1887

Abstract

An effective immune response against hepatitis C virus (HCV) requires the early development of multi-specific class 1 CD8 and class II CD4 T-cells together with broad neutralizing antibody responses. We have produced mammalian-cell-derived HCV virus-like particles (VLPs) incorporating core, E1 and E2 of HCV genotype 1a to produce such immune responses. Here we describe the biochemical and morphological characterization of the HCV VLPs and study HCV core-specific T-cell responses to the particles. The E1 and E2 glycoproteins in HCV VLPs formed non-covalent heterodimers and together with core protein assembled into VLPs with a buoyant density of 1.22 to 1.28 g cm. The HCV VLPs could be immunoprecipited with anti-ApoE and anti-ApoC. On electron microscopy, the VLPs had a heterogeneous morphology and ranged in size from 40 to 80 nm. The HCV VLPs demonstrated dose-dependent binding to murine-derived dendritic cells and the entry of HCV VLPs into Huh7 cells was blocked by anti-CD81 antibody. Vaccination of BALB/c mice with HCV VLPs purified from iodixanol gradients resulted in the production of neutralizing antibody responses while vaccination of humanized MHC class I transgenic mice resulted in the prodution of HCV core-specific CD8 T-cell responses. Furthermore, IgG purified from the sera of patients chronically infected with HCV genotypes 1a and 3a blocked the binding and entry of the HCV VLPs into Huh7 cells. These results show that our mammalian-cell-derived HCV VLPs induce humoral and HCV-specific CD8 T-cell responses and will have important implications for the development of a preventative vaccine for HCV.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000493
2016-08-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/8/1865.html?itemId=/content/journal/jgv/10.1099/jgv.0.000493&mimeType=html&fmt=ahah

References

  1. Barnes E. , Folgori A. , Capone S. , Swadling L. , Aston S. , Kurioka A. , Meyer J. , Huddart R. , Smith K. et al. ( 2012;). Novel adenovirus-based vaccines induce broad and sustained T cell responses to HCV in man. . Sci Transl Med 4: 115ra111. [CrossRef]
    [Google Scholar]
  2. Bartenschlager R. , Penin F. , Lohmann V. , André P. . ( 2011;). Assembly of infectious hepatitis C virus particles. . Trends Microbiol 19: 95–103. [CrossRef] [PubMed]
    [Google Scholar]
  3. Beaumont E. , Patient R. , Hourioux C. , Dimier-Poisson I. , Roingeard P. , Hourioux C. , Roingeard P. . ( 2013;). Chimeric hepatitis B virus/hepatitis C virus envelope proteins elicit broadly neutralizing antibodies and constitute a potential bivalent prophylactic vaccine. . Hepatology 57: 1303–1313. [CrossRef] [PubMed]
    [Google Scholar]
  4. Broering T. J. , Garrity K. A. , Boatright N. K. , Sloan S. E. , Sandor F. , Thomas W. D., Jr , Szabo G. , Finberg R. W. , Ambrosino D. M. et al. ( 2009;). Identification and characterization of broadly neutralizing human monoclonal antibodies directed against the E2 envelope glycoprotein of hepatitis C virus. . J Virol 83: 12473–12482. [CrossRef] [PubMed]
    [Google Scholar]
