1887

Abstract

Viral adaptability and survival arise due to the presence of quasispecies populations that are able to escape the immune response or produce drug-resistant variants. However, the presence of H5N1 virus with natural mutations acquired without any drug selection pressure poses a great threat. Cloacal samples collected from the 2004–2005 epidemics in Thailand from Asian open-billed storks revealed one major and several minor quasispecies populations with mutations on the oseltamivir (OTV)-binding site of the neuraminidase gene (NA) without prior exposure to a drug. Therefore, this study investigated the binding between the NA-containing novel mutations and OTV drug using molecular dynamic simulations and plaque inhibition assay. The results revealed that the mutant populations, S236F mutant, S236F/C278Y mutant, A250V/V266A/P271H/G285S mutant and C278Y mutant, had a lower binding affinity with OTV as compared with the WT virus due to rearrangement of amino acid residues and increased flexibility in the 150-loop. This result was further emphasized through the IC50 values obtained for the major population and WT virus, 104.74 nM and 18.30 nM, respectively. Taken together, these data suggest that H5N1 viruses isolated from wild birds have already acquired OTV-resistant point mutations without any exposure to a drug.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000444
2016-06-15
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/6/1311.html?itemId=/content/journal/jgv/10.1099/jgv.0.000444&mimeType=html&fmt=ahah

References

  1. Amaro R. E., Minh D. D., Cheng L. S., Lindstrom W. M., Olson A. J., Lin J. H., Li W. W., McCammon J. A..( 2007;). Remarkable loop flexibility in avian influenza N1 and its implications for antiviral drug design. . J Am Chem Soc 129: 7764–7765. [CrossRef] [PubMed]
    [Google Scholar]
  2. Amaro R. E., Cheng X., Ivanov I., Xu D., McCammon J. A..( 2009;). Characterizing loop dynamics and ligand recognition in human- and avian-type influenza neuraminidases via generalized born molecular dynamics and end-point free energy calculations. . J Am Chem Soc 131: 4702–4709. [CrossRef] [PubMed]
    [Google Scholar]
  3. Amaro R. E., Swift R. V., Votapka L., Li W. W., Walker R. C., Bush R. M..( 2011;). Mechanism of 150-cavity formation in influenza neuraminidase. . Nat Commun 2: 388. [CrossRef] [PubMed]
    [Google Scholar]
  4. Baek Y. H., Song M. S., Lee E. Y., Kim Y. I., Kim E. H., Park S. J., Park K. J., Kwon H. I., Pascua P. N., other authors.( 2015;). Profiling and characterization of influenza virus N1 strains potentially resistant to multiple neuraminidase inhibitors. . J Virol 89: 287–299. [CrossRef] [PubMed]
    [Google Scholar]
  5. Baranovich T., Webster R. G., Govorkova E. A..( 2011;). Fitness of neuraminidase inhibitor-resistant influenza a viruses. . Curr Opin Virol 1: 574–581. [CrossRef] [PubMed]
    [Google Scholar]
  6. Berendsen H. J. C., Postma J. P. M., van Gunsteren W. F., DiNola A., Haak J. R..( 1984;). Molecular dynamics with coupling to an external bath. . J Chem Phys 81: 3684–3690. [CrossRef]
    [Google Scholar]
  7. Bloom J. D., Gong L. I., Baltimore D..( 2010;). Permissive secondary mutations enable the evolution of influenza oseltamivir resistance. . Science 328: 1272–1275. [CrossRef] [PubMed]
    [Google Scholar]
  8. Case D. A., Cheatham T. E., Darden T., Gohlke H., Luo R., Merz K. M., Onufriev A., Simmerling C., Wang B., Woods R. J..( 2005;). The Amber biomolecular simulation programs. . J Comput Chem 26: 1668–1688. [CrossRef] [PubMed]
    [Google Scholar]
  9. Case D. A., Darden T. A., Cheatham T. E. III, Simmerling C. L., Wang J., Duke R. E., Luo R., Walker R. C., Zhang W., other authors.. ( 2012;). AMBER 12. . San Francisco:: University of California;.
