1887

Abstract

Capsids of numerous filamentous and rod-shaped plant viruses possess helical symmetry. In positive-stranded RNA viruses, helical capsids are typically composed of many identical subunits of the viral capsid protein (CP), encapsidating a molecule of viral genomic RNA. Current progress in structural studies of helical plant viruses has revealed differences between filamentous and rod-shaped viruses, both in structural folds of their CPs and in the interactions of CP molecules in their capsids. Many filamentous and rod-shaped viruses have functionally similar lateral inter-subunit contacts on the outer virion surface. Additionally, the extreme N-terminal CP region in filamentous viruses is intrinsically disordered. Taken together, the available data establish a link between the structural features of molecular interactions of CP molecules and the physical properties of helical virions ranging from rigidity to flexibility. Overall, the structure of helical plant viruses is significantly more labile than previously thought, often allowing structural transitions, remodelling and the existence of alternative structural forms of virions. These properties of virions are believed to be functionally significant at certain stages of the viral life cycle, such as during translational activation and cell-to-cell transport. In this review, we discuss structural and functional features of filamentous and rod-shaped virions, highlight their shared features and differences, and lay emphasis on the relationships between the molecular structure of viral capsids and their properties including virion shape, lability and capability of structural remodelling.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000524
2016-08-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/8/1739.html?itemId=/content/journal/jgv/10.1099/jgv.0.000524&mimeType=html&fmt=ahah

References

  1. Agirrezabala X., Méndez-López E., Lasso G., Sánchez-Pina M. A., Aranda M., Valle M.. 2015; The near-atomic cryoEM structure of a flexible filamentous plant virus shows homology of its coat protein with nucleoproteins of animal viruses. eLife4:e11795 [CrossRef][PubMed]
    [Google Scholar]
  2. Agranovsky A. A., Lesemann D. E., Maiss E., Hull R., Atabekov J. G.. 1995; "Rattlesnake" structure of a filamentous plant RNA virus built of two capsid proteins. Proc Natl Acad Sci U S A92:2470–2473[PubMed][CrossRef]
    [Google Scholar]
  3. Albertini A. A., Wernimont A. K., Muziol T., Ravelli R. B., Clapier C. R., Schoehn G., Weissenhorn W., Ruigrok R. W.. 2006; Crystal structure of the rabies virus nucleoprotein-RNA complex. Science313:360–363 [CrossRef][PubMed]
    [Google Scholar]
  4. Alzhanova D. V., Hagiwara Y., Peremyslov V. V., Dolja V. V.. 2000; Genetic analysis of the cell-to-cell movement of beet yellows closterovirus. Virology268:192–200 [CrossRef][PubMed]
    [Google Scholar]
  5. Alzhanova D. V., Napuli A. J., Creamer R., Dolja V. V.. 2001; Cell-to-cell movement and assembly of a plant closterovirus: roles for the capsid proteins and Hsp70 homolog. EMBO J20:6997–7007 [CrossRef][PubMed]
    [Google Scholar]
  6. Arranz R., Coloma R., Chichón F. J., Conesa J. J., Carrascosa J. L., Valpuesta J. M., Ortín J., Martín-Benito J.. 2012; The structure of native influenza virion ribonucleoproteins. Science338:1634–1637 [CrossRef][PubMed]
    [Google Scholar]
  7. Atabekov J. G., Rodionova N. P., Karpova O. V., Kozlovsky S. V., Poljakov V. Y.. 2000; The movement protein-triggered in situ conversion of potato virus X virion RNA from a nontranslatable into a translatable form. Virology271:259–263 [CrossRef][PubMed]
    [Google Scholar]
