1887

Abstract

Human herpesvirus 6 (HHV-6) can integrate its genome into the telomeres of host chromosomes and is present in the germline of about 1 % of the human population. HHV-6 encodes a putative integrase U94 that possesses all molecular functions required for recombination including DNA-binding, ATPase, helicase and nuclease activity, and was hypothesized by many researchers to facilitate integration ever since the discovery of HHV-6 integration. However, analysis of U94 in the virus context has been hampered by the lack of reverse-genetic systems and efficient integration assays. Here, we addressed the role of U94 and the cellular recombinase Rad51 in HHV-6 integration. Surprisingly, we could demonstrate that HHV-6 efficiently integrated in the absence of U94 using a new quantitative integration assay. Additional inhibition of the cellular recombinase Rad51 had only a minor impact on virus integration. Our results shed light on this complex integration mechanism that includes factors beyond U94 and Rad51.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000502
2016-08-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/8/1899.html?itemId=/content/journal/jgv/10.1099/jgv.0.000502&mimeType=html&fmt=ahah

References

  1. Arbuckle J. H., Medveczky M. M., Luka J., Hadley S. H., Luegmayr A., Ablashi D., Lund T. C., Tolar J., De Meirleir K. et al. 2010; The latent human herpesvirus-6A genome specifically integrates in telomeres of human chromosomes in vivo and in vitro. Proc Natl Acad Sci U S A107:5563–5568 [CrossRef][PubMed]
    [Google Scholar]
  2. Arbuckle J. H., Medveczky P. G.. 2011; The molecular biology of human herpesvirus-6 latency and telomere integration. Microbes Infect13:731–741 [CrossRef][PubMed]
    [Google Scholar]
  3. Arbuckle J. H., Pantry S. N., Medveczky M. M., Prichett J., Loomis K. S., Ablashi D., Medveczky P. G.. 2013; Mapping the telomere integrated genome of human herpesvirus 6A and 6B. Virology442:3–11 [CrossRef][PubMed]
    [Google Scholar]
  4. Budke B., Logan H. L., Kalin J. H., Zelivianskaia A. S., Cameron McGuire W., Miller L. L., Stark J. M., Kozikowski A. P., Bishop D. K. et al. 2012; RI-1: a chemical inhibitor of RAD51 that disrupts homologous recombination in human cells. Nucleic Acids Res40:7347–7357 [CrossRef][PubMed]
    [Google Scholar]
  5. Daibata M., Taguchi T., Sawada T., Taguchi H., Miyoshi I.. 1998; Chromosomal transmission of human herpesvirus 6 DNA in acute lymphoblastic leukaemia. Lancet352:543–544 [CrossRef][PubMed]
    [Google Scholar]
  6. Daibata M., Taguchi T., Nemoto Y., Taguchi H., Miyoshi I.. 1999; Inheritance of chromosomally integrated human herpesvirus 6 DNA. Blood94:1545–1549[PubMed]
    [Google Scholar]
  7. Gravel A., Dubuc I., Morissette G., Sedlak R. H., Jerome K. R., Flamand L.. 2015; Inherited chromosomally integrated human herpesvirus 6 as a predisposing risk factor for the development of angina pectoris. Proc Natl Acad Sci U S A112:8058–8063 [CrossRef][PubMed]
    [Google Scholar]
  8. Kaufer B. B., Jarosinski K. W., Osterrieder N.. 2011; Herpesvirus telomeric repeats facilitate genomic integration into host telomeres and mobilization of viral DNA during reactivation. J Exp Med208:605–615 [CrossRef][PubMed]
    [Google Scholar]
  9. Kaufer B. B.. 2013; Detection of integrated herpesvirus genomes by fluorescence in situ hybridization (FISH). Methods Mol Biol1064:141–152 [CrossRef][PubMed]
    [Google Scholar]
  10. Kühl U., Lassner D., Wallaschek N., Gross U. M., Krueger G. R., Seeberg B., Kaufer B. B., Escher F., Poller W. et al. 2015; Chromosomally integrated human herpesvirus 6 in heart failure: prevalence and treatment. Eur J Heart Fail17:9–19 [CrossRef][PubMed]
    [Google Scholar]
  11. Mori T., Tanaka-Taya K., Satoh H., Aisa Y., Yamazaki R., Kato J., Ikeda Y., Okamoto S.. 2009; Transmission of chromosomally integrated human herpesvirsus 6 (HHV-6) variant A from a parent to children leading to misdiagnosis of active HHV-6 infection. Transpl Infect Dis11:503–506 [CrossRef][PubMed]
    [Google Scholar]
  12. Nukui M., Mori Y., Murphy E. A.. 2015; A human herpesvirus 6A-encoded microRNA: role in viral lytic replication. J Virol89:2615–2627 [CrossRef][PubMed]
