1887

Abstract

Prion diseases are a unique group of transmissible, chronic, neurodegenerative disorders. Following peripheral exposure (e.g. oral), prions often accumulate first within the secondary lymphoid tissues before they infect the central nervous system (CNS). Prion replication within secondary lymphoid tissues is crucial for the efficient spread of disease to the CNS. Once within the CNS, the responses of innate immune cells within it can have a significant influence on neurodegeneration and disease progression. Recently, there have been substantial advances in our understanding of how cross-talk between the host and the vast community of commensal microorganisms present at barrier surfaces such as the gut influences the development and regulation of the host’s immune system. These effects are evident not only in the mucosal immune system in the gut, but also in the CNS. The actions of this microbial community (the microbiota) have many important beneficial effects on host health, from metabolism of nutrients and regulation of host development to protection from pathogen infection. However, the microbiota can also have detrimental effects in some circumstances. In this review we discuss the many and varied interactions between prions, the host and the gut microbiota. Particular emphasis is given to the ways by which changes to the composition of the commensal gut microbiota or congruent pathogen infection may influence prion disease pathogenesis and/or disease susceptibility. Understanding how these factors influence prion pathogenesis and disease susceptibility is important for assessing the risk to infection and the design of novel opportunities for therapeutic intervention.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000507
2016-08-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/8/1725.html?itemId=/content/journal/jgv/10.1099/jgv.0.000507&mimeType=html&fmt=ahah

References

  1. Asante E. A., Smidak M., Grimshaw A., Houghton R., Tomlinson A., Jeelani A., Jakubcova T., Hamdan S., Richard-Londt A. et al. 2015; A naturally occurring variant of the human prion protein completely prevents prion disease. Nature522:478–481 [CrossRef][PubMed]
    [Google Scholar]
  2. Bartelt-Hunt S. L., Bartz J. C.. 2013; Behavior of prions in the environment: implications for prion biology. PLoS Pathog9:e1003113 [CrossRef][PubMed]
    [Google Scholar]
  3. Beekes M., McBride P. A.. 2000; Early accumulation of pathological PrP in the enteric nervous system and gut-associated lymphoid tissue of hamsters orally infected with scrapie. Neurosci Lett278:181–184 [CrossRef][PubMed]
    [Google Scholar]
  4. Beringue V., Demoy M., Lasmézas C. I., Gouritin B., Weingarten C., Deslys J. P., Andreux J. P., Couvreur P., Dormont D.. 2000; Role of spleen macrophages in the clearance of scrapie agent early in pathogenesis. J Pathol190:495–502 [CrossRef][PubMed]
    [Google Scholar]
  5. Bessen R. A., Wilham J. M., Lowe D., Watschke C. P., Shearin H., Martinka S., Caughey B., Wiley J. A.. 2012; Accelerated shedding of prions following damage to the olfactory epithelium. J Virol86:1777–1788 [CrossRef][PubMed]
    [Google Scholar]
  6. Bishop M. T., Diack A. B., Ritchie D. L., Ironside J. W., Will R. G., Manson J. C.. 2013; Prion infectivity in the spleen of a PRNP heterozygous individual with subclinical variant Creutzfeldt-Jakob disease. Brain136:1139–1145 [CrossRef][PubMed]
    [Google Scholar]
  7. Bohnlein C., Groschup M. H., Martlbauer E., Pichner R., Gareis M.. 2012; Stability of bovine spongiform encephalopathy prions: absence of prion protein degradation by bovine gut microbiota. Zoonoses Pub Heal59:251–255[CrossRef]
    [Google Scholar]
  8. Bolton D. C., McKinley M. P., Prusiner S. B.. 1982; Identification of a protein that purifies with the scrapie prion. Science218:1309–1311[PubMed][CrossRef]
    [Google Scholar]
  9. Bremer J., Baumann F., Tiberi C., Wessig C., Fischer H., Schwarz P., Steele A. D., Toyka K. V., Nave K. A. et al. 2010; Axonal prion protein is required for peripheral myelin maintenance. Nat Neurosci13:310–318 [CrossRef][PubMed]
    [Google Scholar]