  8. Atabekov J. G., Rodionova N. P., Karpova O. V., Kozlovsky S. V., Novikov V. K., Arkhipenko M. V.. 2001; Translational activation of encapsidated potato virus X RNA by coat protein phosphorylation. Virology286:466–474 [CrossRef][PubMed]
    [Google Scholar]
  9. Atreya P. L., Atreya C. D., Pirone T. P.. 1991; Amino acid substitutions in the coat protein result in loss of insect transmissibility of a plant virus. Proc Natl Acad Sci U S A88:7887–7891[PubMed][CrossRef]
    [Google Scholar]
  10. Baratova L. A., Grebenshchikov N. I., Dobrov E. N., Gedrovich A. V., Kashirin I. A., Shishkov A. V., Efimov A. V., Järvekülg L., Radavsky Y. L. et al. 1992; The organization of potato virus X coat proteins in virus particles studied by tritium planigraphy and model building. Virology188:175–180 [CrossRef][PubMed]
    [Google Scholar]
  11. Baratova L. A., Fedorova N. V., Dobrov E. N., Lukashina E. V., Kharlanov A. N., Nasonov V. V., Serebryakova M. V., Kozlovsky S. V., Zayakina O. V., Rodionova N. P.. 2004; N-Terminal segment of potato virus X coat protein subunits is glycosylated and mediates formation of a bound water shell on the virion surface. Eur J Biochem271:3136–3145 [CrossRef][PubMed]
    [Google Scholar]
  12. Betti C., Lico C., Maffi D., D'Angeli S., Altamura M. M., Benvenuto E., Faoro F., Baschieri S.. 2012; Potato virus X movement in Nicotiana benthamiana: new details revealed by chimeric coat protein variants. Mol Plant Pathol13:198–203 [CrossRef][PubMed]
    [Google Scholar]
  13. Bloomer A. C., Champness J. N., Bricogne G., Staden R., Klug A.. 1978; Protein disk of tobacco mosaic virus at 2.8 A resolution showing the interactions within and between subunits. Nature276:362–368 [CrossRef][PubMed]
    [Google Scholar]
  14. Booth T. F., Rabb M. J., Beniac D. R.. 2013; How do filovirus filaments bend without breaking?. Trends Microbiol21:583–593 [CrossRef][PubMed]
    [Google Scholar]
  15. Brakke M. K., Ball E. M., Langenberg W. G.. 1988; A non-capsid protein associated with unencapsidated virus RNA in barley infected with barley stripe mosaic virus. J Gen Virol69:481–491[CrossRef]
    [Google Scholar]
  16. Caspar D. L., Klug A.. 1962; Physical principles in the construction of regular viruses. Cold Spring Harb Symp Quant Biol27:1–24[PubMed][CrossRef]
    [Google Scholar]
  17. Caspar D. L., Namba K.. 1990; Switching in the self-assembly of tobacco mosaic virus. Adv Biophys26:157–185[PubMed][CrossRef]
    [Google Scholar]
  18. Champness J. N., Bloomer A. C., Bricogne G., Butler P. G., Klug A.. 1976; The structure of the protein disk of tobacco mosaic virus to 5Å resolution. Nature259:20–24 [CrossRef][PubMed]
    [Google Scholar]
  19. Chapman S., Hills G., Watts J., Baulcombe D.. 1992; Mutational analysis of the coat protein gene of potato virus X: effects on virion morphology and viral pathogenicity. Virology191:223–230 [CrossRef][PubMed]
    [Google Scholar]
  20. Chung B. Y., Miller W. A., Atkins J. F., Firth A. E.. 2008; An overlapping essential gene in the Potyviridae. Proc Natl Acad Sci U S A105:5897–5902 [CrossRef][PubMed]
    [Google Scholar]
  21. Citovsky V., Knorr D., Schuster G., Zambryski P.. 1990; The P30 movement protein of tobacco mosaic virus is a single-strand nucleic acid binding protein. Cell60:637–647 [CrossRef][PubMed]
    [Google Scholar]
  22. Citovsky V., Wong M. L., Shaw A. L., Prasad B. V., Zambryski P.. 1992; Visualization and characterization of tobacco mosaic virus movement protein binding to single-stranded nucleic acids. Plant Cell4:397–411[PubMed][CrossRef]
    [Google Scholar]
