1887

Abstract

Lactococcus lactis is an industrial starter culture used for the production of fermented dairy products. Pip (phage infection protein) bacteriophage-insensitive mutant (BIM) L. lactis DGCC11032 was isolated following challenge of parental strain DGCC7271 with C2viruses. Over a period of industrial use, phages infecting DGCC11032 were isolated from industrial whey samples and identified as C2viruses. Although Pip is reported to be the receptor for many C2viruses including species type phage c2, a similar cell-membrane-associated protein, YjaE, was recently reported as the receptor for C2virus bIL67. Characterization of DGCC7271 BIMs following challenge with phage capable of infecting DGCC11032 identified mutations in yjaE, confirming YjaE to be necessary for infection. DGCC7271 YjaE mutants remained sensitive to the phages used to generate pip variant DGCC11032, indicating a distinction in host phage determinants. We will refer to C2viruses requiring Pip as c2-type andC2viruses that require YjaE as bIL67-type. Genomic comparisons of two c2-type phages unable to infect pip mutant DGCC11032 and four bIL67-type phages isolated on DGCC11032 confirmed the segregation of each group based on resemblance to prototypical phages c2 and bIL67, respectively. The distinguishing feature is linked to three contiguous late-expressed genes: l14–15–16 (c2) and ORF34–35–36 (bIL67). Phage recombinants in which the c2-like l14–15–16 homologue gene set was exchanged with corresponding bIL67 genes ORF34–35–36 were capable of infecting a pip mutated host. Together, these results correlate the phage genes corresponding to l14–15–16 (c2) and ORF34–35–36 (bIL67) to host lactococcal phage determinants Pip and YjaE, respectively.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000499
2016-08-01
2019-12-07
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/8/1998.html?itemId=/content/journal/jgv/10.1099/jgv.0.000499&mimeType=html&fmt=ahah

