1887

Abstract

The cap binding domain of the polymerase basic 2 (PB2) subunit of influenza polymerases plays a critical role in mediating the ‘cap-snatching' mechanism by binding the 5′ cap of host pre-mRNAs during viral mRNA transcription. Monitoring variations in the PB2 protein is thus vital for evaluating the pathogenic potential of the virus. Based on selection pressure analysis of PB2 gene sequences of the pandemic H1N1 (pH1N1) viruses of the period 2009–2014, we identified a site, 344V/M, in the vicinity of the cap binding pocket showing evidence of adaptive evolution and another co-evolving residue, 354I/L, in close vicinity. Modelling of the three-dimensional structure of the pH1N1 PB2 cap binding domain, docking of the pre-mRNA cap analogue mGTP and molecular dynamics simulation studies of the docked complexes performed for four PB2 variants observed showed that the complex possessing V344M with I354L possessed better ligand binding affinity due to additional hydrogen bond contacts between mGTP and the key residues His432 and Arg355 that was attributed to a displacement of the 424 loop and a flip of the side chain of Arg355, respectively. The co-evolutionary mutations identified (V344M, I354L) were found to be established in the PB2 gene of the pH1N1 viral population over the period 2010–2014. The study demonstrates the molecular basis for the enhanced mGTP ligand binding affinity with the 344M–354L synergistic combination in PB2. Furthermore, the insight gained into understanding the molecular mechanism of cap binding in pH1N1 viruses may be useful for designing novel drugs targeting the PB2 cap binding domain.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000500
2016-08-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/8/1785.html?itemId=/content/journal/jgv/10.1099/jgv.0.000500&mimeType=html&fmt=ahah

References

  1. Behera A. K., Basu S., Cherian S. S. 2015; Molecular mechanism of the enhanced viral fitness contributed by secondary mutations in the hemagglutinin protein of oseltamivir resistant H1N1 influenza viruses: modeling studies of antibody and receptor binding. Gene 557:19–27 [View Article][PubMed]
    [Google Scholar]
  2. Behera A. K., Chandra I., Cherian S. S. 2015; Molecular dynamics simulation of the effects of single (S221P) and double (S221P and K216E) mutations in the hemagglutinin protein of influenza A H5N1 virus: a study on host receptor specificity. J Biomol Struct Dyn 10.1016/j.gene.2014.12.003 [View Article][PubMed]
    [Google Scholar]
  3. Belanov S. S., Bychkov D., Benner C., Ripatti S., Ojala T., Kankainen M., Kai Lee H., Wei-Tze Tang J., Kainov D. E. 2015; Genome-wide analysis of evolutionary markers of human influenza A(H1N1)pdm09 and A(H3N2) viruses may guide selection of vaccine strain candidates. Genome Biol Evol 7:3472–3483 [View Article][PubMed]
    [Google Scholar]
  4. Berendsen, H. J. C., Postma J. P. M., van Gunsteren W. F., DiNola A., Haak J. R. 1984; Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684 [CrossRef]
    [Google Scholar]
  5. Bradley K. C., Galloway S. E., Lasanajak Y., Song X., Heimburg-Molinaro J., Yu H., Chen X., Talekar G. R., Smith D. F. et al. 2011; Analysis of influenza virus hemagglutinin receptor binding mutants with limited receptor recognition properties and conditional replication characteristics. J Virol 85:12387–12398 [View Article][PubMed]
    [Google Scholar]