  23. Clare D. K., Orlova E. V.. 2010; 4.6Å Cryo-EM reconstruction of tobacco mosaic virus from images recorded at 300 keV on a 4k × 4k CCD camera. J Struct Biol171:303–308 [CrossRef][PubMed]
    [Google Scholar]
  24. Clare D. K., Pechnikova E. V., Skurat E. V., Makarov V. V., Sokolova O. S., Solovyev A. G., Orlova E. V.. 2015; Novel inter-subunit contacts in barley stripe mosaic virus revealed by cryo-electron microscopy. Structure23:1815–1826 [CrossRef][PubMed]
    [Google Scholar]
  25. DiMaio F., Chen C. C., Yu X., Frenz B., Hsu Y. H., Lin N. S., Egelman E. H.. 2015; The molecular basis for flexibility in the flexible filamentous plant viruses. Nat Struct Mol Biol22:642–644 [CrossRef][PubMed]
    [Google Scholar]
  26. Dolja V. V., Boyko V. P., Agranovsky A. A., Koonin E. V.. 1991; Phylogeny of capsid proteins of rod-shaped and filamentous RNA plant viruses: two families with distinct patterns of sequence and probably structure conservation. Virology184:79–86 [CrossRef][PubMed]
    [Google Scholar]
  27. Dolja V. V., Haldeman R., Robertson N. L., Dougherty W. G., Carrington J. C.. 1994; Distinct functions of capsid protein in assembly and movement of tobacco etch potyvirus in plants. EMBO J13:1482–1491[PubMed]
    [Google Scholar]
  28. Dolja V. V., Haldeman-Cahill R., Montgomery A. E., Vandenbosch K. A., Carrington J. C.. 1995; Capsid protein determinants involved in cell-to-cell and long distance movement of tobacco etch potyvirus. Virology206:1007–1016 [CrossRef][PubMed]
    [Google Scholar]
  29. Dolja V. V.. 2003; Beet yellows virus: the importance of being different. Mol Plant Pathol4:91–98[PubMed][CrossRef]
    [Google Scholar]
  30. Dolja V. V., Kreuze J. F., Valkonen J. P.. 2006; Comparative and functional genomics of closteroviruses. Virus Res117:38–51 [CrossRef][PubMed]
    [Google Scholar]
  31. Duff-Farrier C. R., Bailey A. M., Boonham N., Foster G. D.. 2015; A pathogenicity determinant maps to the N-terminal coat protein region of the Pepino mosaic virus genome. Mol Plant Pathol16:308–315 [CrossRef][PubMed]
    [Google Scholar]
  32. Esau K., Cronshaw J., Hoefert L. L.. 1967; Relation of beet yellows virus to the phloem and to movement in the sieve tube. J Cell Biol32:71–87[PubMed][CrossRef]
    [Google Scholar]
  33. Fedorkin O., Solovyev A., Yelina N., Zamyatnin A., Zinovkin R., Mäkinen K., Schiemann J., Morozov S. Y.. 2001; Cell-to-cell movement of potato virus X involves distinct functions of the coat protein. J Gen Virol82:449–458 [CrossRef][PubMed]
    [Google Scholar]
  34. Fink A. L.. 2005; Natively unfolded proteins. Curr Opin Struct Biol15:35–41 [CrossRef][PubMed]
    [Google Scholar]
  35. Forster R. L., Beck D. L., Guilford P. J., Voot D. M., Van Dolleweerd C. J., Andersen M. T.. 1992; The coat protein of white clover mosaic potexvirus has a role in facilitating cell-to-cell transport in plants. Virology191:480–484 [CrossRef][PubMed]
    [Google Scholar]
  36. Gabrenaite-Verkhovskaya R., Andreev I. A., Kalinina N. O., Torrance L., Taliansky M. E., Mäkinen K.. 2008; Cylindrical inclusion protein of potato virus A is associated with a subpopulation of particles isolated from infected plants. J Gen Virol89:829–838 [CrossRef][PubMed]
    [Google Scholar]
  37. Harrison S. C.. 2007; Principles of Virus Structure. In Fields Virology, 5 edn. pp.59–98 . Edited by Knipe D. M., Howley P. M.. Philadelphia: Lippincott Williams & Wilkins;
    [Google Scholar]
  38. Heinlein M.. 2015; Plant virus replication and movement. Virology480:657–671 [CrossRef]
    [Google Scholar]
  39. Helgstrand C., Munshi S., Johnson J. E., Liljas L.. 2004; The refined structure of Nudaurelia capensis ω virus reveals control elements for a T = 4 capsid maturation. Virology318:192–203 [CrossRef][PubMed]