References

  1. Ainsworth S. , Sadovskaya I. , Vinogradov E. , Courtin P. , Guerardel Y. , Mahony J. , Grard T. , Cambillau C. , Chapot-Chartier M. P. et al. ( 2014;). Differences in lactococcal cell wall polysaccharide structure are major determining factors in bacteriophage sensitivity. . MBio 5: e00880-14. [CrossRef] [PubMed]
    [Google Scholar]
  2. Aziz R. K. , Bartels D. , Best A. A. , DeJongh M. , Disz T. , Edwards R. A. , Formsma K. , Gerdes S. , Glass E. M. et al. ( 2008;). The RAST Server: rapid annotations using subsystems technology. . BMC Genomics 9: 75. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bankevich A. , Nurk S. , Antipov D. , Gurevich A. A. , Dvorkin M. , Kulikov A. S. , Lesin V. M. , Nikolenko S. I. , Pham S. et al. ( 2012;). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. . J Comput Biol 19: 455–477. [CrossRef] [PubMed]
    [Google Scholar]
  4. Boisvert S. , Raymond F. , Godzaridis E. , Laviolette F. , Corbeil J. . ( 2012;). Ray Meta: scalable de novo metagenome assembly and profiling. . Genome Biol 13: R122. [CrossRef] [PubMed]
    [Google Scholar]
  5. Bolotin A. , Wincker P. , Mauger S. , Jaillon O. , Malarme K. , Weissenbach J. , Ehrlich S. D. , Sorokin A. . ( 2001;). The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. . Genome Res 11: 731–753. [CrossRef] [PubMed]
    [Google Scholar]
  6. Chapot-Chartier M. P. , Kulakauskas S. . ( 2014;). Cell wall structure and function in lactic acid bacteria. . Microb Cell Fact 13: S9. [CrossRef] [PubMed]
    [Google Scholar]
  7. Derkx P. M. , Janzen T. , Sørensen K. I. , Christensen J. E. , Stuer-Lauridsen B. , Johansen E. . ( 2014;). The art of strain improvement of industrial lactic acid bacteria without the use of recombinant DNA technology. . Microb Cell Fact 13: S5. [CrossRef] [PubMed]
    [Google Scholar]
  8. Deveau H. , Labrie S. J. , Chopin M. C. , Moineau S. . ( 2006;). Biodiversity and classification of lactococcal phages. . Appl Environ Microbiol 72: 4338–4346. [CrossRef] [PubMed]
    [Google Scholar]
  9. Garbutt K. C. , Kraus J. , Geller B. L. . ( 1997;). Bacteriophage resistance in Lactococcus lactis engineered by replacement of a gene for a bacteriophage receptor. . J Dairy Sci 80: 1512–1519.[CrossRef]
    [Google Scholar]
  10. Garneau J. E. , Moineau S. . ( 2011;). Bacteriophages of lactic acid bacteria and their impact on milk fermentations. . Microb Cell Fact 10:. S20. [CrossRef] [PubMed]
    [Google Scholar]
  11. Geller B. , Ivey R. G. , Trempy J. E. , Hettinger-Smith B. . ( 1993;). Cloning of a chromosomal gene required for phage infection of Lactococcus lactis subsp. . Lactis C2. J Bacteriol 175: 5510–5519.
    [Google Scholar]
  12. Jakutyt L. , Lurz R. , Baptista C. , Carballido-Lopez R. , São-José C. , Tavares P. , Daugelavičius R. . ( 2012;). First steps of bacteriophage SPP1 entry into Bacillus subtilis . . Virology 422: 425–434. [CrossRef] [PubMed]
    [Google Scholar]
  13. Jarvis A. W. . ( 1984;). Differentiation of lactic streptococcal phages into phage species by DNA–DNA homology. . Appl Environ Microbiol 47: 343–349.[PubMed]
    [Google Scholar]
  14. Kearse M. , Moir R. , Wilson A. , Stones-Havas S. , Cheung M. , Sturrock S. , Buxton S. , Cooper A. , Markowitz S. et al. ( 2012;). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. . Bioinformatics 28: 1647–1649. [CrossRef] [PubMed]
    [Google Scholar]
  15. Kraus J. , Geller B. L. . ( 1998;). Membrane receptor for prolate phages is not required for infection of Lactococcus lactis by small or large isometric phages. . J Dairy Sci 81: 2329–2335.[CrossRef]
    [Google Scholar]
  16. Labrie S. , Moineau S. . ( 2000;). Multiplex PCR for detection and identification of lactococcal bacteriophages. . Appl Environ Microbiol 66: 987–994. [CrossRef] [PubMed]
    [Google Scholar]
  17. Legrand P. , Collins B. , Blangy S. , Murphy J. , Spinelli S. , Gutierrez C. , Richet N. , Kellenberger C. , Desmyter A. et al. ( 2016;). The atomic structure of the phage Tuc2009 baseplate tripod suggests that host recognition involves two different carbohydrate binding modules. . MBio 7: e0178115. [CrossRef] [PubMed]
    [Google Scholar]
  18. Lubbers M. W. , Waterfield N. R. , Beresford T. P. , Le Page R. W. , Jarvis A. W. . ( 1995;). Sequencing and analysis of the prolate-headed lactococcal bacteriophage c2 genome and identification of the structural genes. . Appl Environ Microbiol 61: 4348–4356.[PubMed]
    [Google Scholar]
  19. Mahony J. , Ainsworth S. , Stockdale S. , van Sinderen D. . ( 2012;). Phages of lactic acid bacteria: the role of genetics in understanding phage–host interactions and their co-evolutionary processes. . Virology 434: 143–150. [CrossRef] [PubMed]
    [Google Scholar]
  20. Mahony J. , McDonnell B. , Casey E. , van Sinderen D. . ( 2016;). Phage–host interactions of cheese-making lactic acid bacteria. . Annu Rev Food Sci Technol 7: 12.1–12.19.[CrossRef]
    [Google Scholar]