  10. Carmody R. N., Gerber G. K., Luevano J. M., Gatti D. M., Somes L., Svenson K. L., Turnbaugh P. J.. 2015; Diet dominates host genotype in shaping the murine gut microbiota. Cell Host & Microbe17:72–84 [CrossRef][PubMed]
    [Google Scholar]
  11. Choi G. B., Yim Y. S., Wong H., Kim S., Kim H., Kim S. V., Hoeffer C. A., Littman D. R., Huh J. R.. 2016; The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science351:933–939 [CrossRef][PubMed]
    [Google Scholar]
  12. Claesson M. J., O'Toole P. W.. 2010; Evaluating the latest high-throughput molecular techniques for the exploration of microbial gut communities. Gut Microbes1:277–278 [CrossRef][PubMed]
    [Google Scholar]
  13. Claesson M. J., Jeffery I. B., Conde S., Power S. E., O'Connor E. M., Cusack S., Harris H. M., Coakley M., Lakshminarayanan B. et al. 2012; Gut microbiota composition correlates with diet and health in the elderly. Nature488:178–184 [CrossRef][PubMed]
    [Google Scholar]
  14. Clewley J. P., Kelly C. M., Andrews N., Kelly V., Mallinson G., Kaisar M., Hilton D. A., Ironside J. W., Edwards P. et al. 2009; Prevalence of disease related prion protein in anonymous tonsil specimens in Britain: cross sectional opportunistic survey. Br Med J338:b1442[CrossRef]
    [Google Scholar]
  15. Coitinho A. S., Roesler R., Martins V. R., Brentani R. R., Izquierdo I.. 2003; Cellular prion protein ablation impairs behavior as a function of age. Neuroreport14:1375–1379 [CrossRef][PubMed]
    [Google Scholar]
  16. Collins S. M., Surette M., Bercik P.. 2012; The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol10:735–742[CrossRef]
    [Google Scholar]
  17. Combrinck M. I., Perry V. H., Cunningham C.. 2002; Peripheral infection evokes exaggerated sickness behaviour in pre-clinical murine prion disease. Neuroscience112:7–11 [CrossRef][PubMed]
    [Google Scholar]
  18. Correale J., Farez M. F.. 2013; Parasite infections in multiple sclerosis modulate immune responses through a retinoic acid-dependent pathway. J Immunol191:3827–3837 [CrossRef][PubMed]
    [Google Scholar]
  19. Cunningham C., Boche D., Perry V. H.. 2002; Transforming growth factor beta1, the dominant cytokine in murine prion disease: influence on inflammatory cytokine synthesis and alteration of vascular extracellular matrix. Neuropathol Appl Neurobiol28:107–119[PubMed][CrossRef]
    [Google Scholar]
  20. Cunningham C., Wilcockson D. C., Campion S., Lunnon K., Perry V. H.. 2005; Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. J Neurosci25:9275–9284 [CrossRef][PubMed]
    [Google Scholar]
  21. Cunningham C., Campion S., Lunnon K., Murray C. L., Woods J. F., Deacon R. M., Rawlins J. N., Perry V. H.. 2009; Systemic inflammation induces acute behavioral and cognitive changes and accelerates neurodegenerative disease. Biol Psychiatry65:304–312 [CrossRef][PubMed]
    [Google Scholar]
  22. Dagleish M. P., Hamilton S., González L., Eaton S. L., Steele P., Finlayson J., Sisó S., Pang Y., Sales J. et al. 2010; Digestion and transportation of bovine spongiform encephalopathy-derived prion protein in the sheep intestine. J Gen Virol91:3116–3123 [CrossRef][PubMed]
    [Google Scholar]
  23. De Almeida C. J., Chiarini L. B., da Silva J. P., E Silva P. M., Martins M. A., Linden R.. 2005; The cellular prion protein modulates phagocytosis and inflammatory response. J Leukoc Biol77:238–246 [CrossRef][PubMed]
    [Google Scholar]
  24. De Lucia C., Rinchon A., Olmos-Alonso A., Riecken K., Fehse B., Boche D., Perry V. H., Gomez-Nicola D.. 2015; Microglia regulate hippocampal neurogenesis during chronic neurodegeneration. Brain Beh Immun55:179–190 [CrossRef]
    [Google Scholar]
  25. De Luigi A., Colombo L., Diomede L., Capobianco R., Mangieri M., Miccolo C., Limido L., Forloni G., Tagliavini F., Salmona M.. 2008; The efficacy of tetracyclines in peripheral and intracerebral prion infection. PLoS One3:e1888 [CrossRef][PubMed]
    [Google Scholar]
  26. Denes A., Humphreys N., Lane T. E., Grencis R., Rothwell N.. 2010; Chronic systemic infection exacerbates ischemic brain damage via a CCL5 (regulated on activation, normal T-cell expressed and secreted)-mediated proinflammatory response in mice. Neurobiol Dis30:10086–10095
    [Google Scholar]