  5. Catanese M. T. , Uryu K. , Kopp M. , Edwards T. J. , Andrus L. , Rice W. J. , Silvestry M. , Kuhn R. J. , Rice C. M. . ( 2013;). Ultrastructural analysis of hepatitis C virus particles. . Proc Natl Acad Sci U S A 110: 9505–9510. [CrossRef] [PubMed]
    [Google Scholar]
  6. Choo Q. L. , Kuo G. , Ralston R. , Weiner A. , Chien D. , Van Nest G. , Han J. , Berger K. , Thudium K. et al. ( 1994;). Vaccination of chimpanzees against infection by the hepatitis C virus. . Proc Natl Acad Sci U S A 91: 1294–1298.[PubMed] [CrossRef]
    [Google Scholar]
  7. Chua B. Y. , Eriksson E. M. , Brown L. E. , Zeng W. , Gowans E. J. , Torresi J. , Jackson D. C. . ( 2008;). A self-adjuvanting lipopeptide-based vaccine candidate for the treatment of hepatitis C virus infection. . Vaccine 26: 4866–4875. [CrossRef] [PubMed]
    [Google Scholar]
  8. Chua B. Y. , Johnson D. , Tan A. , Earnest-Silveira L. , Sekiya T. , Chin R. , Torresi J. , Jackson D. C. . ( 2012;). Hepatitis C VLPs delivered to dendritic cells by a TLR2 targeting lipopeptide results in enhanced antibody and cell-mediated responses. . PLoS One 7: e47492. [CrossRef] [PubMed]
    [Google Scholar]
  9. Dahari H. , Feinstone S. M. , Major M. E. . ( 2010;). Meta-analysis of hepatitis C virus vaccine efficacy in chimpanzees indicates an importance for structural proteins. . Gastroenterology 139: 965–974. [CrossRef] [PubMed]
    [Google Scholar]
  10. de Jong Y. P. , Dorner M. , Mommersteeg M. C. , Xiao J. W. , Balazs A. B. , Robbins J. B. , Winer B. Y. , Gerges S. , Vega K. et al. ( 2014;). Broadly neutralizing antibodies abrogate established hepatitis C virus infection. . Sci Transl Med 6: 254ra129. [CrossRef]
    [Google Scholar]
  11. Dorner M. , Horwitz J. A. , Robbins J. B. , Barry W. T. , Feng Q. , Mu K. , Jones C. T. , Schoggins J. W. , Catanese M. T. et al. ( 2011;). A genetically humanized mouse model for hepatitis C virus infection. . Nature 474: 208–211. [CrossRef] [PubMed]
    [Google Scholar]
  12. Dowd K. A. , Netski D. M. , Wang X. H. , Cox A. L. , Ray S. C. . ( 2009;). Selection pressure from neutralizing antibodies drives sequence evolution during acute infection with hepatitis C virus. . Gastroenterology 136: 2377–2386. [CrossRef] [PubMed]
    [Google Scholar]
  13. Drummer H. E. , Maerz A. , Poumbourios P. . ( 2003;). Cell surface expression of functional hepatitis C virus E1 and E2 glycoproteins. . FEBS Lett 546: 385–390. [CrossRef] [PubMed]
    [Google Scholar]
  14. Elmowalid G. A. , Qiao M. , Jeong S. H. , Borg B. B. , Baumert T. F. , Sapp R. K. , Hu Z. , Murthy K. , Liang T. J. . ( 2007;). Immunization with hepatitis C virus-like particles results in control of hepatitis C virus infection in chimpanzees. . Proc Natl Acad Sci U S A 104: 8427–8432. [CrossRef] [PubMed]
    [Google Scholar]
  15. Frey S. E. , Houghton M. , Coates S. , Abrignani S. , Chien D. , Rosa D. , Pileri P. , Ray R. , Di Bisceglie A. M. et al. ( 2010;). Safety and immunogenicity of HCV E1E2 vaccine adjuvanted with MF59 administered to healthy adults. . Vaccine 28: 6367–6373. [CrossRef] [PubMed]
    [Google Scholar]
  16. Garrone P. , Fluckiger A. C. , Mangeot P. E. , Gauthier E. , Dupeyrot-Lacas P. , Mancip J. , Cangialosi A. , Chéné I. , LeGrand R. et al. ( 2011;). A prime-boost strategy using virus-like particles pseudotyped for HCV proteins triggers broadly neutralizing antibodies in macaques. . Sci Transl Med 3: 94ra71. [CrossRef] [PubMed]