  6. Buragohain M., Cherian S. S., Prabhakar G., Chitambar S. D. 2008; VP6 capsid protein of chicken rotavirus strain CH2: sequence, phylogeny and in silico antigenic analyses. Virus Res 137:173–178 [View Article][PubMed]
    [Google Scholar]
  7. Bussey K. A., Bousse T. L., Desmet E. A., Kim B., Takimoto T. 2010; PB2 residue 271 plays a key role in enhanced polymerase activity of influenza A viruses in mammalian host cells. J Virol 84:4395–4406 [View Article][PubMed]
    [Google Scholar]
  8. Byrn R. A., Jones S. M., Bennett H. B., Bral C., Clark M. P., Jacobs M. D., Kwong A. D., Ledeboer M. W., Leeman J. R. et al. 2015; Preclinical activity of VX-787, a first-in-class, orally bioavailable inhibitor of the influenza virus polymerase PB2 subunit. Antimicrob Agents Chemother 59:1569–1582 [View Article][PubMed]
    [Google Scholar]
  9. Chakrabarti S., Panchenko A. R. 2010; Structural and functional roles of coevolved sites in proteins. PLoS One 5:e8591 [View Article][PubMed]
    [Google Scholar]
  10. Clark M. P., Ledeboer M. W., Davies I., Byrn R. A., Jones S. M., Perola E., Tsai A., Jacobs M., Nti-Addae K. et al. 2014; Discovery of a novel, first-in-class, orally bioavailable azaindole inhibitor (VX-787) of influenza PB2. J Med Chem 57:6668–6678 [View Article][PubMed]
    [Google Scholar]
  11. Darzynkiewicz E., Lonnberg H. 1989; Base stacking of simple mRNA cap analogues-dimethylguanine, 7- methylguanosine and 7-methylguanosine 59-monophosphate with indole and purine derivatives in aqueous solution. Biophys Chem 733:289–293 [CrossRef]
    [Google Scholar]
  12. Elderfield R. A., Watson S. J., Godlee A., Adamson W. E., Thompson C. I., Dunning J., Fernandez-Alonso M., Blumenkrantz D., Hussell T. et al. 2014; Accumulation of human-adapting mutations during circulation of A(H1N1)pdm09 influenza virus in humans in the United Kingdom. J Virol 88:13269–13283 [CrossRef]
    [Google Scholar]
  13. Ellis J., Galiano M., Pebody R., Lackenby A., Thompson C., Bermingham A., McLean E., Zhao H., Bolotin S. et al. 2011; Virological analysis of fatal influenza cases in the United Kingdom during the early wave of influenza in winter 2010/11. Euro Surveill 16:19760
    [Google Scholar]
  14. Filikov A. V., Mohan V., Vickers T. A., Griffey R. H., Cook P. D., Abagyan R. A., James T. L. 2000; Identification of ligands for RNA targets via structure-based virtual screening: HIV-1 TAR. J Comput Aided Mol Des 14: 593–610[PubMed] [CrossRef]
    [Google Scholar]
  15. Garten R. J., Davis C. T., Russell C. A., Shu B., Lindstrom S., Balish A., Sessions W. M., Xu X., Skepner E. et al. 2009; Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science 325:197–201 [View Article][PubMed]
    [Google Scholar]
  16. Gibbs A. J., Armstrong J. S., Downie J. C. 2009; From where did the 2009 ‘swine-origin' influenza A virus (H1N1) emerge?. Virol J 6:6–207 [View Article][PubMed]
    [Google Scholar]
  17. Guilligay D., Tarendeau F., Resa-Infante P., Coloma R., Crepin T., Sehr P., Lewis J., Ruigrok R. W., Ortin J. et al. 2008; The structural basis for cap binding by influenza virus polymerase subunit PB2. Nat Struct Mol Biol 15:500–506 [View Article][PubMed]
    [Google Scholar]
  18. Ishida T., Doi M., Inoue M. 1988; A selective recognition mode of a nucleic acid base by an aromatic amino acid: l-phenylalanine-7-methylguanosine 5′-monophosphate stacking interaction. Nucleic Acids Res 16:6175–6190 [View Article][PubMed]
    [Google Scholar]
  19. Jones G., Willett P., Glen R., Leach A. R., Taylor R. 1997; Development and validation of a genetic algorithm for flexible docking. J Mol Bio 267:727–748 [CrossRef]