  27. Denkers N. D., Telling G. C., Hoover E. A.. 2011; Minor oral lesions facilitate transmission of chronic wasting disease. J Virol85:1396–1399 [CrossRef][PubMed]
    [Google Scholar]
  28. Dervishi E., Lam T. H., Dunn S. M., Zwierzchowski G., Saleem F., Wishart D. S., Ametaj B. N.. 2015; Recombinant mouse prion protein alone or in combination with lipopolysaccharide alters expression of innate immunity genes in the colon of mice. Prion9:59–73 [CrossRef][PubMed]
    [Google Scholar]
  29. deSchoolmeester M. L., Little M. C., Rollins B. J., Else K. J.. 2003; Absence of CC chemokine ligand 2 results in an altered Th1/Th2 cytokine balance and failure to expel Trichuris muris infection. J Immunol170:4693–4700[PubMed][CrossRef]
    [Google Scholar]
  30. Donaldson D. S., Kobayashi A., Ohno H., Yagita H., Williams I. R., Mabbott N. A.. 2012; M cell-depletion blocks oral prion disease pathogenesis. Mucosal Immunol5:216–225 [CrossRef][PubMed]
    [Google Scholar]
  31. Donaldson D. S., Bradford B. M., Artis D., Mabbott N. A.. 2015a; Reciprocal regulation of lymphoid tissue development in the large intestine by IL-25 and IL-23. Mucosal Immunol8:582–595[CrossRef]
    [Google Scholar]
  32. Donaldson D. S., Else K. J., Mabbott N. A.. 2015b; The gut-associated lymphoid tissues in the small intestine, not the large intestine, play a major role in oral prion disease pathogenesis. J Virol15:9532–9547[CrossRef]
    [Google Scholar]
  33. Erny D., Hrabě de Angelis A. L., Jaitin D., Wieghofer P., Staszewski O., David E., Keren-Shaul H., Mahlakoiv T., Jakobshagen K. et al. 2015; Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci18:965–977 [CrossRef][PubMed]
    [Google Scholar]
  34. Fadok V. A., Bratton D. L., Konowal A., Freed P. W., Westcott J. Y., Henson P. M.. 1998; Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest101:890–898 [CrossRef][PubMed]
    [Google Scholar]
  35. Farache J., Koren I., Milo I., Gurevich I., Kim K. W., Zigmond E., Furtado G. C., Lira S. A., Shakhar G.. 2013; Luminal bacteria recruit CD103+ dendritic cells into the intestinal epithelium to sample bacterial antigens for presentation. Immunity38:581–595 [CrossRef][PubMed]
    [Google Scholar]
  36. Frank D. N., St Amand A. L., Feldman R. A., Boedeker E. C., Harpaz N., Pace N. R.. 2007; Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A104:13780–13785 [CrossRef][PubMed]
    [Google Scholar]
  37. Furusawa Y., Obata Y., Fukuda S., Endo T. A., Nakato G., Takahashi D., Nakanishi Y., Uetake C., Kato K. et al. 2013; Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature504:446–450 [CrossRef][PubMed]
    [Google Scholar]
  38. Garske T., Ghani A. C.. 2010; Uncertainty in the tail of the variant Creutzfeldt-Jakob disease epidemic in the UK. PLoS One5:e15626 [CrossRef][PubMed]
    [Google Scholar]
  39. Gibson M. K., Crofts T. S., Dantas G.. 2015; Antibiotics and the developing infant gut microbiota and resistome. Curr Opin Microbiol27:51–56[CrossRef]
    [Google Scholar]
  40. Gill O. N., Spencer Y., Richard-Loendt A., Kelly C., Dabaghian R., Boyes L., Lineham J., Simmons M., Webb P.. 2013; Prevelent abnormal prion protein in human appendixes after bovine spongiform encephalopathy epizootic: large scale survey. Br Med J347:f5675[CrossRef]
    [Google Scholar]
  41. Glatzel M., Heppner F. L., Albers K. M., Aguzzi A.. 2001; Sympathetic innervation of lymphoreticular organs is rate limiting for prion neuroinvasion. Neuron31:25–34[PubMed][CrossRef]
    [Google Scholar]
  42. Glaysher B. R., Mabbott N. A.. 2007a; Isolated lymphoid follicle maturation induces the development of follicular dendritic cells. Immunology120:336–344[CrossRef]
    [Google Scholar]
  43. Glaysher B. R., Mabbott N. A.. 2007b; Role of the GALT in scrapie agent neuroinvasion from the intestine. J Immunol178:3757–3766[CrossRef]
    [Google Scholar]
  44. Gommerman J. L., Browning J. L.. 2003; Lymphotoxin/light, lymphoid microenvironments and autoimmune disease. Nat Rev Immunol3:642–654 [CrossRef][PubMed]
    [Google Scholar]
  45. González L., Martin S., Sisó S., Konold T., Ortiz-Peláez A., Phelan L., Goldmann W., Stewart P., Saunders G. et al. 2009; High prevalence of scrapie in a dairy goat herd: tissue distribution of disease-associated PrP and effect of PRNP genotype and age. Vet Res40:65 [CrossRef][PubMed]