    [Google Scholar]
  17. Gastaminza P. , Dryden K. A. , Boyd B. , Wood M. R. , Law M. , Yeager M. , Chisari F. V. . ( 2010;). Ultrastructural and biophysical characterization of hepatitis C virus particles produced in cell culture. . J Virol 84: 10999–11009. [CrossRef] [PubMed]
    [Google Scholar]
  18. Giang E. , Dorner M. , Prentoe J. C. , Dreux M. , Evans M. J. , Bukh J. , Rice C. M. , Ploss A. , Burton D. R. , Law M. . ( 2012;). Human broadly neutralizing antibodies to the envelope glycoprotein complex of hepatitis C virus. . Proc Natl Acad Sci U S A 109: 6205–6210. [CrossRef] [PubMed]
    [Google Scholar]
  19. Grebely J. , Prins M. , Hellard M. , Cox A. L. , Osburn W. O. , Lauer G. , Page K. , Lloyd A. R. , Dore G. J. . International Collaboration of Incident HIV and Hepatitis C in Injecting Cohorts (InC3) ( 2012;). Hepatitis C virus clearance, reinfection, and persistence, with insights from studies of injecting drug users: towards a vaccine. . Lancet Infect Dis 12: 408–414. [CrossRef] [PubMed]
    [Google Scholar]
  20. Grollo L. , Torresi J. , Drummer H. , Zeng W. , Williamson N. , Jackson D. C. . ( 2006;). Exploiting information inherent in binding sites of virus-specific antibodies: design of an HCV vaccine candidate cross-reactive with multiple genotypes. . Antivir Ther 11: 1005–1014.[PubMed]
    [Google Scholar]
  21. Hsu M. , Zhang J. , Flint M. , Logvinoff C. , Cheng-Mayer C. , Rice C. M. , McKeating J. A. . ( 2003;). Hepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retroviral particles. . Proc Natl Acad Sci U S A 100: 7271–7276. [CrossRef] [PubMed]
    [Google Scholar]
  22. Keck Z. Y. , Op De Beeck A. , Hadlock K. G. , Xia J. , Li T. K. , Dubuisson J. , Foung S. K. . ( 2004;). Hepatitis C virus E2 has three immunogenic domains containing conformational epitopes with distinct properties and biological functions. . J Virol 78: 9224–9232. [CrossRef] [PubMed]
    [Google Scholar]
  23. Keck Z. Y. , Li T. K. , Xia J. , Bartosch B. , Cosset F. L. , Dubuisson J. , Foung S. K. . ( 2005;). Analysis of a highly flexible conformational immunogenic domain a in hepatitis C virus E2. . J Virol 79: 13199–13208. [CrossRef] [PubMed]
    [Google Scholar]
  24. Keck Z. Y. , Li T. K. , Xia J. , Gal-Tanamy M. , Olson O. , Li S. H. , Patel A. H. , Ball J. K. , Lemon S. M. , Foung S. K. . ( 2008;). Definition of a conserved immunodominant domain on hepatitis C virus E2 glycoprotein by neutralizing human monoclonal antibodies. . J Virol 82: 6061–6066. [CrossRef] [PubMed]
    [Google Scholar]
  25. Keck Z. Y. , Saha A. , Xia J. , Wang Y. , Lau P. , Krey T. , Rey F. A. , Foung S. K. . ( 2011;). Mapping a region of hepatitis C virus E2 that is responsible for escape from neutralizing antibodies and a core CD81-binding region that does not tolerate neutralization escape mutations. . J Virol 85: 10451–10463. [CrossRef] [PubMed]
    [Google Scholar]
  26. Kremer J. R. , Mastronarde D. N. , McIntosh J. R. . ( 1996;). Computer visualization of three-dimensional image data using IMOD. . J Struct Biol 116: 71–76. [CrossRef] [PubMed]