    [Google Scholar]
  20. Keramarou M., Cottrell S., Evans M. R., Moore C., Stiff R. E., Elliott C., Thomas D. R., Lyons M., Salmon R. L. 2011; Two waves of pandemic influenza A(H1N1) 2009 in Wales – the possible impact of media coverage on consultation rates, April-December 2009. Euro Surveill 16:19772[PubMed]
    [Google Scholar]
  21. Kilander A., Rykkvin R., Dudman S. G., Hungnes O. 2010; Observed association between the HA1 mutation D222G in the 2009 pandemic influenza A(H1N1) virus and severe clinical outcome, Norway 2009–2010. Euro Surveill 15:19498[PubMed]
    [Google Scholar]
  22. Kosakovsky Pond S. L., Frost S. D. 2005; Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22:1208–1222 [View Article][PubMed]
    [Google Scholar]
  23. Krieger E., Darden T., Nabuurs S. B., Finkelstein A., Vriend G. 2004; Making optimal use of empirical energy functions: force-field parameterization in crystal space. Proteins 57:678–683 [View Article][PubMed]
    [Google Scholar]
  24. Laskowski R. A., MacArthur M. W., Moss D. S., Thornton J. M. 1993; PROCHECK – a program to check the stereo chemical quality of protein structures. J Appl Cryst 26:283–291 [CrossRef]
    [Google Scholar]
  25. Li J., Ishaq M., Prudence M., Xi X., Hu T., Liu Q., Guo D. 2009; Single mutation at the amino acid position 627 of PB2 that leads to increased virulence of an H5N1 avian influenza virus during adaptation in mice can be compensated by multiple mutations at other sites of PB2. Virus Res 144:123–129 [View Article][PubMed]
    [Google Scholar]
  26. Li M. L., Rao P., Krug R. M. 2001; The active sites of the influenza cap-dependent endonuclease are on different polymerase subunits. EMBO J 20:2078–2086 [View Article][PubMed]
    [Google Scholar]
  27. Maurer-Stroh S., Lee R. T., Eisenhaber F., Cui L., Phuah S. P., Lin R. T. 2010; A new common mutation in the hemagglutinin of the 2009 (H1N1) influenza A virus. PLoS Curr 2:RRN1162 [View Article][PubMed]
    [Google Scholar]
  28. Medina R. A., García-Sastre A. 2011; Influenza A viruses: new research developments. Nat Rev Microb 9:590–603 [CrossRef]
    [Google Scholar]
  29. Mehle A., Doudna J. A. 2009; Adaptive strategies of the influenza virus polymerase for replication in humans. Proc Natl Acad Sci U S A 106:21312–21316 [View Article][PubMed]
    [Google Scholar]
  30. Mishel P., Ojala T., Benner C., Lakspere T., Bychkov D., Jalovaara P., Kakkola L., Kallio-Kokko H., Kantele A. et al. 2015; Comparative analysis of whole-genome sequences of influenza A(H1N1)pdm09 viruses isolated from hospitalized and nonhospitalized patients identifies missense mutations that might be associated with patient hospital admissions in Finland during 2009 to 2014. Genome Announc 3:e0067615 [View Article][PubMed]
    [Google Scholar]
  31. Moussi A. E., Kacem M. A., Pozo F., Ledesma J., Cuevas M. T., Casas I., Slim A. 2013; Frequency of D222G haemagglutinin mutant of pandemic (H1N1) pdm09 influenza virus in Tunisia between 2009 and 2011. Diagn Pathol 8:124 [View Article][PubMed]
    [Google Scholar]
  32. Pan D., Xue W., Wang X., Guo J., Liu H., Yao X. 2012; Molecular mechanism of the enhanced virulence of 2009 pandemic influenza A (H1N1) virus from D222G mutation in the hemagglutinin: a molecular modeling study. J Mol Model 18:4355–4366 [View Article][PubMed]
    [Google Scholar]