    [Google Scholar]
  46. Hamada H., Hiroi T., Nishiyama Y., Takahashi H., Masunaga Y., Hachimura S., Kaminogawa S., Takahashi-Iwanaga H., Iwanaga T. et al. 2002; Identification of multiple isolated lymphoid follicles on the antimesenteric wall of the mouse small intestine. J Immunol 168:57–64[PubMed][CrossRef]
    [Google Scholar]
  47. Haïk S., Marcon G., Mallet A., Tettamanti M., Welaratne A., Giaccone G., Azimi S., Pietrini V., Fabreguettes J. R. et al. 2014; Doxycycline in Creutzfeldt-Jakob disease: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurol13:150–158 [CrossRef][PubMed]
    [Google Scholar]
  48. Heppner F. L., Christ A. D., Klein M. A., Prinz M., Fried M., Kraehenbuhl J. P., Aguzzi A.. 2001; Transepithelial prion transport by M cells. Nat Med7:976–977 [CrossRef][PubMed]
    [Google Scholar]
  49. Hill A. F., Butterworth R. J., Joiner S., Jackson G., Rossor M. N., Thomas D. J., Frosh A., Tolley N., Bell J. E. et al. 1999; Investigation of variant Creutzfeldt-Jakob disease and other human prion diseases with tonsil biopsy samples. Lancet353:183–189[PubMed][CrossRef]
    [Google Scholar]
  50. Holm J. B., Sorobetea D., Kiilerich P., Ramayo-Caldas Y., Estellé J., Ma T., Madsen L., Kristiansen K., Svensson-Frej M.. 2015; Chronic Trichuris muris infection decreases diversity of the intestinal microbiota and concomitantly increases the abundance of Lactobacilli . PLoS One10:e0125495 [CrossRef][PubMed]
    [Google Scholar]
  51. Holmes C., Cunningham C., Zotova E., Woolford J., Dean C., Kerr S., Culliford D., Perry V. H.. 2009; Systemic inflammation and disease progression in Alzheimer disease. Neurology73:768–774 [CrossRef][PubMed]
    [Google Scholar]
  52. Hooper L. V., Littman D. R., Macpherson A. J.. 2012; Interactions between the microbiota and the immune system. Science336:1268–1273 [CrossRef][PubMed]
    [Google Scholar]
  53. Horiuchi M., Furuoka H., Kitamura N., Shinagawa M.. 2006; Alymphoplasia mice are resistant to prion infection via oral route. Jap J Vet Res53:149–157
    [Google Scholar]
  54. Huang F. P., Farquhar C. F., Mabbott N. A., Bruce M. E., MacPherson G. G.. 2002; Migrating intestinal dendritic cells transport PrPSc from the gut. J Gen Virol83:267–271 [CrossRef][PubMed]
    [Google Scholar]
  55. Jeffrey M., González L., Espenes A., Press C. M., Martin S., Chaplin M., Davis L., Landsverk T., MacAldowie C. et al. 2006; Transportation of prion protein across the intestinal mucosa of scrapie-susceptible and scrapie-resistant sheep. J Pathol209:4–14 [CrossRef][PubMed]
    [Google Scholar]
  56. Jeurink P. V., van Bergenhenegouwen J., Jiménez E., Knippels L. M., Fernández L., Garssen J., Knol J., Rodríguez J. M., Martín R.. 2013; Human milk: a source of more life than we imagine. Benef Microbes4:17–30 [CrossRef][PubMed]
    [Google Scholar]
  57. Kamada N., Kim Y. G., Sham H. P., Vallance B. A., Puente J. L., Martens E. C., Núñez G.. 2012; Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science336:1325–1329 [CrossRef][PubMed]
    [Google Scholar]
  58. Kashyap P. C., Marcobal A., Ursell L. K., Larauche M., Duboc H., Earle K. A., Sonnenburg E. D., Ferreyra J. A., Higginbottom S. K. et al. 2013; Complex interactions among diet, gastrointestinal transit, and gut microbiota in humanized mice. Gastroenterology144:967–977 [CrossRef][PubMed]
    [Google Scholar]
  59. Kaatz M., Fast C., Ziegler U., Balkema-Buschmann A., Hammerschmidt B., Keller M., Oelschlegel A., McIntyre L., Groschup M. H.. 2012; Spread of classic BSE prions from the gut via the peripheral nervous system to the brain. Am J Pathol181:515–524 [CrossRef][PubMed]
    [Google Scholar]
  60. Kranich J., Krautler N. J., Falsig J., Ballmer B., Li S., Hutter G., Schwarz P., Moos R., Julius C. et al. 2010; Engulfment of cerebral apoptotic bodies controls the course of prion disease in a mouse strain-dependent manner. J Exp Med207:2271–2281 [CrossRef][PubMed]
    [Google Scholar]
  61. Krüger D., Thomzig A., Lenz G., Kampf K., McBride P., Beekes M.. 2009; Faecal shedding, alimentary clearance and intestinal spread of prions in hamsters fed with scrapie. Vet Res40:04 [CrossRef]
    [Google Scholar]
