1887

Abstract

is an industrial starter culture used for the production of fermented dairy products. Pip (phage infection protein) bacteriophage-insensitive mutant (BIM) DGCC11032 was isolated following challenge of parental strain DGCC7271 with . Over a period of industrial use, phages infecting DGCC11032 were isolated from industrial whey samples and identified as . Although Pip is reported to be the receptor for many including species type phage c2, a similar cell-membrane-associated protein, YjaE, was recently reported as the receptor for bIL67. Characterization of DGCC7271 BIMs following challenge with phage capable of infecting DGCC11032 identified mutations in , confirming YjaE to be necessary for infection. DGCC7271 YjaE mutants remained sensitive to the phages used to generate variant DGCC11032, indicating a distinction in host phage determinants. We will refer to requiring Pip as c2-type and that require YjaE as bIL67-type. Genomic comparisons of two c2-type phages unable to infect mutant DGCC11032 and four bIL67-type phages isolated on DGCC11032 confirmed the segregation of each group based on resemblance to prototypical phages c2 and bIL67, respectively. The distinguishing feature is linked to three contiguous late-expressed genes: l14–15–16 (c2) and ORF34–35–36 (bIL67). Phage recombinants in which the c2-like l14–15–16 homologue gene set was exchanged with corresponding bIL67 genes ORF34–35–36 were capable of infecting a mutated host. Together, these results correlate the phage genes corresponding to (c2) and ORF34–35–36 (bIL67) to host lactococcal phage determinants Pip and YjaE, respectively.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000499
2016-08-01
2020-09-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/8/1998.html?itemId=/content/journal/jgv/10.1099/jgv.0.000499&mimeType=html&fmt=ahah

References

  1. Ainsworth S., Sadovskaya I., Vinogradov E., Courtin P., Guerardel Y., Mahony J., Grard T., Cambillau C., Chapot-Chartier M. P. et al. 2014; Differences in lactococcal cell wall polysaccharide structure are major determining factors in bacteriophage sensitivity. MBio5:e00880-14 [CrossRef][PubMed]
    [Google Scholar]
  2. Aziz R. K., Bartels D., Best A. A., DeJongh M., Disz T., Edwards R. A., Formsma K., Gerdes S., Glass E. M. et al. 2008; The RAST Server: rapid annotations using subsystems technology. BMC Genomics9:75 [CrossRef][PubMed]
    [Google Scholar]
  3. Bankevich A., Nurk S., Antipov D., Gurevich A. A., Dvorkin M., Kulikov A. S., Lesin V. M., Nikolenko S. I., Pham S. et al. 2012; SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  4. Boisvert S., Raymond F., Godzaridis E., Laviolette F., Corbeil J.. 2012; Ray Meta: scalable de novo metagenome assembly and profiling. Genome Biol13:R122 [CrossRef][PubMed]
    [Google Scholar]
  5. Bolotin A., Wincker P., Mauger S., Jaillon O., Malarme K., Weissenbach J., Ehrlich S. D., Sorokin A.. 2001; The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res11:731–753 [CrossRef][PubMed]
    [Google Scholar]
  6. Chapot-Chartier M. P., Kulakauskas S.. 2014; Cell wall structure and function in lactic acid bacteria. Microb Cell Fact13: S9. [CrossRef][PubMed]
    [Google Scholar]
  7. Derkx P. M., Janzen T., Sørensen K. I., Christensen J. E., Stuer-Lauridsen B., Johansen E.. 2014; The art of strain improvement of industrial lactic acid bacteria without the use of recombinant DNA technology. Microb Cell Fact13: S5 [CrossRef][PubMed]
    [Google Scholar]
  8. Deveau H., Labrie S. J., Chopin M. C., Moineau S.. 2006; Biodiversity and classification of lactococcal phages. Appl Environ Microbiol72:4338–4346 [CrossRef][PubMed]