    [Google Scholar]
  40. Herzog E., Hemmer O., Hauser S., Meyer G., Bouzoubaa S., Fritsch C.. 1998; Identification of genes involved in replication and movement of peanut clump virus. Virology248:312–322 [CrossRef][PubMed]
    [Google Scholar]
  41. Hoefert L. L., Pinto R. L., Fail G. L.. 1988; Ultrastructural effects of lettuce infectious yellows virus in Lactuca sativa L. J Ultrastruct Mol Struct Res98:243–253 [CrossRef]
    [Google Scholar]
  42. Holmes K. C., Stubbs G. J., Mandelkow E., Gallwitz U.. 1975; Structure of tobacco mosaic virus at 6.7 Å resolution. Nature254:192–196 [CrossRef][PubMed]
    [Google Scholar]
  43. Jankowsky E., Gross C. H., Shuman S., Pyle A. M.. 2001; Active disruption of an RNA–protein interaction by a DExH/D RNA helicase. Science291:121–125 [CrossRef][PubMed]
    [Google Scholar]
  44. Kamtekar S., Hecht M. H.. 1995; Protein Motifs. 7. The four-helix bundle: what determines a fold?. FASEB J9:1013–1022[PubMed]
    [Google Scholar]
  45. Karpova O. V., Arkhipenko M. V., Zaiakina O. V., Nikitin N. A., Kiseleva O. I., Kozlovskiĭ S. V., Rodionova N. P., Atabekov I. G.. 2006a; Translational regulation of potato virus X RNA-coat protein complexes: the key role of a coat protein N-terminal peptide. Mol Biol40:703–710[CrossRef]
    [Google Scholar]
  46. Karpova O. V., Zayakina O. V., Arkhipenko M. V., Sheval E. V., Kiselyova O. I., Poljakov V. Y., Yaminsky I. V., Rodionova N. P., Atabekov J. G.. 2006b; Potato virus X RNA-mediated assembly of single-tailed ternary ‘coat protein-RNA-movement protein' complexes. J Gen Virol87:2731–2740[CrossRef]
    [Google Scholar]
  47. Kempers R., van Bel A. J. E.. 1997; Symplasmic connections between sieve element and companion cell in the stem phloem of Vicia faba L. have a molecular exclusion limit of at least 10 kDa. Planta201:195–201 [CrossRef]
    [Google Scholar]
  48. Kendall A., McDonald M., Bian W., Bowles T., Baumgarten S. C., Shi J., Stewart P. L., Bullitt E., Gore D. et al. 2008; Structure of flexible filamentous plant viruses. J Virol82:9546–9600 [CrossRef][PubMed]
    [Google Scholar]
  49. Kendall A., Williams D., Bian W., Stewart P. L., Stubbs G.. 2013; Barley stripe mosaic virus: structure and relationship to the tobamoviruses. Virology443:265–335 [CrossRef][PubMed]
    [Google Scholar]
  50. King A. M., Adams M. J., Carstens E. B., Lefkowitz E. J.. 2012; Virus Taxonomy. Ninth Report of the International Committee on Taxonomy of Viruses New York: Academic Press Elsevier;
    [Google Scholar]
  51. Kiselyova O. I., Yaminsky I. V., Karpova O. V., Rodionova N. P., Kozlovsky S. V., Arkhipenko M. V., Atabekov J. G.. 2003; AFM study of potato virus X disassembly induced by movement protein. J Mol Biol332:321–325[PubMed][CrossRef]
    [Google Scholar]
  52. Kiss Z. A., Medina V., Falk B. W.. 2013; Crinivirus replication and host interactions. Front Microbiol4:99 [CrossRef][PubMed]
    [Google Scholar]
  53. Lan P., Yeh W. B., Tsai C. W., Lin N. S.. 2010; A unique glycine-rich motif at the N-terminal region of Bamboo mosaic virus coat protein is required for symptom expression. Mol Plant-Microbe Interact23:903–914 [CrossRef][PubMed]
    [Google Scholar]
  54. Lecours K., Tremblay M. H., Gagné M. E., Gagné S. M., Leclerc D.. 2006; Purification and biochemical characterization of a monomeric form of papaya mosaic potexvirus coat protein. Protein Expr Purif47:273–280 [CrossRef][PubMed]
    [Google Scholar]
  55. Lee C. C., Ho Y. N., Hu R. H., Yen Y. T., Wang Z. C., Lee Y. C., Hsu Y. H., Meng M.. 2011; The interaction between Bamboo mosaic virus replication protein and coat protein is critical for virus movement in plant hosts. J Virol85:12022–12031 [CrossRef][PubMed]