  62. Kujala P., Raymond C. R., Romeijn M., Godsave S. F., van Kasteren S. I., Wille H., Prusiner S. B., Mabbott N. A., Peters P. J.. 2011; Prion uptake in the gut: identification of the first uptake and replication sites. PLoS Pathog7:e1002449 [CrossRef][PubMed]
    [Google Scholar]
  63. Legname G., Baskakov I. V., Nguyen H. O., Riesner D., Cohen F. E., DeArmond S. J., Prusiner S. B.. 2004; Synthetic mammalian prions. Science305:673–676 [CrossRef][PubMed]
    [Google Scholar]
  64. Lev M., Raine C. S., Levenson S. M.. 1971; Enhanced survival of germfree mice after infection with irradiated scrapie brain. Experientia27:1358–1359 [CrossRef][PubMed]
    [Google Scholar]
  65. Ligios C., Sigurdson C. J., Santucciu C., Carcassola G., Manco G., Basagni M., Maestrale C., Cancedda M. G., Madau L., Aguzzi A.. 2005; PrPSc in mammary glands of sheep affected by scrapie and mastitis. Nat Med11:1137–1138 [CrossRef][PubMed]
    [Google Scholar]
  66. Ligios C., Cancedda M. G., Carta A., Santucciu C., Maestrale C., Demontis F., Saba M., Patta C., DeMartini J. C. et al. 2011; Sheep with scrapie and mastitis transmit infectious prions through the milk. J Virol85:1136–1139 [CrossRef][PubMed]
    [Google Scholar]
  67. Little M. C., Bell L. V., Cliffe L. J., Else K. J.. 2005; The characterization of intraepithelial lymphocytes, lamina propria leukocytes, and isolated lymphoid follicles in the large intestine of mice infected with the intestinal nematode parasite Trichuris muris . J Immunol175:6713–6722[PubMed][CrossRef]
    [Google Scholar]
  68. Lorenz R. G., Chaplin D. D., McDonald K. G., McDonough J. S., Newberry R. D.. 2003; Isolated lymphoid follicle formation is inducible and dependent upon lymphotoxin-sufficient B lymphocytes, lymphotoxin β receptor, and TNF receptor 1 function. J Immunol170:5474–5482 [CrossRef]
    [Google Scholar]
  69. Lunnon K., Teeling J. L., Tutt A. L., Cragg M. S., Glennie M. J., Perry V. H.. 2011; Systemic inflammation modulates Fc receptor expression on microglia during chronic neurodegeneration. J Immunol186:7215–7224 [CrossRef][PubMed]
    [Google Scholar]
  70. Mabbott N. A., Mackay F., Minns F., Bruce M. E.. 2000; Temporary inactivation of follicular dendritic cells delays neuroinvasion of scrapie. Nat Med6:719–720 [CrossRef][PubMed]
    [Google Scholar]
  71. Mabbott N. A., Young J., McConnell I., Bruce M. E.. 2003; Follicular dendritic cell dedifferentiation by treatment with an inhibitor of the lymphotoxin pathway dramatically reduces scrapie susceptibility. J Virol77: 6845–6854[PubMed][CrossRef]
    [Google Scholar]
  72. Mabbott N. A., Donaldson D. S., Ohno H., Williams I. R., Mahajan A.. 2013; Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol6:666–677 [CrossRef][PubMed]
    [Google Scholar]
  73. Mabbott N. A., Bradford B. M.. 2015; The good, the bad, and the ugly of dendritic cells during prion disease. J Immunolog Res2015:168574–13 [CrossRef]
    [Google Scholar]
  74. MacPherson G., Milling S., Yrlid U., Cousins L., Turnbull E., Huang F. P.. 2004; Uptake of antigens from the intestine by dendritic cells. Ann N Y Acad Sci1029:75–82 [CrossRef][PubMed]
    [Google Scholar]
  75. Magnusson K. R., Hauck L., Jeffrey B. M., Elias V., Humphrey A., Nath R., Perrone A., Bermudez L. E.. 2015; Relationships between diet-related changes in the gut microbiome and cognitive flexibility. Neuroscience300:128–140 [CrossRef][PubMed]
    [Google Scholar]
  76. Maignien T., Shakweh M., Calvo P., Marcé D., Salès N., Fattal E., Deslys J. P., Couvreur P., Lasmezas C. I.. 2005; Role of gut macrophages in mice orally contaminated with scrapie or BSE. Int J Pharm298:293–304 [CrossRef][PubMed]
    [Google Scholar]
  77. Maluquer de Motes C., Grassi J., Simon S., Herva M. E., Torres J. M., Pumarola M., Girones R.. 2008; Excretion of BSE and scrapie prions in stools from murine models. Vet Micro131:205–211 [CrossRef]
    [Google Scholar]
  78. Maluquer de Motes C., Espinosa J.-C., Esteban A., Calvo M., Girones R., Torres J. M.. 2012; Persistence of the bovine spongiform encephalopathy infectious agent in sewage. Env Res117:1–7 [CrossRef]
    [Google Scholar]