  33. Pascua P. N. Q., Lim G.-J., Kwon Hyeok-il., Park S.-J., Kim E.-H., Song M.-S., Kim C. J., Choi Y.-K., Kwon H. 2013; Emergence of H3N2pM-like and novel reassortant H3N1 swine viruses possessing segments derived from the A (H1N1)pdm09 influenza virus, Korea. Influenza Other Respir Viruses 7:1283–1291 [View Article]
    [Google Scholar]
  34. Patil R., Das S., Stanley A., Yadav L., Sudhakar A., Varma A. K. 2010; Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing. PLoS One 5:e12029 [View Article][PubMed]
    [Google Scholar]
  35. Pautus S., Sehr P., Lewis J., Fortuné A., Wolkerstorfer A., Szolar O., Guilligay D., Lunardi T., Décout J. L. et al. 2013; New 7-methylguanine derivatives targeting the influenza polymerase PB2 cap-binding domain. J Med Chem 56:8915–8930 [View Article][PubMed]
    [Google Scholar]
  36. Plotch S. J., Bouloy M., Ulmanen I., Krug R. M. 1981; A unique cap(m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell 23:847–858 [View Article][PubMed]
    [Google Scholar]
  37. Pond S. L., Frost S. D., Grossman Z., Gravenor M. B., Richman D. D., Brown A. J. 2006; Adaptation to different human populations by HIV-1 revealed by codon-based analyses. PLoS Comput Biol 2:e62 [View Article][PubMed]
    [Google Scholar]
  38. Purohit R., Rajendran V., Sethumadhavan R. 2011; Studies on adaptability of binding residues and flap region of TMC-114 resistance HIV-1 protease mutants. J Biomol Struct Dyn 29:137–152 [View Article][PubMed]
    [Google Scholar]
  39. Pyrkov T. V., Kosinsky Y. A., Arseniev A. S., Priestle J. P., Jacoby E., Efremov R. G. 2007; Complementarity of hydrophobic properties in ATP-protein binding: a new criterion to rank docking solutions. Proteins 66:388–398 [View Article][PubMed]
    [Google Scholar]
  40. Resa-Infante P., Jorba N., Coloma R., Ortin J. 2014; The influenza virus RNA synthesis machine. RNA Biol 8:207–215 [CrossRef]
    [Google Scholar]
  41. Rosa-Zamboni D. de la., Vázquez-Pérez J. A., Avila-Ríos S., Carranco-Arenas A. P., Ormsby C. E., Cummings C. A., Soto-Nava M., Hernández-Hernández V. A., Orozco-Sánchez C. O. et al. 2012; Molecular characterization of the predominant influenza A(H1N1)pdm09 virus in Mexico, December 2011–February 2012. PLoS One 7:e50116
    [Google Scholar]
  42. Shinya K., Hamm S., Hatta M., Ito H., Ito T., Kawaoka Y. 2004; PB2 amino acid at position 627 affects replicative efficiency, but not cell tropism, of Hong Kong H5N1 influenza A viruses in mice. Virology 320:258–266 [View Article][PubMed]
    [Google Scholar]
  43. Simonetti F. L., Teppa E., Chernomoretz A., Nielsen M., Marino Buslje C., Buslje C. M. 2013; MISTIC: Mutual information server to infer coevolution. Nucleic Acids Res 41:W8–14 [View Article][PubMed]
    [Google Scholar]
  44. Stolarski R., Sitek A., Stepiński J., Jankowska M., Oksman P., Temeriusz A., Darzynkiewicz E., Lönnberg H., Shugar D. 1996; 1H-NMR studies on association of mRNA cap-analogues with tryptophan-containing peptides. Biochim Biophys Acta 1293:97–105[PubMed] [CrossRef]
    [Google Scholar]
  45. Sugiyama K., Obayashi E., Kawaguchi A., Suzuki Y., Tame J. R., Nagata K., Park S. Y. 2009; Structural insight into the essential PB1-PB2 subunit contact of the influenza virus RNA polymerase. EMBO J 28:1803–1811 [View Article][PubMed]
    [Google Scholar]
  46. Sánchez R., Sali A. 1997; Advances in comparative protein-structure modelling. Curr Opin Struct Biol 7:206–214[PubMed] [CrossRef]
    [Google Scholar]