  10. Clark N. M., Lynch J. P. III.( 2011;). Influenza: epidemiology, clinical features, therapy, and prevention. . Semin Respir Crit Care Med 32: 373–392. [CrossRef] [PubMed]
    [Google Scholar]
  11. Colman P. M..( 1994;). Influenza virus neuraminidase: structure, antibodies, and inhibitors. . Protein Sci 3: 1687–1696. [CrossRef] [PubMed]
    [Google Scholar]
  12. De Clercq E..( 2006;). Antiviral agents active against influenza A viruses. . Nat Rev Drug Discov 5: 1015–1025. [CrossRef] [PubMed]
    [Google Scholar]
  13. Ferraris O., Lina B..( 2008;). Mutations of neuraminidase implicated in neuraminidase inhibitors resistance. . J Clin Virol 41: 13–19. [CrossRef] [PubMed]
    [Google Scholar]
  14. Fick J., Lindberg R. H., Tysklind M., Haemig P. D., Waldenström J., Wallensten A., Olsen B..( 2007;). Antiviral oseltamivir is not removed or degraded in normal sewage water treatment: implications for development of resistance by influenza A virus. . PLoS One 2: e986. [CrossRef] [PubMed]
    [Google Scholar]
  15. Ghosh G. C., Nakada N., Yamashita N., Tanaka H..( 2010;). Oseltamivir carboxylate, the active metabolite of oseltamivir phosphate (Tamiflu), detected in sewage discharge and river water in Japan. . Environ Health Perspect 118: 103–107. [CrossRef] [PubMed]
    [Google Scholar]
  16. Gillman A., Nykvist M., Muradrasoli S., Söderström H., Wille M., Daggfeldt A., Bröjer C., Waldenström J., Olsen B., Järhult J. D..( 2015;). Influenza A(H7N9) virus acquires resistance-related neuraminidase I222T substitution when infected mallards are exposed to low levels of oseltamivir in water. . Antimicrob Agents Chemother 59: 5196–5202. [CrossRef] [PubMed]
    [Google Scholar]
  17. Hall T..( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41: 95–98.
    [Google Scholar]
  18. Han N., Mu Y..( 2013;). Plasticity of 150-loop in influenza neuraminidase explored by Hamiltonian replica exchange molecular dynamics simulations. . PLoS One 8: e60995. [CrossRef] [PubMed]
    [Google Scholar]
  19. Hayden F. G..( 2006;). Antiviral resistance in influenza viruses--implications for management and pandemic response. . N Engl J Med 354: 785–788. [CrossRef] [PubMed]
    [Google Scholar]
  20. Ho H. T., Hurt A. C., Mosse J., Barr I..( 2007;). Neuraminidase inhibitor drug susceptibility differs between influenza N1 and N2 neuraminidase following mutagenesis of two conserved residues. . Antiviral Res 76: 263–266. [CrossRef] [PubMed]
    [Google Scholar]
  21. Hoffmann E., Neumann G., Kawaoka Y., Hobom G., Webster R. G..( 2000;). A DNA transfection system for generation of influenza a virus from eight plasmids. . Proc Natl Acad Sci U S A 97: 6108–6113. [CrossRef] [PubMed]
    [Google Scholar]
  22. Horimoto T., Kawaoka Y..( 2005;). Influenza: lessons from past pandemics, warnings from current incidents. . Nat Rev Microbiol 3: 591–600. [CrossRef] [PubMed]
    [Google Scholar]
  23. Horm V. S., Gutiérrez R. A., Nicholls J. M., Buchy P..( 2012;). Highly pathogenic influenza A(H5N1) virus survival in complex artificial aquatic biotopes. . PLoS One 7: e34160. [CrossRef] [PubMed]
    [Google Scholar]
  24. Hung H. C., Tseng C. P., Yang J. M., Ju Y. W., Tseng S. N., Chen Y. F., Chao Y. S., Hsieh H. P., Shih S. R., Hsu J. T..( 2009;). Aurintricarboxylic acid inhibits influenza virus neuraminidase. . Antiviral Res 81: 123–131. [CrossRef] [PubMed]
    [Google Scholar]
  25. Hurt A. C., Selleck P., Komadina N., Shaw R., Brown L., Barr I. G..( 2007;). Susceptibility of highly pathogenic A(H5N1) avian influenza viruses to the neuraminidase inhibitors and adamantanes. . Antiviral Res 73: 228–231. [CrossRef] [PubMed]
    [Google Scholar]
  26. Hurt A. C., Holien J. K., Parker M., Kelso A., Barr I. G..( 2009;). Zanamivir-resistant influenza viruses with a novel neuraminidase mutation. . J Virol 83: 10366–10373. [CrossRef] [PubMed]
    [Google Scholar]
  27. Ilyushina N. A., Seiler J. P., Rehg J. E., Webster R. G., Govorkova E. A..( 2010;). Effect of neuraminidase inhibitor-resistant mutations on pathogenicity of clade 2.2 A/Turkey/15/06 (H5N1) influenza virus in ferrets. . PLoS Pathog 6: e1000933. [CrossRef] [PubMed]
    [Google Scholar]
  28. Jorgensen W. L., Chandrasekhar J., Buckner J. K., Madura J. D..( 1986;). Computer simulations of organic reactions in solution. . Ann N Y Acad Sci 482: 198–209. [CrossRef] [PubMed]
    [Google Scholar]
  29. Kabsch W., Sander C..( 1983;). Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. . Biopolymers 22: 2577–2637. [CrossRef] [PubMed]
    [Google Scholar]
  30. Kar P., Knecht V..( 2012;). Mutation-induced loop opening and energetics for binding of tamiflu to influenza N8 neuraminidase. . J Phys Chem B 116: 6137–6149. [CrossRef] [PubMed]
    [Google Scholar]
  31. Karthick V., Ramanathan K..( 2014;). Insight into the oseltamivir resistance R292K mutation in H5N1 influenza virus: a molecular docking and molecular dynamics approach. . Cell Biochem Biophys 68: 291–299. [CrossRef] [PubMed]
    [Google Scholar]
  32. Kyodo A.-J..( 2014;). Pathogenic bird flu strain detected at Miyazaki poultry farm; 4,000 chickens to be culled. The Japan Times, 16 December 2014. Tokyo: The Japan Times. .