    [Google Scholar]
  56. Lico C., Capuano F., Renzone G., Donini M., Marusic C., Scaloni A., Benvenuto E., Baschieri S.. 2006; Peptide display on Potato virus X: molecular features of the coat protein-fused peptide affecting cell-to-cell and phloem movement of chimeric virus particles. J Gen Virol87:3103–3112 [CrossRef][PubMed]
    [Google Scholar]
  57. Lobert S., Heil P. D., Namba K., Stubbs G.. 1987; Preliminary X-ray fiber diffraction studies of cucumber green mottle mosaic virus, watermelon strain. Journal of Molecular Biology196:935–938 [CrossRef]
    [Google Scholar]
  58. Longhi S.. 2015; Structural disorder within paramyxoviral nucleoproteins. FEBS Lett589:2649–2659 [CrossRef][PubMed]
    [Google Scholar]
  59. Lough T. J., Netzler N. E., Emerson S. J., Sutherland P., Carr F., Beck D. L., Lucas W. J., Forster R. L.. 2000; Cell-to-cell movement of potexviruses: evidence for a ribonucleoprotein complex involving the coat protein and first triple gene block protein. Mol Plant-Microbe Interact13:962–974 [CrossRef][PubMed]
    [Google Scholar]
  60. Lu B., Stubbs G., Culver J. N.. 1996; Carboxylate interactions involved in the disassembly of tobacco mosaic tobamovirus. Virology225:11–20 [CrossRef][PubMed]
    [Google Scholar]
  61. Lucas W. J.. 2006; Plant viral movement proteins: agents for cell-to-cell trafficking of viral genomes. Virology344:169–184 [CrossRef][PubMed]
    [Google Scholar]
  62. Makarov V. V., Skurat E. V., Semenyuk P. I., Abashkin D. A., Kalinina N. O., Arutyunyan A. M., Solovyev A. G., Dobrov E. N.. 2013; Structural lability of Barley stripe mosaic virus virions. PLoS One8:e60942 [CrossRef][PubMed]
    [Google Scholar]
  63. Martelli G. P., Adams M. J., Kreuze J. F., Dolja V. V.. 2007; Family Flexiviridae: a case study in virion and genome plasticity. Annu Rev Phytopathol45:73–100 [CrossRef][PubMed]
    [Google Scholar]
  64. Morozov S. Y., Solovyev A. G.. 2003; Triple gene block: modular design of a multifunctional machine for plant virus movement. J Gen Virol84:1351–1366 [CrossRef][PubMed]
    [Google Scholar]
  65. Mundry K. W., Watkins P. A., Ashfield T., Plaskitt K. A., Eisele-Walter S., Wilson T. M.. 1991; Complete uncoating of the 5′ leader sequence of tobacco mosaic virus RNA occurs rapidly and is required to initiate cotranslational virus disassembly in vitro . J Gen Virol72:769–777 [CrossRef][PubMed]
    [Google Scholar]
  66. Namba K., Pattanayek R., Stubbs G.. 1989; Visualization of protein-nucleic acid interactions in a virus. Refined structure of intact tobacco mosaic virus at 2.9 Å resolution by X-ray fiber diffraction. J Mol Biol208:307–325[PubMed][CrossRef]
    [Google Scholar]
  67. Napuli A. J., Falk B. W., Dolja V. V.. 2000; Interaction between HSP70 homolog and filamentous virions of the Beet yellows virus. Virology274:232–239 [CrossRef][PubMed]
    [Google Scholar]
  68. Napuli A. J., Alzhanova D. V., Doneanu C. E., Barofsky D. F., Koonin E. V., Dolja V. V.. 2003; The 64-kilodalton capsid protein homolog of Beet yellows virus is required for assembly of virion tails. J Virol77:2377–2384[PubMed][CrossRef]
    [Google Scholar]
  69. Nemykh M. A., Efimov A. V., Novikov V. K., Orlov V. N., Arutyunyan A. M., Drachev V. A., Lukashina E. V., Baratova L. A., Dobrov E. N.. 2008; One more probable structural transition in potato virus X virions and a revised model of the virus coat protein structure. Virology373:61–71 [CrossRef][PubMed]
    [Google Scholar]
  70. Oparka K. J., Cruz S. S.. 2000; The great escape: phloem transport and unloading of macromolecules. Annu Rev Plant Physiol Plant Mol Biol51:323–347[CrossRef]