    [Google Scholar]
  9. Garbutt K. C., Kraus J., Geller B. L.. 1997; Bacteriophage resistance in Lactococcus lactis engineered by replacement of a gene for a bacteriophage receptor. J Dairy Sci80:1512–1519[CrossRef]
    [Google Scholar]
  10. Garneau J. E., Moineau S.. 2011; Bacteriophages of lactic acid bacteria and their impact on milk fermentations. Microb Cell Fact10: S20 [CrossRef][PubMed]
    [Google Scholar]
  11. Geller B., Ivey R. G., Trempy J. E., Hettinger-Smith B.. 1993; Cloning of a chromosomal gene required for phage infection of Lactococcus lactis subsp. Lactis C2. J Bacteriol175:5510–5519
    [Google Scholar]
  12. Jakutyt L., Lurz R., Baptista C., Carballido-Lopez R., São-José C., Tavares P., Daugelavičius R.. 2012; First steps of bacteriophage SPP1 entry into Bacillus subtilis . Virology422:425–434 [CrossRef][PubMed]
    [Google Scholar]
  13. Jarvis A. W.. 1984; Differentiation of lactic streptococcal phages into phage species by DNA–DNA homology. Appl Environ Microbiol47:343–349[PubMed]
    [Google Scholar]
  14. Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S. et al. 2012; Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics28:1647–1649 [CrossRef][PubMed]
    [Google Scholar]
  15. Kraus J., Geller B. L.. 1998; Membrane receptor for prolate phages is not required for infection of Lactococcus lactis by small or large isometric phages. J Dairy Sci81:2329–2335[CrossRef]
    [Google Scholar]
  16. Labrie S., Moineau S.. 2000; Multiplex PCR for detection and identification of lactococcal bacteriophages. Appl Environ Microbiol66:987–994 [CrossRef][PubMed]
    [Google Scholar]
  17. Legrand P., Collins B., Blangy S., Murphy J., Spinelli S., Gutierrez C., Richet N., Kellenberger C., Desmyter A. et al. 2016; The atomic structure of the phage Tuc2009 baseplate tripod suggests that host recognition involves two different carbohydrate binding modules. MBio7:e0178115 [CrossRef][PubMed]
    [Google Scholar]
  18. Lubbers M. W., Waterfield N. R., Beresford T. P., Le Page R. W., Jarvis A. W.. 1995; Sequencing and analysis of the prolate-headed lactococcal bacteriophage c2 genome and identification of the structural genes. Appl Environ Microbiol61:4348–4356[PubMed]
    [Google Scholar]
  19. Mahony J., Ainsworth S., Stockdale S., van Sinderen D.. 2012; Phages of lactic acid bacteria: the role of genetics in understanding phage–host interactions and their co-evolutionary processes. Virology434:143–150 [CrossRef][PubMed]
    [Google Scholar]
  20. Mahony J., McDonnell B., Casey E., van Sinderen D.. 2016; Phage–host interactions of cheese-making lactic acid bacteria. Annu Rev Food Sci Technol7:12.1–12.19[CrossRef]
    [Google Scholar]
  21. McGrath S., Neve H., Seegers J. F., Eijlander R., Vegge C. S., Brøndsted L., Heller K. J., Fitzgerald G. F., Vogensen F. K. et al. 2006; Anatomy of a lactococcal phage tail. J Bacteriol188:3972–3982 [CrossRef][PubMed]
    [Google Scholar]
  22. McCabe O., Spinelli S., Farenc C., Labbé C., Tremblay D., Blangy S., Oscarson S., Moineau S., Cambillau C.. 2015; The targeted recognition of Lactococcus lactis phages to their polysaccharide receptors. Molec Microbiol96:875–886 [CrossRef]
    [Google Scholar]
  23. Monteville M. R., Ardestani B., Geller B. L.. 1994; Lactococcal bacteriophages require a host cell wall carbohydrate and a plasma membrane protein for adsorption and ejection of DNA. Appl Environ Microbiol60:3204–3211[PubMed]
    [Google Scholar]
  24. Mooney D. T., Jann M., Geller B. L.. 2006; Subcellular location of phage infection protein (Pip) in Lactococcus lactis . Can J Microbiol52:664–672 [CrossRef][PubMed]
    [Google Scholar]