    [Google Scholar]
  27. Krey T. , d'Alayer J. , Kikuti C. M. , Saulnier A. , Damier-Piolle L. , Petitpas I. , Johansson D. X. , Tawar R. G. , Baron B. et al. ( 2010;). The disulfide bonds in glycoprotein E2 of hepatitis C virus reveal the tertiary organization of the molecule. . PLoS Pathog 6: e1000762. [CrossRef] [PubMed]
    [Google Scholar]
  28. Langhans B. , Schweitzer S. , Nischalke H. D. , Braunschweiger I. , Sauerbruch T. , Spengler U. . ( 2004;). Hepatitis C virus-derived lipopeptides differentially induce epitope-specific immune responses in vitro. . J Infect Dis 189: 248–253. [CrossRef] [PubMed]
    [Google Scholar]
  29. Lauer G. M. , Barnes E. , Lucas M. , Timm J. , Ouchi K. , Kim A. Y. , Day C. L. , Robbins G. K. , Casson D. R. et al. ( 2004;). High resolution analysis of cellular immune responses in resolved and persistent hepatitis C virus infection. . Gastroenterology 127: 924–936. [CrossRef] [PubMed]
    [Google Scholar]
  30. Law J. L. , Chen C. , Wong J. , Hockman D. , Santer D. M. , Frey S. E. , Belshe R. B. , Wakita T. , Bukh J. et al. ( 2013;). A hepatitis C virus (HCV) vaccine comprising envelope glycoproteins gpE1/gpE2 derived from a single isolate elicits broad cross-genotype neutralizing antibodies in humans. . PLoS One 8: e59776. [CrossRef] [PubMed]
    [Google Scholar]
  31. Law M. , Maruyama T. , Lewis J. , Giang E. , Tarr A. W. , Stamataki Z. , Gastaminza P. , Chisari F. V. , Jones I. M. et al. ( 2008;). Broadly neutralizing antibodies protect against hepatitis C virus quasispecies challenge. . Nat Med 14: 25–27. [CrossRef] [PubMed]
    [Google Scholar]
  32. Lee J. Y. , Acosta E. G. , Stoeck I. K. , Long G. , Hiet M. S. , Mueller B. , Fackler O. T. , Kallis S. , Bartenschlager R. . ( 2014;). Apolipoprotein E likely contributes to a maturation step of infectious hepatitis C virus particles and interacts with viral envelope glycoproteins. . J Virol 88: 12422–12437. [CrossRef] [PubMed]
    [Google Scholar]
  33. Mancini N. , Diotti R. A. , Perotti M. , Sautto G. , Clementi N. , Nitti G. , Patel A. H. , Ball J. K. , Clementi M. , Burioni R. . ( 2009;). Hepatitis C virus (HCV) infection may elicit neutralizing antibodies targeting epitopes conserved in all viral genotypes. . PLoS One 4: e8254. [CrossRef] [PubMed]
    [Google Scholar]
  34. Mastronarde D. N. . ( 1997;). Dual-axis tomography: an approach with alignment methods that preserve resolution. . J Struct Biol 120: 343–352. [CrossRef] [PubMed]
    [Google Scholar]
  35. Meuleman P. , Bukh J. , Verhoye L. , Farhoudi A. , Vanwolleghem T. , Wang R. Y. , Desombere I. , Alter H. , Purcell R. H. et al. ( 2011;). In vivo evaluation of the cross-genotype neutralizing activity of polyclonal antibodies against hepatitis C virus. . Hepatology 53: 755–762. [CrossRef] [PubMed]
    [Google Scholar]
  36. Meunier J. C. , Russell R. S. , Engle R. E. , Faulk K. N. , Purcell R. H. , Emerson S. U. . ( 2008;). Apolipoprotein c1 association with hepatitis C virus. . J Virol 82: 9647–9656. [CrossRef] [PubMed]
    [Google Scholar]
  37. Murata K. , Lechmann M. , Qiao M. , Gunji T. , Alter H. J. , Liang T. J. . ( 2003;). Immunization with hepatitis C virus-like particles protects mice from recombinant hepatitis C virus-vaccinia infection. . Proc Natl Acad Sci U S A 100: 6753–6758. [CrossRef] [PubMed]