    [Google Scholar]
  71. Ozeki J., Hashimoto M., Komatsu K., Maejima K., Himeno M., Senshu H., Kawanishi T., Kagiwada S., Yamaji Y., Namba S.. 2009; The N-terminal region of the Plantago asiatica mosaic virus coat protein is required for cell-to-cell movement but is dispensable for virion assembly. Mol Plant Microbe Interact22:677–685 [CrossRef][PubMed]
    [Google Scholar]
  72. Parker L., Kendall A., Stubbs G.. 2002; Surface features of potato virus X from fiber diffraction. Virology300:291–295 [CrossRef][PubMed]
    [Google Scholar]
  73. Pattanayek R., Stubbs G.. 1992; Structure of the U2 strain of tobacco mosaic virus refined at 3.5 A resolution using X-ray fiber diffraction. J Mol Biol228:516–528[PubMed][CrossRef]
    [Google Scholar]
  74. Peremyslov V. V., Hagiwara Y., Dolja V. V.. 1999; HSP70 homolog functions in cell-to-cell movement of a plant virus. Proc Natl Acad Sci U S A96:14771–14776[PubMed][CrossRef]
    [Google Scholar]
  75. Peremyslov V. V., Andreev I. A., Prokhnevsky A. I., Duncan G. H., Taliansky M. E., Dolja V. V.. 2004; Complex molecular architecture of beet yellows virus particles. Proc Natl Acad Sci U S A101:5030–5035 [CrossRef][PubMed]
    [Google Scholar]
  76. Pettersen E. F., Goddard T. D., Huang C. C., Couch G. S., Greenblatt D. M., Meng E. C., Ferrin T. E.. 2004; UCSF Chimera – a visualization system for exploratory research and analysis. J Comput Chem25:1605–1612 [CrossRef][PubMed]
    [Google Scholar]
  77. Petty I. T., Jackson A. O.. 1990; Two forms of the major barley stripe mosaic virus nonstructural protein are synthesized in vivo from alternative initiation codons. Virology177:829–832 [CrossRef][PubMed]
    [Google Scholar]
  78. Planchart, A.. 1995; X-ray fiber diffraction studies of odontoglossum ringspot virus: lessons on how nature produces a virus with a different host specificity. Thesis Vanderbilt University:
    [Google Scholar]
  79. Prilusky J., Felder C. E., Zeev-Ben-Mordehai T., Rydberg E. H., Man O., Beckmann J. S., Silman I., Sussman J. L.. 2005; FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics21:3435–3438 [CrossRef][PubMed]
    [Google Scholar]
  80. Prokhnevsky A. I., Peremyslov V. V., Napuli A. J., Dolja V. V.. 2002; Interaction between long-distance transport factor and Hsp70-related movement protein of Beet yellows virus . J Virol76:11003–11011[PubMed][CrossRef]
    [Google Scholar]
  81. Prokhnevsky A. I., Peremyslov V. V., Dolja V. V.. 2005; Actin cytoskeleton is involved in targeting of a viral Hsp70 homolog to the cell periphery. J Virol79:14421–14429 [CrossRef][PubMed]
    [Google Scholar]
  82. Raymond D. D., Piper M. E., Gerrard S. R., Smith J. L.. 2010; Structure of the Rift Valley fever virus nucleocapsid protein reveals another architecture for RNA encapsidation. Proc Natl Acad Sci U S A107:11769–11843 [CrossRef][PubMed]
    [Google Scholar]
  83. Raymond D. D., Piper M. E., Gerrard S. R., Skiniotis G., Smith J. L.. 2012; Phleboviruses encapsidate their genomes by sequestering RNA bases. Proc Natl Acad Sci U S A109:19208–19213 [CrossRef][PubMed]
    [Google Scholar]
  84. Revers F., García J. A.. 2015; Molecular biology of potyviruses. Adv Virus Res92:101–199 [CrossRef][PubMed]
    [Google Scholar]
  85. Roberts I. M., Wang D., Findlay K., Maule A. J.. 1998; Ultrastructural and temporal observations of the potyvirus cylindrical inclusions (Cls) show that the Cl protein acts transiently in aiding virus movement. Virology245:173–181 [CrossRef][PubMed]
    [Google Scholar]
