  57. Sivan G., Ormanoglu P., Buehler E. C., Martin S. E., Moss B..( 2015;). Identification of restriction factors by human genome-wide rna interference screening of viral host range mutants exemplified by discovery of SAMD9 and WDR6 as inhibitors of the vaccinia virus K1L-C7L- Mutant. . MBio 6:,e01122. [CrossRef] [PubMed]
    [Google Scholar]
  58. Smith G. L., Benfield C. T., Maluquer de Motes C., Mazzon M., Ember S. W., Ferguson B. J., Sumner R. P..( 2013;). Vaccinia virus immune evasion: mechanisms, virulence and immunogenicity. . J Gen Virol 94: 2367–2392. [CrossRef] [PubMed]
    [Google Scholar]
  59. Sonnberg S., Seet B. T., Pawson T., Fleming S. B., Mercer A. A..( 2008;). Poxvirus ankyrin repeat proteins are a unique class of F-box proteins that associate with cellular SCF1 ubiquitin ligase complexes. . Proc Natl Acad Sci U S A 105: 10955–10960. [CrossRef] [PubMed]
    [Google Scholar]
  60. Sperling K. M., Schwantes A., Schnierle B. S., Sutter G..( 2008;). The highly conserved orthopoxvirus 68k ankyrin-like protein is part of a cellular SCF ubiquitin ligase complex. . Virology 374: 234–239. [CrossRef] [PubMed]
    [Google Scholar]
  61. Stumpp M. T., Amstutz P..( 2007;). DARPins: a true alternative to antibodies. . Curr Opin Drug Discov Devel 10: 153–159.[PubMed]
    [Google Scholar]
  62. Sumner R. P., Maluquer de Motes C., Veyer D. L., Smith G. L..( 2014;). Vaccinia virus inhibits NF-κB-dependent gene expression downstream of p65 translocation. . J Virol 88: 3092–3102. [CrossRef] [PubMed]
    [Google Scholar]
  63. Takada Y., Ichikawa H., Pataer A., Swisher S., Aggarwal B. B..( 2007;). Genetic deletion of PKR abrogates TNF-induced activation of IkappaBalpha kinase, JNK, Akt and cell proliferation but potentiates p44/p42 MAPK and p38 MAPK activation. . Oncogene 26: 1201–1212. [CrossRef] [PubMed]
    [Google Scholar]
  64. Van Antwerp D. J., Verma I. M..( 1996;). Signal-induced degradation of I(kappa)B(alpha): association with NF-kappaB and the PEST sequence in I(kappa)B(alpha) are not required. . Mol Cell Biol 16: 6037–6045. [CrossRef] [PubMed]
    [Google Scholar]
  65. van Buuren N., Couturier B., Xiong Y., Barry M..( 2008;). Ectromelia virus encodes a novel family of F-box proteins that interact with the SCF complex. . J Virol 82: 9917–9927. [CrossRef] [PubMed]
    [Google Scholar]
  66. Wang R., Brattain M. G..( 2007;). The maximal size of protein to diffuse through the nuclear pore is larger than 60kDa. . FEBS Lett 581: 3164–3170. [CrossRef] [PubMed]
    [Google Scholar]
  67. Werden S. J., Lanchbury J., Shattuck D., Neff C., Dufford M., McFadden G..( 2009;). The myxoma virus m-t5 ankyrin repeat host range protein is a novel adaptor that coordinately links the cellular signaling pathways mediated by Akt and Skp1 in virus-infected cells. . J Virol 83: 12068–12083. [CrossRef] [PubMed]
    [Google Scholar]
  68. Willis K. L., Patel S., Xiang Y., Shisler J. L..( 2009;). The effect of the vaccinia K1 protein on the PKR-eIF2alpha pathway in RK13 and HeLa cells. . Virology 394: 73–81. [CrossRef] [PubMed]
    [Google Scholar]
  69. Willis K. L., Langland J. O., Shisler J. L..( 2011;). Viral dsRNAs from vaccinia virus early or intermediate gene transcripts possess PKR activating function, resulting in NF-{kappa}B activation, when the K1 protein is absent or mutated. . J Biol Chem 286: 7765–7778. [CrossRef] [PubMed]
    [Google Scholar]
  70. Yim H. C., Williams B. R..( 2014;). Protein kinase R and the inflammasome. . J Interferon Cytokine Res 34: 447–454. [CrossRef] [PubMed]
    [Google Scholar]
  71. Zamanian-Daryoush M., Mogensen T. H., DiDonato J. A., Williams B. R..( 2000;). NF-kappaB activation by double-stranded-RNA-activated protein kinase (PKR) is mediated through NF-kappaB-inducing kinase and IkappaB kinase. . Mol Cell Biol 20: 1278–1290. [CrossRef] [PubMed]
    [Google Scholar]
  72. Zhang P., Jacobs B. L., Samuel C. E..( 2008;). Loss of protein kinase PKR expression in human HeLa cells complements the vaccinia virus E3L deletion mutant phenotype by restoration of viral protein synthesis. . J Virol 82: 840–848. [CrossRef] [PubMed]
    [Google Scholar]
  73. Zhou Y., Chase B. I., Whitmore M., Williams B. R., Zhou A..( 2005;). Double-stranded RNA-dependent protein kinase (PKR) is downregulated by phorbol ester. . FEBS J 272: 1568–1576. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000576
Loading
/content/journal/jgv/10.1099/jgv.0.000576
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error