    [Google Scholar]
  38. Osburn W. O. , Snider A. E. , Wells B. L. , Latanich R. , Bailey J. R. , Thomas D. L. , Cox A. L. , Ray S. C. . ( 2014;). Clearance of hepatitis C infection is associated with the early appearance of broad neutralizing antibody responses. . Hepatology 59: 2140–2151. [CrossRef] [PubMed]
    [Google Scholar]
  39. Owsianka A. M. , Tarr A. W. , Keck Z. Y. , Li T. K. , Witteveldt J. , Adair R. , Foung S. K. , Ball J. K. , Patel A. H. . ( 2008;). Broadly neutralizing human monoclonal antibodies to the hepatitis C virus E2 glycoprotein. . J Gen Virol 89: 653–659. [CrossRef] [PubMed]
    [Google Scholar]
  40. Patient R. , Hourioux C. , Vaudin P. , Pagès J. C. , Roingeard P. . ( 2009;). Chimeric hepatitis B and C viruses envelope proteins can form subviral particles: implications for the design of new vaccine strategies. . N Biotechnol 25: 226–234. [CrossRef] [PubMed]
    [Google Scholar]
  41. Pestka J. M. , Zeisel M. B. , Bläser E. , Schürmann P. , Bartosch B. , Cosset F. L. , Patel A. H. , Meisel H. , Baumert J. et al. ( 2007;). Rapid induction of virus-neutralizing antibodies and viral clearance in a single-source outbreak of hepatitis C. . Proc Natl Acad Sci U S A 104: 6025–6030. [CrossRef] [PubMed]
    [Google Scholar]
  42. Puig M. , Mihalik K. , Tilton J. C. , Williams O. , Merchlinsky M. , Connors M. , Feinstone S. M. , Major M. E. . ( 2006;). CD4+ immune escape and subsequent T-cell failure following chimpanzee immunization against hepatitis C virus. . Hepatology 44: 736–745. [CrossRef] [PubMed]
    [Google Scholar]
  43. Raghuraman S. , Park H. , Osburn W. O. , Winkelstein E. , Edlin B. R. , Rehermann B. . ( 2012;). Spontaneous clearance of chronic hepatitis C virus infection is associated with appearance of neutralizing antibodies and reversal of T-cell exhaustion. . J Infect Dis 205: 763–771. [CrossRef] [PubMed]
    [Google Scholar]
  44. Rosa D. , Campagnoli S. , Moretto C. , Guenzi E. , Cousens L. , Chin M. , Dong C. , Weiner A. J. , Lau J. Y. et al. ( 1996;). A quantitative test to estimate neutralizing antibodies to the hepatitis C virus: cytofluorimetric assessment of envelope glycoprotein 2 binding to target cells. . Proc Natl Acad Sci U S A 93: 1759–1763.[PubMed] [CrossRef]
    [Google Scholar]
  45. Sacks-Davis R. , Aitken C. K. , Higgs P. , Spelman T. , Pedrana A. E. , Bowden S. , Bharadwaj M. , Nivarthi U. K. , Suppiah V. et al. ( 2013;). High rates of hepatitis C virus reinfection and spontaneous clearance of reinfection in people who inject drugs: a prospective cohort study. . PLoS One 8: e80216. [CrossRef] [PubMed]
    [Google Scholar]
  46. Schulze zur Wiesch J. , Lauer G. M. , Day C. L. , Kim A. Y. , Ouchi K. , Duncan J. E. , Wurcel A. G. , Timm J. , Jones A. M. et al. ( 2005;). Broad repertoire of the CD4+ Th cell response in spontaneously controlled hepatitis C virus infection includes dominant and highly promiscuous epitopes. . J Immunol 175: 3603–3613.[PubMed] [CrossRef]
    [Google Scholar]