  86. Rodríguez-Cerezo E., Findlay K., Shaw J. G., Lomonossoff G. P., Qiu S. G., Linstead P., Shanks M., Risco C.. 1997; The coat and cylindrical inclusion proteins of a potyvirus are associated with connections between plant cells. Virology236:296–306 [CrossRef][PubMed]
    [Google Scholar]
  87. Ruigrok R. W., Crépin T., Kolakofsky D.. 2011; Nucleoproteins and nucleocapsids of negative-strand RNA viruses. Curr Opin Microbiol14:504–510 [CrossRef][PubMed]
    [Google Scholar]
  88. Russel M., Linderoth N. A., Sali A.. 1997; Filamentous phage assembly: variation on a protein export theme. Gene192:23–32 [CrossRef][PubMed]
    [Google Scholar]
  89. Saito T., Yamanaka K., Okada Y.. 1990; Long-distance movement and viral assembly of tobacco mosaic virus mutants. Virology176:329–336 [CrossRef][PubMed]
    [Google Scholar]
  90. Santa Cruz S., Roberts A. G., Prior D. A., Chapman S., Oparka K. J.. 1998; Cell-to-cell and phloem-mediated transport of potato virus X. The role of virions. Plant Cell10:495–510[PubMed][CrossRef]
    [Google Scholar]
  91. Satyanarayana T., Gowda S., Ayllón M. A., Dawson W. O.. 2004; Closterovirus bipolar virion: evidence for initiation of assembly by minor coat protein and its restriction to the genomic RNA 5′ region. Proc Natl Acad Sci U S A101:799–804 [CrossRef][PubMed]
    [Google Scholar]
  92. Savenkov E. I., Germundsson A., Zamyatnin A. A., Sandgren M., Valkonen J. P.. 2003; Potato mop-top virus: the coat protein-encoding RNA and the gene for cysteine-rich protein are dispensable for systemic virus movement in Nicotiana benthamiana . J Gen Virol84:1001–1005 [CrossRef][PubMed]
    [Google Scholar]
  93. Schmitt C., Balmori E., Jonard G., Richards K. E., Guilley H.. 1992; In vitro mutagenesis of biologically active transcripts of beet necrotic yellow vein virus RNA 2: evidence that a domain of the 75-kDa readthrough protein is important for efficient virus assembly. Proc Natl Acad Sci U S A89:5715–5719[PubMed][CrossRef]
    [Google Scholar]
  94. Seo J. K., Vo Phan M. S., Kang S. H., Choi H. S., Kim K. H.. 2013; The charged residues in the surface-exposed C-terminus of the Soybean mosaic virus coat protein are critical for cell-to-cell movement. Virology446:95–101 [CrossRef][PubMed]
    [Google Scholar]
  95. Solovyev A. G., Kalinina N. O., Morozov S. Y.. 2012; Recent advances in research of plant virus movement mediated by triple gene block. Front Plant Sci3: 276. [CrossRef][PubMed]
    [Google Scholar]
  96. Stubbs G.. 1999; Tobacco mosaic virus particle structure and the initiation of disassembly. Philos Trans R Soc Lond B Biol Sci354:551–557 [CrossRef][PubMed]
    [Google Scholar]
  97. Stubbs G., Warren S., Holmes K.. 1977; Structure of RNA and RNA binding site in tobacco mosaic virus from 4-Å map calculated from X-ray fibre diagrams. Nature267:216–221 [CrossRef][PubMed]
    [Google Scholar]
  98. Stubbs G., Kendall A.. 2012; Helical viruses. Adv Exp Med Biol726:631–658 [CrossRef][PubMed]
    [Google Scholar]
  99. Tamada T., Schmitt C., Saito M., Guilley H., Richards K., Jonard G.. 1996; High resolution analysis of the readthrough domain of beet necrotic yellow vein virus readthrough protein: a KTER motif is important for efficient transmission of the virus by Polymyxa betae . J Gen Virol77:1359–1367 [CrossRef][PubMed]
    [Google Scholar]
  100. Tian T., Rubio L., Yeh H. H., Crawford B., Falk B. W.. 1999; Lettuce infectious yellows virus: in vitro acquisition analysis using partially purified virions and the whitefly Bemisia tabaci . J Gen Virol80:1111–1117 [CrossRef][PubMed]
    [Google Scholar]
  101. Tilsner J., Linnik O., Louveaux M., Roberts I. M., Chapman S. N., Oparka K. J.. 2013; Replication and trafficking of a plant virus are coupled at the entrances of plasmodesmata. J Cell Biol201:981–995 [CrossRef][PubMed]