  79. McBride P. A., Schulz-Schaeffer W. J., Donaldson M., Bruce M., Diringer H., Kretzschmar H. A., Beekes M.. 2001; Early spread of scrapie from the gastrointestinal tract to the central nervous system involves autonomic fibers of the splanchnic and vagus nerves. J Virol75:9320–9327 [CrossRef][PubMed]
    [Google Scholar]
  80. McCulloch L., Brown K. L., Bradford B. M., Hopkins J., Bailey M., Rajewsky K., Manson J. C., Mabbott N. A.. 2011; Follicular dendritic cell-specificprion protein (PrPC) expression alone is sufficient to sustain prion infection in the spleen. PLoS Pathog7:e1002402 [CrossRef][PubMed]
    [Google Scholar]
  81. Montrasio F., Frigg R., Glatzel M., Klein M. A., Mackay F., Aguzzi A., Weissmann C.. 2000; Impaired prion replication in spleens of mice lacking functional follicular dendritic cells. Science288:1257–1259 [CrossRef][PubMed]
    [Google Scholar]
  82. Nichols T. A., Fischer J. W., Spraker T. R., Kong Q., VerCauteren K. C.. 2015; CWD prions remain infectious after passage through the digestive system of coyotes (Canis latrans). Prion9:367–375 [CrossRef][PubMed]
    [Google Scholar]
  83. Niess J. H., Brand S., Gu X., Landsman L., Jung S., McCormick B. A., Vyas J. M., Boes M., Ploegh H. L. et al. 2005; CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science307:254–258 [CrossRef][PubMed]
    [Google Scholar]
  84. Nuvolone M., Kana V., Hutter G., Sakata D., Mortin-Toth S. M., Russo G., Danska J. S., Aguzzi A.. 2013; SIRPα polymorphisms, but not the prion protein, control phagocytosis of apoptotic cells. J Exp Med210:2539–2552 [CrossRef][PubMed]
    [Google Scholar]
  85. Nuvolone M., Hermann M., Sorce S., Russo G., Tiberi C., Schwarz P., Minikel E., Sanoudou D., Pelczar P. et al. 2016; Strictly co-isogenic C57BL/6J-Prnp-/- mice: a rigorous resource for prion science. J Exp Med213:313–327 [CrossRef][PubMed]
    [Google Scholar]
  86. Peden A. H., Head M. W., Diane L. R., Jeanne E. B., James W. I., Ritchie D. L., Bell J. E., Ironside J. W.. 2004; Preclinical vCJD after blood transfusion in a PRNP codon 129 heterozygous patient. Lancet364:527–529 [CrossRef]
    [Google Scholar]
  87. Prinz M., Huber G., Macpherson A. J., Heppner F. L., Glatzel M., Eugster H. P., Wagner N., Aguzzi A.. 2003; Oral prion infection requires normal numbers of Peyer's patches but not of enteric lymphocytes. Am J Pathol162:1103–1111 [CrossRef][PubMed]
    [Google Scholar]
  88. Prinz M., Priller J.. 2014; Microglia and brain macrophages in the molecular age. Nat Rev Neurosci15:300–312 [CrossRef][PubMed]
    [Google Scholar]
  89. Prusiner S. B., Bolton D. C., Groth D. F., Bowman K. A., Cochran S. P., McKinley M. P.. 1982; Further purification and characterization of scrapie prions. Biochemistry21:6942–6950[PubMed][CrossRef]
    [Google Scholar]
  90. Raymond C. R., Aucouturier P., Mabbott N. A.. 2007; In vivo depletion of CD11c+ cells impairs scrapie agent neuroinvasion from the intestine. J Immunol179:7758–7766 [CrossRef][PubMed]
    [Google Scholar]
  91. Reikvam D. H., Erofeev A., Sandvik A., Grcic V., Jahnsen F. L., Gaustad P., McCoy K. D., Macpherson A. J., Meza-Zepeda L. A. et al. 2011; Depletion of murine intestinal microbiota: effects on gut mucosa and epithelial gene expression. PLoS One6:e17996 [CrossRef][PubMed]
    [Google Scholar]
  92. Rescigno M., Urbano M., Valzasina B., Francolini M., Rotta G., Bonasio R., Granucci F., Kraehenbuhl J. P., Ricciardi-Castagnoli P.. 2001; Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol2:361–367 [CrossRef][PubMed]
    [Google Scholar]
  93. Russell W. R., Hoyles L., Flint H. J., Dumas M.-E.. 2013; Colonic bacterial metabolites and human health. Curr Op Microbiol16:246–254 [CrossRef]
    [Google Scholar]
  94. Safar J. G., Lessard P., Tamgüney G., Freyman Y., Deering C., Letessier F., Dearmond S. J., Prusiner S. B.. 2008; Transmission and detection of prions in feces. J Infect Dis198:81–89 [CrossRef][PubMed]
    [Google Scholar]
  95. Sakai K., Hasebe R., Takahashi Y., Song C. H., Suzuki A., Yamasaki T., Horiuchi M.. 2013; Absence of CD14 delays progression of prion diseases accompanied by increased microglial activation. J Virol87:13433–13445 [CrossRef][PubMed]
    [Google Scholar]
  96. Saleem F., Bjorndahl T. C., Ladner C. L., Perez-Pineiro R., Ametaj B. N., Wishart D. S.. 2014; Lipopolysaccharide induced conversion of recombinant prion protein. Prion8:221–232 [CrossRef]