  47. Smyk-Pearson S. , Tester I. A. , Lezotte D. , Sasaki A. W. , Lewinsohn D. M. , Rosen H. R. . ( 2006;). Differential antigenic hierarchy associated with spontaneous recovery from hepatitis C virus infection: implications for vaccine design. . J Infect Dis 194: 454–463. [CrossRef] [PubMed]
    [Google Scholar]
  48. Steinbach S. , Wistuba A. , Bock T. , Kleinschmidt J. A. . ( 1997;). Assembly of adeno-associated virus type 2 capsids in vitro. . J Gen Virol 78: 1453–1462. [CrossRef] [PubMed]
    [Google Scholar]
  49. Swadling L. , Capone S. , Antrobus R. D. , Brown A. , Richardson R. , Newell E. W. , Halliday J. , Kelly C. , Bowen D. et al. ( 2014;). A human vaccine strategy based on chimpanzee adenoviral and MVA vectors that primes, boosts, and sustains functional HCV-specific T cell memory. . Sci Transl Med 6: 261ra153. [CrossRef] [PubMed]
    [Google Scholar]
  50. Tao W. , Xu C. , Ding Q. , Li R. , Xiang Y. , Chung J. , Zhong J. . ( 2009;). A single point mutation in E2 enhances hepatitis C virus infectivity and alters lipoprotein association of viral particles. . Virology 395: 67–76. [CrossRef] [PubMed]
    [Google Scholar]
  51. Tarr A. W. , Owsianka A. M. , Timms J. M. , McClure P. C. , Brown R. J. P. , Hickling T. P. , Pietschmann P. , Bartenschlager R. , Patel A. H.k. et al. ( 2006;). Characterization of the hepatitis C virus E2 epitope defined by thebroadly neutralizing monoclonal antibody AP33. . Hepatology 43: 592–601. [CrossRef] [PubMed]
    [Google Scholar]
  52. Torresi J. , Stock O. M. , Fischer A. E. , Grollo L. , Drummer H. , Boo I. , Zeng W. , Earnest-Silveira L. , Jackson D. C. . ( 2007;). A self-adjuvanting multiepitope immunogen that induces a broadly cross-reactive antibody to hepatitis C virus. . Hepatology 45: 911–920. [CrossRef] [PubMed]
    [Google Scholar]
  53. Vanwolleghem T. , Bukh J. , Meuleman P. , Desombere I. , Meunier J. C. , Alter H. , Purcell R. H. , Leroux-Roels G. . ( 2008;). Polyclonal immunoglobulins from a chronic hepatitis C virus patient protect human liver-chimeric mice from infection with a homologous hepatitis C virus strain. . Hepatology 47: 1846–1855. [CrossRef] [PubMed]
    [Google Scholar]
  54. Vieyres G. , Thomas X. , Descamps V. , Duverlie G. , Patel A. H. , Dubuisson J. . ( 2010;). Characterization of the envelope glycoproteins associated with infectious hepatitis C virus. . J Virol 84: 10159–10168. [CrossRef] [PubMed]
    [Google Scholar]
  55. Wong J. A. , Bhat R. , Hockman D. , Logan M. , Chen C. , Levin A. , Frey S. E. , Belshe R. B. , Tyrrell D. L. et al. ( 2014;). Recombinant hepatitis C virus envelope glycoprotein vaccine elicits antibodies targeting multiple epitopes on the envelope glycoproteins associated with broad cross-neutralization. . J Virol 88: 14278–14288. [CrossRef] [PubMed]
    [Google Scholar]
  56. Yu M. Y. , Bartosch B. , Zhang P. , Guo Z. P. , Renzi P. M. , Shen L. M. , Granier C. , Feinstone S. M. , Cosset F. L. et al. ( 2004;). Neutralizing antibodies to hepatitis C virus (HCV) in immune globulins derived from anti-HCV-positive plasma. . Proc Natl Acad Sci U S A 101: 7705–7710. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000493
Loading
/content/journal/jgv/10.1099/jgv.0.000493
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error