    [Google Scholar]
  102. Tilsner J., Taliansky M. E., Torrance L.. 2014; Plant virus movement. In eLS Chichester: John Wiley & Sons Ltd;
    [Google Scholar]
  103. Torrance L., Andreev I. A., Gabrenaite-Verhovskaya R., Cowan G., Mäkinen K., Taliansky M. E.. 2006; An unusual structure at one end of potato potyvirus particles. J Mol Biol357:1–8 [CrossRef][PubMed]
    [Google Scholar]
  104. Uversky V. N.. 2011; Intrinsically disordered proteins from A to Z. IntJ Biochem Biol43:1090–1103[CrossRef]
    [Google Scholar]
  105. van der Lee R., Lang B., Kruse K., Gsponer J., Sánchez de Groot N., Huynen M. A., Matouschek A., Fuxreiter M., Babu M. M.. 2014; Intrinsically disordered segments affect protein half-life in the cell and during evolution. Cell Rep8:1832–1844 [CrossRef][PubMed]
    [Google Scholar]
  106. Verchot-Lubicz J., Torrance L., Solovyev A. G., Morozov S. Y., Jackson A. O., Gilmer D.. 2010; Varied movement strategies employed by triple gene block-encoding viruses. Mol Plant Microbe Interact23:1231–1247 [CrossRef][PubMed]
    [Google Scholar]
  107. Vijayapalani P., Maeshima M., Nagasaki-Takekuchi N., Miller W. A.. 2012; Interaction of the trans-frame potyvirus protein P3N-PIPO with host protein PCaP1 facilitates potyvirus movement. PLoS Pathogen8:e1002639 [CrossRef]
    [Google Scholar]
  108. Wang H., Culver J. N., Stubbs G.. 1997; Structure of ribgrass mosaic virus at 2.9 Å resolution: evolution and taxonomy of tobamoviruses. J Mol Biol269:769–779 [CrossRef][PubMed]
    [Google Scholar]
  109. Wang H., Planchart A., Stubbs G.. 1998; Caspar carboxylates: the structural basis of tobamovirus disassembly. Biophys J74:633–638[CrossRef]
    [Google Scholar]
  110. Ward J. J., Sodhi J. S., McGuffin L. J., Buxton B. F., Jones D. T.. 2004; Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol337:635–645 [CrossRef][PubMed]
    [Google Scholar]
  111. Wilson T., Shaw J. G.. 1987; Cotranslational disassembly of filamentous plant virus nucleocapsids in vitro and in vivo. In Positive Strand RNA Viruses, UCLA Symposia on Molecular and Cellular Biology, New Series 50 pp159–181 Edited by Brinton M. A., Rueckert R. R.. New York: Alan R. Liss;
    [Google Scholar]
  112. Wolf S., Deom C. M., Beachy R. N., Lucas W. J.. 1989; Movement protein of tobacco mosaic virus modifies plasmodesmatal size exclusion limit. Science246:377–379 [CrossRef][PubMed]
    [Google Scholar]
  113. Yang S., Wang T., Bohon J., Gagné M. È., Bolduc M., Leclerc D., Li H.. 2012; Crystal structure of the coat protein of the flexible filamentous papaya mosaic virus. J Mol Biol422:263–273 [CrossRef][PubMed]
    [Google Scholar]
  114. Zayakina O., Arkhipenko M., Kozlovsky S., Nikitin N., Smirnov A., Susi P., Rodionova N., Karpova O., Atabekov J.. 2008; Mutagenic analysis of Potato Virus X movement protein (TGBp1) and the coat protein (CP): in vitro TGBp1-CP binding and viral RNA translation activation. Mol Plant Pathol9:37–44 [CrossRef][PubMed]
    [Google Scholar]
  115. Zhou H., Sun Y., Guo Y., Lou Z.. 2013; Structural perspective on the formation of ribonucleoprotein complex in negative-sense single-stranded RNA viruses. Trends Microbiol21:475–484 [CrossRef][PubMed]
    [Google Scholar]
  116. Ziegler-Graff V., Guilford P. J., Baulcombe D. C.. 1991; Tobacco rattle virus RNA-1 29K gene product potentiates viral movement and also affects symptom induction in tobacco. Virology182:145–155[PubMed][CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000524
Loading
/content/journal/jgv/10.1099/jgv.0.000524
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error