1887

Abstract

Hepatitis E virus (HEV) is a positive-sense RNA virus and member of the genus in the family . Although HEV RNA-dependent RNA polymerase (HEV-RdRp) plays an important role in the HEV life cycle, its template specificities are not completely understood. We expressed HEV-RdRp protein with His-tag in a bacterial system and analysed template specificities using different putative cis-regulatory elements in the HEV genome. The enzyme showed highest affinity for the 3′ non-coding region (NCR), then for the 5′NCR and least for the putative subgenomic promoter (SgP). The enzyme could co-bind to 3′NCR and putative SgP templates together, as evident from the supershift in binding assay, indicating presence of different binding sites for these elements. Proteomic analysis revealed that the RNA elements share two common peptides for binding, while a third peptide, which is highly conserved across different HEV genotypes, is specific for 3′NCR. We propose that, during the early phases of replication, as negative sense antigenome copies accumulate at the replication site, they probably initiate promoter swapping from 3′NCR to SgP, to favour synthesis of subgenomic RNA and to prevent synthesis of genomic RNA. The conserved site for 3′NCR binding could be potential antiviral target and needs further evaluation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000528
2016-09-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/9/2231.html?itemId=/content/journal/jgv/10.1099/jgv.0.000528&mimeType=html&fmt=ahah