  21. McGrath S. , Neve H. , Seegers J. F. , Eijlander R. , Vegge C. S. , Brøndsted L. , Heller K. J. , Fitzgerald G. F. , Vogensen F. K. et al. ( 2006;). Anatomy of a lactococcal phage tail. . J Bacteriol 188: 3972–3982. [CrossRef] [PubMed]
    [Google Scholar]
  22. McCabe O. , Spinelli S. , Farenc C. , Labbé C. , Tremblay D. , Blangy S. , Oscarson S. , Moineau S. , Cambillau C. . ( 2015;). The targeted recognition of Lactococcus lactis phages to their polysaccharide receptors. . Molec Microbiol 96: 875–886. [CrossRef]
    [Google Scholar]
  23. Monteville M. R. , Ardestani B. , Geller B. L. . ( 1994;). Lactococcal bacteriophages require a host cell wall carbohydrate and a plasma membrane protein for adsorption and ejection of DNA. . Appl Environ Microbiol 60: 3204–3211.[PubMed]
    [Google Scholar]
  24. Mooney D. T. , Jann M. , Geller B. L. . ( 2006;). Subcellular location of phage infection protein (Pip) in Lactococcus lactis . . Can J Microbiol 52: 664–672. [CrossRef] [PubMed]
    [Google Scholar]
  25. Overbeek R. , Olson R. , Pusch G. D. , Olsen G. J. , Davis J. J. , Disz T. , Edwards R. A. , Gerdes S. , Parrello B. et al. ( 2014;). The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). . Nucleic Acids Res 42: D206–D214. [CrossRef] [PubMed]
    [Google Scholar]
  26. Perrin R. , Billard P. , Branlant C. . ( 1997;). Comparative analysis of the genomic DNA terminal regions of the lactococcal bacteriophages from species c2. . Res Microbiol 148: 573–583. [CrossRef] [PubMed]
    [Google Scholar]
  27. Plisson C. , White H. E. , Auzat I. , Zafarani A. , São-José C. , Lhuillier S. , Tavares P. , Orlova E. V. . ( 2007;). Structure of bacteriophage SPP1 tail reveals trigger for DNA ejection. . EMBO J 26: 3720–3728. [CrossRef] [PubMed]
    [Google Scholar]
  28. Rakonjac J. , O'Toole P. W. , Lubbers M. . ( 2005;). Isolation of lactococcal prolate phage–phage recombinants by an enrichment strategy reveals two novel host range determinants. . J Bacteriol 187: 3110–3121. [CrossRef] [PubMed]
    [Google Scholar]
  29. Sanders M. E. , Klaenhammer T. R. . ( 1980;). Restriction and modification in group N streptococci: effect of heat on development of modified lytic bacteriophage. . Appl Environ Microbiol 40: 500–506.[PubMed]
    [Google Scholar]
  30. São-José C. , Batista C. , Santos M. A. . ( 2004;). Bacillus subtilis operon encoding a membrane receptor for bacteriophage SPP1. J . . Bacteriol 186: 8337–8346.[CrossRef]
    [Google Scholar]
  31. São-José C. , Lhuillier S. , Lurz R. , Melki R. , Lepault J. , Santos M. A. , Tavares P. . ( 2006;). The ectodomain of the viral receptor YueB forms a fiber that triggers ejection of bacteriophage SPP1 DNA. . J Biol Chem 281: 11464–11470. [CrossRef] [PubMed]
    [Google Scholar]
  32. Schouler C. , Ehrlich S. D. , Chopin M. C. . ( 1994;). Sequence and organization of the lactococcal prolate-headed bIL67 phage genome. . Microbiology 140: 3061–3069. [CrossRef] [PubMed]
    [Google Scholar]
  33. Sievers F. , Wilm A. , Dineen D. G. , Gibson T. J. , Karplus K. , Li W. , Lopez R. , McWilliam H. , Remmert M. et al. ( 2011;). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. . Mol Syst Biology 7: 539.[CrossRef]
    [Google Scholar]
  34. Söding J. , Biegert A. , Lupas A. N. . ( 2005;). The HHpred interactive server for protein homology detection and structure prediction. . Nucleic Acids Res 33: W244–W248. [CrossRef] [PubMed]
    [Google Scholar]
  35. Stockdale S. R. , Mahony J. , Courtin P. , Chapot-Chartier M.-P. , van Pijkeren J.-P. , Britton R. A. , Neve H. , Heller K. J. , Aideh B. et al. ( 2013;). The lactococcal phages Tuc2009 and TP901-1 incorporate two alternate forms of their tail fiber into their virions for infection specialization. . J Biol Chem 288: 5581–5590. [CrossRef] [PubMed]
    [Google Scholar]
  36. Stuer-Lauridsen B. , Janzen T. , Schnabl J. , Johansen E. . ( 2003;). Identification of the host determinant of two prolate-headed phages infecting Lactococcus lactis . . Virology 309: 10–17. [CrossRef] [PubMed]
    [Google Scholar]
  37. Stuer-Lauridsen B. , Janzen T. . ( 2006;). Bacteriophage resistant lactic acid bacteria. . US Patent 8137950.
  38. Terzaghi B. E. , Sandine W. E. . ( 1975;). Improved medium for lactic streptococci and their bacteriophages. . Appl Environ Microbiol 29: 807–813.
    [Google Scholar]
  39. Valyasevi R. , Sandine W. E. , Geller B. L. . ( 1991;). A membrane protein is required for bacteriophage c2 infection of Lactococcus lactis subsp. Lactis C2. . J Bacteriol 173: 6095–6100.
    [Google Scholar]
  40. Vinga I. , Baptista C. , Auzat I. , Petipas I. , Lurz R. , Tavares P. , Santos M. A. , São-José C. . ( 2012;). Role of bacteriophage SPP1 tail spike protein gp21 on host cell receptor binding and trigger of phage DNA ejection. . Molec Microbiol 83: 289–303.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000499
Loading
/content/journal/jgv/10.1099/jgv.0.000499
Loading

Data & Media loading...

Supplements

Supplementary File 1



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error