  25. Overbeek R., Olson R., Pusch G. D., Olsen G. J., Davis J. J., Disz T., Edwards R. A., Gerdes S., Parrello B. et al. 2014; The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res42:D206–D214 [CrossRef][PubMed]
    [Google Scholar]
  26. Perrin R., Billard P., Branlant C.. 1997; Comparative analysis of the genomic DNA terminal regions of the lactococcal bacteriophages from species c2. Res Microbiol148:573–583 [CrossRef][PubMed]
    [Google Scholar]
  27. Plisson C., White H. E., Auzat I., Zafarani A., São-José C., Lhuillier S., Tavares P., Orlova E. V.. 2007; Structure of bacteriophage SPP1 tail reveals trigger for DNA ejection. EMBO J26:3720–3728 [CrossRef][PubMed]
    [Google Scholar]
  28. Rakonjac J., O'Toole P. W., Lubbers M.. 2005; Isolation of lactococcal prolate phage–phage recombinants by an enrichment strategy reveals two novel host range determinants. J Bacteriol187:3110–3121 [CrossRef][PubMed]
    [Google Scholar]
  29. Sanders M. E., Klaenhammer T. R.. 1980; Restriction and modification in group N streptococci: effect of heat on development of modified lytic bacteriophage. Appl Environ Microbiol40:500–506[PubMed]
    [Google Scholar]
  30. São-José C., Batista C., Santos M. A.. 2004; Bacillus subtilis operon encoding a membrane receptor for bacteriophage SPP1. J . Bacteriol186:8337–8346[CrossRef]
    [Google Scholar]
  31. São-José C., Lhuillier S., Lurz R., Melki R., Lepault J., Santos M. A., Tavares P.. 2006; The ectodomain of the viral receptor YueB forms a fiber that triggers ejection of bacteriophage SPP1 DNA. J Biol Chem281:11464–11470 [CrossRef][PubMed]
    [Google Scholar]
  32. Schouler C., Ehrlich S. D., Chopin M. C.. 1994; Sequence and organization of the lactococcal prolate-headed bIL67 phage genome. Microbiology140:3061–3069 [CrossRef][PubMed]
    [Google Scholar]
  33. Sievers F., Wilm A., Dineen D. G., Gibson T. J., Karplus K., Li W., Lopez R., McWilliam H., Remmert M. et al. 2011; Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biology7:539[CrossRef]
    [Google Scholar]
  34. Söding J., Biegert A., Lupas A. N.. 2005; The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res33:W244–W248 [CrossRef][PubMed]
    [Google Scholar]
  35. Stockdale S. R., Mahony J., Courtin P., Chapot-Chartier M.-P., van Pijkeren J.-P., Britton R. A., Neve H., Heller K. J., Aideh B. et al. 2013; The lactococcal phages Tuc2009 and TP901-1 incorporate two alternate forms of their tail fiber into their virions for infection specialization. J Biol Chem288:5581–5590 [CrossRef][PubMed]
    [Google Scholar]
  36. Stuer-Lauridsen B., Janzen T., Schnabl J., Johansen E.. 2003; Identification of the host determinant of two prolate-headed phages infecting Lactococcus lactis . Virology309:10–17 [CrossRef][PubMed]
    [Google Scholar]
  37. Stuer-Lauridsen B., Janzen T.. 2006; Bacteriophage resistant lactic acid bacteria. US Patent 8137950
  38. Terzaghi B. E., Sandine W. E.. 1975; Improved medium for lactic streptococci and their bacteriophages. Appl Environ Microbiol29:807–813
    [Google Scholar]
  39. Valyasevi R., Sandine W. E., Geller B. L.. 1991; A membrane protein is required for bacteriophage c2 infection of Lactococcus lactis subsp. Lactis C2. J Bacteriol173:6095–6100
    [Google Scholar]
  40. Vinga I., Baptista C., Auzat I., Petipas I., Lurz R., Tavares P., Santos M. A., São-José C.. 2012; Role of bacteriophage SPP1 tail spike protein gp21 on host cell receptor binding and trigger of phage DNA ejection. Molec Microbiol83:289–303[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000499
Loading
/content/journal/jgv/10.1099/jgv.0.000499
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error