References

  1. Agrawal S., Gupta D., Panda S. K.. 2001; The 3′ end of hepatitis E virus (HEV) genome binds specifically to the viral RNA-dependent RNA polymerase (RdRp). Virology282:87–101 [CrossRef][PubMed]
    [Google Scholar]
  2. Arankalle V. A., Chadha M. S., Chobe L. P., Nair R., Banerjee K.. 1995; Cross-challenge studies in rhesus monkeys employing different Indian isolates of hepatitis E virus. J Med Virol46:358–363 [CrossRef][PubMed]
    [Google Scholar]
  3. Arankalle V. A., Chobe L. P., Chadha M. S.. 2006; Type-IV Indian swine HEV infects rhesus monkeys. J Viral Hepat13:742–745 [CrossRef]
    [Google Scholar]
  4. Arankalle V. A., Chobe L. P., Joshi M., Chadha M. S., Kundu B., Walimbe A. M.. 2002; Human and swine hepatitis E viruses from Western India belong to different genotypes. J Hepatol36:417–425 [CrossRef][PubMed]
    [Google Scholar]
  5. Cao D., Huang Y. W., Meng X. J.. 2010; The nucleotides on the stem–loop RNA structure in the junction region of the hepatitis E virus genome are critical for virus replication. J Virol84:13040–13044 [CrossRef][PubMed]
    [Google Scholar]
  6. Cao D., Meng X. J.. 2012; Molecular biology and replication of hepatitis E virus. Emerg Microbes Infect1:e17 [CrossRef][PubMed]
    [Google Scholar]
  7. Devhare P. B., Desai S., Lole K. S.. 2016; Innate immune responses in human hepatocyte-derived cell lines alter genotype 1 hepatitis E virus replication efficiencies. Sci Rep6:26827 [CrossRef][PubMed]
    [Google Scholar]
  8. Emerson S. U., Zhang M., Meng X.-J., Nguyen H., St. Claire M., Govindarajan S., Huang Y. K., Purcell R. H.. 2001; Recombinant hepatitis E virus genomes infectious for primates: importance of capping and discovery of a cis-reactive element. Proc Natl Acad Sci U S A98:15270–15275 [CrossRef]
    [Google Scholar]
  9. Frolov I., Hardy R., Rice C. M.. 2001; Cis-acting RNA elements at the 5′ end of Sindbis virus genome RNA regulate minus- and plus-strand RNA synthesis. RNA7:1638–1651 [CrossRef][PubMed]
    [Google Scholar]
  10. Graff J., Torian U., Nguyen H., Emerson S. U.. 2006; A bicistronic subgenomic mRNA encodes both the ORF2 and ORF3 proteins of hepatitis E virus. J Virol80:5919–5926 [CrossRef][PubMed]
    [Google Scholar]
  11. Graff J., Nguyen H., Kasorndorkbua C., Halbur P. G., St. Claire M., Purcell R. H., Emerson S. U., Halbur P. G., St. Claire M.. 2005a; In vitro and in vivo mutational analysis of the 3′-terminal regions of hepatitis E virus genomes and replicons. J Virol79:1017–1026 [CrossRef]
    [Google Scholar]
  12. Graff J., Nguyen H., Yu C., Elkins W. R., Claire M. S., Purcell R. H., Emerson S. U.. 2005b; The open reading frame 3 gene of hepatitis E virus contains a cis-reactive element and encodes a protein required for infection of macaques. J Virol79:6680–6689 [CrossRef]
    [Google Scholar]
  13. Grdzelishvili V. Z., Garcia-Ruiz H., Watanabe T., Ahlquist P.. 2005; Mutual interference between genomic RNA replication and subgenomic mRNA transcription in brome mosaic virus. J Virol79:1438–1451 [CrossRef][PubMed]
    [Google Scholar]
  14. Huang Y. W., Opriessnig T., Halbur P. G., Meng X. J.. 2007; Initiation at the third in-frame AUG codon of open reading frame 3 of the hepatitis E virus is essential for viral infectivity in vivo. J Virol81:3018–3026 [CrossRef][PubMed]
    [Google Scholar]
  15. Huang C. C., Nguyen D., Fernandez J., Yun K. Y., Fry K. E., Bradley D. W., Tam A. W., Reyes G. R.. 1992; Molecular cloning and sequencing of the Mexico isolate of hepatitis E virus (HEV). Virology191:550–558 [CrossRef][PubMed]
    [Google Scholar]
  16. Koonin E. V., Gorbalenya A. E., Purdy M. A., Rozanov M. N., Reyes G. R., Bradley D. W.. 1992; Computer-assisted assignment of functional domains in the nonstructural polyprotein of hepatitis E virus: delineation of an additional group of positive-strand RNA plant and animal viruses. Proc Natl Acad Sci U S A89:8259–8263 [CrossRef]
    [Google Scholar]
  17. Kumar A., Panda S. K., Durgapal H., Acharya S. K., Rehman S., Kar U. K.. 2010; Inhibition of hepatitis E virus replication using short hairpin RNA (shRNA). Antivir Res85:541–550 [CrossRef]
    [Google Scholar]
  18. Li M.-L., Stollar V.. 2004; Identification of the amino acid sequence in Sindbis virus nsP4 that binds to the promoter for the synthesis of the subgenomic RNA. Proc Natl Acad Sci USA 101:9429–9434 [CrossRef]
    [Google Scholar]
  19. Li M. L., Stollar V.. 2007; Distinct sites on the Sindbis virus RNA-dependent RNA polymerase for binding to the promoters for the synthesis of genomic and subgenomic RNA. J Virol81:4371–4373 [CrossRef][PubMed]
    [Google Scholar]
  20. Meng X. J.. 2011; From barnyard to food table: the omnipresence of hepatitis E virus and risk for zoonotic infection and food safety. Virus Res161:23–30 [CrossRef][PubMed]
    [Google Scholar]
  21. Niesters H. G., Strauss J. H.. 1990; Mutagenesis of the conserved 51-nucleotide region of Sindbis virus. J Virol64:1639–1647[PubMed]
    [Google Scholar]
  22. Pavio N., Meng X. J., Renou C.. 2010; Zoonotic hepatitis E: animal reservoirs and emerging risks. Vet Res41:46 [CrossRef][PubMed]
    [Google Scholar]
  23. Pettersen E. F., Goddard T. D., Huang C. C., Couch G. S., Greenblatt D. M., Meng E. C., Ferrin T. E.. 2004; UCSF Chimera – a visualization system for exploratory research and analysis. J Comput Chem25:1605–1612 [CrossRef][PubMed]
    [Google Scholar]
  24. Purcell R. H., Emerson S. U.. 2001; Hepatitis E Virus. In Fields Virology, 4th edn. pp.3051–3061 . Edited by Knipe D. M., Howley P. M.. Philadelphia: Lippincott Williams and Wilkins;
    [Google Scholar]
  25. Purdy M. A., Tam A. W., Huang C.-C., Yarbough P. O., Reyes G. R.. 1993; Hepatitis E virus: a non-enveloped member of the ‘alpha-like' RNA virus supergroup?. Sem Virol4:319–326 [CrossRef]
    [Google Scholar]
  26. Rehman S., Kapur N., Durgapal H., Panda S. K.. 2008; Subcellular localization of hepatitis E virus (HEV) replicase. Virology370:77–92 [CrossRef][PubMed]
    [Google Scholar]
  27. Sreerama N., Venyaminov S. Y., Woody R. W.. 1999; Estimation of the number of alpha-helical and beta-strand segments in proteins using circular dichroism spectroscopy. Protein Sci8:370–380 [CrossRef][PubMed]
    [Google Scholar]
  28. Surjit M., Jameel S., Lal S. K.. 2004; The ORF2 protein of hepatitis E virus binds the 5′ region of viral RNA. J Virol78:320–328 [CrossRef][PubMed]
    [Google Scholar]
  29. Tam A. W., Smith M. M., Guerra M. E., Huang C. C., Bradley D. W., Fry K. E., Reyes G. R.. 1991; Hepatitis E virus (HEV): molecular cloning and sequencing of the full-length viral genome. Virology185:120–131 [CrossRef][PubMed]
    [Google Scholar]
  30. You S., Padmanabhan R.. 1999; A novel in vitro replication system for Dengue virus. Initiation of RNA synthesis at the 3′-end of exogenous viral RNA templates requires 5′- and 3′-terminal complementary sequence motifs of the viral RNA. J Biol Chem274:33714–33722 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000528
Loading
/content/journal/jgv/10.1099/jgv.0.000528
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error