    [Google Scholar]
  97. Savidge T. C., Smith M. W., James P. S., Aldred P.. 1991; Salmonella-induced M-cell formation in germ-free mouse Peyer's patch tissue. Am J Pathol139:177–184[PubMed]
    [Google Scholar]
  98. Scherbel C., Pichner R., Groschup M. H., Mueller-Hellwig S., Scherer S., Dietrich R., Maertlbauer E., Gareis M.. 2006; Degradation of scrapie associated prion protein (PrPSc) by the gastrointestinal microbiota of cattle. Vet Res37:695–703 [CrossRef][PubMed]
    [Google Scholar]
  99. Scherbel C., Pichner R., Groschup M. H., Mueller-Hellwig S., Scherer S., Dietrich R., Maertlbauer E., Gareis M.. 2007; Infectivity of scrapie prion protein (PrPSc) following in vitro digestion with bovine gastrointestinalmicrobiota. Zoonoses Public Health54:185–190[CrossRef]
    [Google Scholar]
  100. Sender R., Fuchs S., Milo R.. 2015; Revised estimates for the number of human and bacteria cells in the body. bioRxivhttp://dx.doi.org/10.1101/036103
    [Google Scholar]
  101. Sigurdson C. J., Heikenwalder M., Manco G., Barthel M., Schwarz P., Stecher B., Krautler N. J., Hardt W. D., Seifert B. et al. 2009; Bacterial colitis increases susceptibility to oral prion disease. J Infect Dis199:243–252 [CrossRef][PubMed]
    [Google Scholar]
  102. Sommer F., Bäckhed F.. 2013; The gut microbiota: masters of host development and physiology. Nat Rev Microbiol11:227–238 [CrossRef][PubMed]
    [Google Scholar]
  103. Spielhaupter C., Schätzl H. M.. 2001; PrPC directly interacts with proteins involved in signaling pathways. J Biol Chem276:44604–44612 [CrossRef][PubMed]
    [Google Scholar]
  104. Spraker T. R., Gidlewski T. L., Balachandran A., VerCauteren K. C., Creekmore L., Munger R. D.. 2006; Detection of PrPCWD in postmortem rectal lymphoidtissues in Rocky Mountain elk (Cervus elaphus nelsoni) infected with chronic wasting disease. J Vet Diag Invest18:553–557 [CrossRef]
    [Google Scholar]
  105. Spraker T. R., VerCauteren K. C., Gidlewski T., Schneider D. A., Munger R., Balachandran A., O'Rourke K.. 2009; Antermortem detection of PrPCWD in preclinical, ranch-raised Rocky Mountain elk (Cervus elaphus nelsoni) by biopsy of the rectal mucosa. J Vet Diag Invest21:15–24 [CrossRef]
    [Google Scholar]
  106. Steele A. D., Lindquist S., Aguzzi A.. 2007; The prion protein knockout mouse: a phenotype under challenge. Prion1:83–93[PubMed][CrossRef]
    [Google Scholar]
  107. Sudo N., Chida Y., Aiba Y., Sonoda J., Oyama N., Yu X. N., Kubo C., Koga Y.. 2004; Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol558:263–275 [CrossRef][PubMed]
    [Google Scholar]
  108. Tagliavini F., Forloni G., Colombo L., Rossi G., Girola L., Canciani B., Angeretti N., Giampaolo L., Peressini E. et al. 2000; Tetracycline affects abnormal properties of synthetic PrP peptides and PrPSc in vitro . J Mol Biol300:1309–1322 [CrossRef][PubMed]
    [Google Scholar]
  109. Tahoun A., Mahajan S., Paxton E., Malterer G., Donaldson D. S., Wang D., Tan A., Gillespie T. L., O'Shea M. et al. 2012; Salmonella transforms follicle-associated epithelial cells into M cells to promote intestinal invasion. Cell Host Microbe12:645–666 [CrossRef][PubMed]
    [Google Scholar]
  110. Takakura I., Miyazawa K., Kanaya T., Itani W., Watanabe K., Ohwada S., Watanabe H., Hondo T., Rose M. T. et al. 2011; Orally administered prion protein is incorporated by M cells and spreads into lymphoid tissues with macrophages in prion protein knockout mice. Am J Pathol179:1301–1309 [CrossRef][PubMed]
    [Google Scholar]
  111. Tamguney G., Giles K., Glidden D., Lessard P., Wille H., Tremblay P., Groth D. F., Yehiely F., Korth C. et al. 2008; Genes contributing to prion pathogenesis. J Gen Virol89:1777–1788 [CrossRef]
    [Google Scholar]
  112. Tamgüney G., Miller M. W., Wolfe L. L., Sirochman T. M., Glidden D. V., Palmer C., Lemus A., DeArmond S. J., Prusiner S. B.. 2009; Asymptomatic deer excrete infectious prions in faeces. Nature461:529–532 [CrossRef][PubMed]
    [Google Scholar]
  113. Terahara K., Yoshida M., Igarashi O., Nochi T., Pontes G. S., Hase K., Ohno H., Kurokawa S., Mejima M. et al. 2008; Comprehensive gene expression profiling of Peyer's patch M cells, villous M-like cells, and intestinal epithelial cells. J Immunol180:7840–7846[PubMed][CrossRef]