    [Google Scholar]
  13. Osterrieder N., Wallaschek N., Kaufer B. B.. 2014; Herpesvirus genome integration into telomeric repeats of host cell chromosomes. Annual Review of Virology1:215–235 [CrossRef][PubMed]
    [Google Scholar]
  14. Oyaizu H., Tang H., Ota M., Takenaka N., Ozono K., Yamanishi K., Mori Y.. 2012; Complementation of the function of glycoprotein H of human herpesvirus 6 variant A by glycoprotein H of variant B in the virus life cycle. J Virol86:8492–8498 [CrossRef][PubMed]
    [Google Scholar]
  15. Pellett P. E., Ablashi D. V., Ambros P. F., Agut H., Caserta M. T., Descamps V., Flamand L., Gautheret-Dejean A., Hall C. B. et al. 2012; Chromosomally integrated human herpesvirus 6: questions and answers. Rev Med Virol22:144–155 [CrossRef][PubMed]
    [Google Scholar]
  16. Reuven N. B., Staire A. E., Myers R. S., Weller S. K.. 2003; The herpes simplex virus type 1 alkaline nuclease and single-stranded DNA binding protein mediate strand exchange in vitro. J Virol77:7425–7433[PubMed][CrossRef]
    [Google Scholar]
  17. Salahuddin S. Z., Ablashi D. V., Markham P. D., Josephs S. F., Sturzenegger S., Kaplan M., Halligan G., Biberfeld P., Wong-Staal F. et al. 1986; Isolation of a new virus, HBLV, in patients with lymphoproliferative disorders. Science234:596–601 [CrossRef][PubMed]
    [Google Scholar]
  18. San Filippo J., Sung P., Klein H.. 2008; Mechanism of eukaryotic homologous recombination. Annu Rev Biochem77:229–257 [CrossRef][PubMed]
    [Google Scholar]
  19. Schumacher A. J., Mohni K. N., Kan Y., Hendrickson E. A., Stark J. M., Weller S. K.. 2012; The HSV-1 exonuclease, UL12, stimulates recombination by a single strand annealing mechanism. PLoS Pathog8:e1002862 [CrossRef][PubMed]
    [Google Scholar]
  20. Tanaka-Taya K., Sashihara J., Kurahashi H., Amo K., Miyagawa H., Kondo K., Okada S., Yamanishi K.. 2004; Human herpesvirus 6 (HHV-6) is transmitted from parent to child in an integrated form and characterization of cases with chromosomally integrated HHV-6 DNA. J Med Virol73:465–473 [CrossRef][PubMed]
    [Google Scholar]
  21. Tang H., Kawabata A., Yoshida M., Oyaizu H., Maeki T., Yamanishi K., Mori Y.. 2010; Human herpesvirus 6 encoded glycoprotein Q1 gene is essential for virus growth. Virology407:360–367 [CrossRef][PubMed]
    [Google Scholar]
  22. Thomson B. J., Efstathiou S., Honess R. W.. 1991; Acquisition of the human adeno-associated virus type-2 rep gene by human herpesvirus type-6. Nature351:78–80 [CrossRef][PubMed]
    [Google Scholar]
  23. Thomson B. J., Weindler F. W., Gray D., Schwaab V., Heilbronn R.. 1994; Human herpesvirus 6 (HHV-6) is a helper virus for adeno- associated virus type 2 (AAV-2) and the AAV-2 rep gene homologue in HHV-6 can mediate AAV-2 DNA replication and regulate gene expression. Virology204:304–311 [CrossRef][PubMed]
    [Google Scholar]
  24. Tischer B. K., von Einem J., Kaufer B., Osterrieder N.. 2006; Two-step Red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli . Biotechniques40:191–197[PubMed][CrossRef]
    [Google Scholar]
  25. Tischer B. K., Kaufer B. B.. 2012; Viral bacterial artificial chromosomes: generation, mutagenesis, and removal of mini-F sequences. J Biomed Biotechnol472537:23
    [Google Scholar]
  26. Trempe F., Gravel A., Dubuc I., Wallaschek N., Collin V., Gilbert-Girard S., Morissette G., Kaufer B. B., Flamand L.. 2015; Characterization of human herpesvirus 6A/B U94 as ATPase, helicase, exonuclease and DNA-binding proteins. Nucleic Acids Res43:6084–6098 [CrossRef][PubMed]
    [Google Scholar]
  27. Wallaschek N., Sanyal A., Pirzer F., Gravel A., Mori Y., Flamand L., Kaufer B. B.. 2016; The Telomeric Repeats of Human Herpesvirus 6A (HHV-6A) Are Required for Efficient Virus Integration. PLoS Pathog12:e1005666 [CrossRef][PubMed]
    [Google Scholar]
  28. Yamanishi K., Okuno T., Shiraki K., Takahashi M., Kondo T., Asano Y., Kurata T.. 1988; Identification of human herpesvirus-6 as a causal agent for exanthem subitum. Lancet1:1065–1067[PubMed][CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000502
Loading
/content/journal/jgv/10.1099/jgv.0.000502
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error