  47. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  48. Tarendeau F., Boudet J., Guilligay D., Mas P. J., Bougault C. M., Boulo S., Baudin F., Ruigrok R. W., Daigle N. et al. 2007; Structure and nuclear import function of the C-terminal domain of influenza virus polymerase PB2 subunit. Nat Struct Mol Biol 14:229–233 [View Article][PubMed]
    [Google Scholar]
  49. Truelove S. A., Chitnis A. S., Heffernan R. T., Karon A. E., Haupt T. E., Davis J. P. 2011; Comparison of patients hospitalized with pandemic 2009 influenza A (H1N1) virus infection during the first two pandemic waves in Wisconsin. J Infect Dis 203:828–837 [View Article][PubMed]
    [Google Scholar]
  50. Tsurumura T., Qiu H., Yoshida T., Tsumori Y., Hatakeyama D., Kuzuhara T., Tsuge H. 2013; Conformational polymorphism of m7GTP in crystal structure of the PB2 middle domain from human influenza A virus. PLoS One 8:e82020 [View Article][PubMed]
    [Google Scholar]
  51. Ueda H., Iyo H., Doi M., Inoue M., Ishida T. 1991; Cooperative stacking and hydrogen bond pairing interactions of fragment peptide in cap binding protein with mRNA cap structure. Biochim Biophys Acta 1075:181–186[PubMed] [CrossRef]
    [Google Scholar]
  52. van Gunsteren W. F., Berendsen H. J. C. 1990; Computer simulation of molecular dynamics: methodology, applications and perspectives in chemistry angew. Chem Int Ed Engl 29:992–1023 [CrossRef]
    [Google Scholar]
  53. Verdonk M. L., Cole J. C., Hartshorn M. J., Murray C. W., Taylor R. D. 2003; Improved protein-ligand docking using gold . Proteins 52:609–623 [View Article][PubMed]
    [Google Scholar]
  54. Wang R., Lu Y., Fang X., Wang S. 2004; An extensive test of 14 scoring functions using the PDBbind refined set of 800 protein–ligand complexes. J Chem Inf Comput Sci 44:2114–2125 [View Article][PubMed]
    [Google Scholar]
  55. Yamada S., Hatta M., Staker B. L., Watanabe S., Imai M., Shinya K., Sakai-Tagawa Y., Ito M., Ozawa M. et al. 2010; Biological and structural characterization of a host-adapting amino acid in influenza virus. PLoS Pathog 6:e1001034 [View Article][PubMed]
    [Google Scholar]
  56. Yang J. R., Huang Y. P., Chang F. Y., Hsu L. C., Lin Y. C., Su C. H., Chen P. J., Wu H. S., Liu M. T. 2011; New variants and age shift to high fatality groups contribute to severe successive waves in the 2009 influenza pandemic in Taiwan. PLoS One 6:e28288 [View Article][PubMed]
    [Google Scholar]
  57. Yang Z. 2001; Adaptive molecular evolution. In Handbook of Statistical Genetics pp 327–350 Edited by Balding D. J., Bishop M., Cannings C. London: Wiley;
    [Google Scholar]
  58. Yen H. L., Hoffmann E., Taylor G., Scholtissek C., Monto A. S., Webster R. G., Govorkova E. A. 2006; Importance of neuraminidase active-site residues to the neuraminidase inhibitor resistance of influenza viruses. J Virol 80:8787–8795 [View Article][PubMed]
    [Google Scholar]
  59. Zhao Z., Yi C., Zhao L., Wang S., Zhou L., Hu Y., Zou W., Chen H., Jin M. 2014; PB2-588I enhances 2009 H1N1 pandemic influenza virus virulence by increasing viral replication and exacerbating PB2 inhibition of beta interferon expression. J Virol 88:2260–2267 [View Article][PubMed]
    [Google Scholar]
  60. Zhu W., Zhu Y., Qin K., Yu Z., Gao R., Yu H., Zhou J., Shu Y. 2012; Mutations in polymerase genes enhanced the virulence of 2009 pandemic H1N1 influenza virus in mice. PLoS One 7:e33383 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000500
Loading
/content/journal/jgv/10.1099/jgv.0.000500
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error