    [Google Scholar]
  114. Thackray A. M., McKenzie A. N., Klein M. A., Lauder A., Bujdoso R.. 2004; Accelerated prion disease in the absence of interleukin-10. J Virol78:13697–13707 [CrossRef][PubMed]
    [Google Scholar]
  115. Thomsen B. V, Schneider D. A., O'Rourke K. I, Gidlewski T., McLane J., Allen R. W., McIsaac A. A., Mitchell G. B., Keane D. P.. 2012; Diagnostic accuracy of rectal mucosa biopsy testing for chronic wasting disease within white-tailed deer (Odocoileus virginianus) herds in North America: effects of age, sex, polymorphism at PRNP codon 96, and disease progression. J Vet Diag Invest24:878–887
    [Google Scholar]
  116. Tobler I., Gaus S. E., Deboer T., Achermann P., Fischer M., Rülicke T., Moser M., Oesch B., McBride P. A. et al. 1996; Altered circadian activity rhythms and sleep in mice devoid of prion protein. Nature380:639–642 [CrossRef][PubMed]
    [Google Scholar]
  117. Turnbaugh P. J., Ridaura V. K., Faith J. J., Rey F. E., Knight R., Gordon J.. 2009; The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Trans Med1:6ra14 [CrossRef]
    [Google Scholar]
  118. Valleron A. J., Boelle P. Y., Will R., Cesbron J. Y.. 2001; Estimation of epidemic size and incubation time based on age characteristics of vCJD in the United Kingdom. Science294:1726–1728 [CrossRef][PubMed]
    [Google Scholar]
  119. Vallon-Eberhard A., Landsman L., Yogev N., Verrier B., Jung S.. 2006; Transepithelial pathogen uptake into the small intestinal lamina propria. J Immunol 176:2465–2469[PubMed][CrossRef]
    [Google Scholar]
  120. Van Keulen L. J., Schreuder B. E., Vromans M. E., Langeveld J. P., Smits M. A.. 2000; Pathogenesis of natural scrapie in sheep. Arch Virol Supplementum16:57–71
    [Google Scholar]
  121. van Keulen L. J. M., Bossers A., van Zijderveld F.. 2008a; TSE pathogenesis in cattle and sheep. Vet Res39:24 [CrossRef]
    [Google Scholar]
  122. van Keulen L. J. M., Vromans M. E. W., Dolstra C. H., Bossers A., van Zijderveld F. G.. 2008b; Pathogenesis of bovine spongiform encephalopathy in sheep. Arch Virol153:445–453 [CrossRef]
    [Google Scholar]
  123. VerCauteren K. C., Pilon J. L., Nash P. B., Phillips G. E., Fischer J. W.. 2012; Prion remains infectious after passage through digestive system of American crows (Corvus brachyrhynchos). PLoS One7:e45774 [CrossRef][PubMed]
    [Google Scholar]
  124. Vincenti J. E., Murphy L., Grabert K., McColl B. W., Cancellotti E., Freeman T. C., Manson J. C.. 2016; Defining the microglial response during the time course of chronic neurodegeneration. J Virol90:3003–3017 [CrossRef]
    [Google Scholar]
  125. Wade W. F., Dees C., German T. L., Marsh R. F.. 1986; Effect of bacterial flora and mouse genotype (euthymic or athymic) on scrapie pathogenesis. J Leukoc Biol40:525–532[PubMed]
    [Google Scholar]
  126. Wakelin D.. 1967; Acquired immunity to Trichuris muris in the albino laboratory mouse. Parasitology57:515–524[PubMed][CrossRef]
    [Google Scholar]
  127. Walz R., Amaral O. B., Rockenbach I. C., Roesler R., Izquierdo I., Cavalheiro E. A., Martins V. R., Brentani R. R.. 1999; Increased sensitivity to seizures in mice lacking cellular prion protein. Epilepsia40:1679–1682 [CrossRef][PubMed]
    [Google Scholar]
  128. Wang F., Wang X., Yuan C. G., Ma J.. 2010; Generating a prion with bacterially expressed recombinant prion protein. Science327:1132–1135 [CrossRef][PubMed]
    [Google Scholar]
  129. Wilesmith J. W.. 1993; BSE: epidemiological approaches, trials and tribulations. Prev Vet Med18:33–42 [CrossRef]
    [Google Scholar]
  130. Zhan Y., Paolicelli R. C., Sforazzini F., Weinhard L., Bolasco G., Pagani F., Vyssotski A. L., Bifone A., Gozzi A. et al. 2014; Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat Neurosci17:400–406 [CrossRef]
    [Google Scholar]
  131. Zhu C., Schwarz P., Abakumova I., Aguzzi A.. 2015; Unaltered prion pathogenesis in a mouse model of high-fat diet-induced insulin resistance. PLoS One10:e0144983 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000507
Loading
/content/journal/jgv/10.1099/jgv.0.000507
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error