  33. Le L., Lee E. H., Hardy D. J., Truong T. N., Schulten K..( 2010;). Molecular dynamics simulations suggest that electrostatic funnel directs binding of Tamiflu to influenza N1 neuraminidases. . PLoS Comput Biol 6: e1000939. [CrossRef] [PubMed]
    [Google Scholar]
  34. Lewis D. B..( 2006;). Avian flu to human influenza. . Annu Rev Med 57: 139–154. [CrossRef] [PubMed]
    [Google Scholar]
  35. Li Q., Qi J., Wu Y., Kiyota H., Tanaka K., Suhara Y., Ohrui H., Suzuki Y., Vavricka C. J., Gao G. F..( 2013;). Functional and structural analysis of influenza virus neuraminidase N3 offers further insight into the mechanisms of oseltamivir resistance. . J Virol 87: 10016–10024. [CrossRef] [PubMed]
    [Google Scholar]
  36. Malaisree M., Rungrotmongkol T., Decha P., Intharathep P., Aruksakunwong O., Hannongbua S..( 2008;). Understanding of known drug-target interactions in the catalytic pocket of neuraminidase subtype N1. . Proteins 71: 1908–1918. [CrossRef] [PubMed]
    [Google Scholar]
  37. McKimm-Breschkin J. L..( 2013;). Influenza neuraminidase inhibitors: Antiviral action and mechanisms of resistance. . Influenza Other Respir Viruses 7: 25–36. [CrossRef]
    [Google Scholar]
  38. McKimm-Breschkin J. L., Barrett S..( 2015;). Neuraminidase mutations conferring resistance to laninamivir lead to faster drug binding and dissociation. . Antiviral Res 114: 62–66. [CrossRef] [PubMed]
    [Google Scholar]
  39. Neumann G., Chen H., Gao G. F., Shu Y., Kawaoka Y..( 2010;). H5N1 influenza viruses: outbreaks and biological properties. . Cell Res 20: 51–61. [CrossRef] [PubMed]
    [Google Scholar]
  40. Nitsch-Osuch A., Brydak L. B..( 2014;). Influenza viruses resistant to neuraminidase inhibitors. . Acta Biochim Pol 61: 505–508.[PubMed]
    [Google Scholar]
  41. Olsson M. H., Søndergaard C. R., Rostkowski M., Jensen J. H..( 2011;). PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. . J Chem Theory Comput 7: 525–537. [CrossRef] [PubMed]
    [Google Scholar]
  42. Palese P..( 2004;). Influenza: Old and new threats. . Nat Med 10: S82–S87. [CrossRef] [PubMed]
    [Google Scholar]
  43. Pettersen E. F., Goddard T. D., Huang C. C., Couch G. S., Greenblatt D. M., Meng E. C., Ferrin T. E..( 2004;). UCSF Chimera—a visualization system for exploratory research and analysis. . J Comput Chem 25: 1605–1612. [CrossRef] [PubMed]
    [Google Scholar]
  44. Phanich J., Rungrotmongkol T., Sindhikara D., Phongphanphanee S., Yoshida N., Hirata F., Kungwan N., Hannongbua S..( 2016;). A 3D-RISM/RISM study of the oseltamivir binding efficiency with the wild-type and resistance-associated mutant forms of the viral influenza B neuraminidase. . Protein Sci 25: 147–158. [CrossRef] [PubMed]
    [Google Scholar]
  45. Rameix-Welti M. A., Agou F., Buchy P., Mardy S., Aubin J. T., Véron M., van der Werf S., Naffakh N..( 2006;). Natural variation can significantly alter the sensitivity of influenza a (H5N1) viruses to oseltamivir. . Antimicrob Agents Chemother 50: 3809–3815. [CrossRef] [PubMed]
    [Google Scholar]
  46. Ramírez-Salinas G. L., García-Machorro J., Quiliano M., Zimic M., Briz V., Rojas-Hernández S., Correa-Basurto J..( 2015;). Molecular modeling studies demonstrate key mutations that could affect the ligand recognition by influenza AH1N1 neuraminidase. . J Mol Model 21: 292. [CrossRef] [PubMed]
    [Google Scholar]
  47. Reuters( 2014;). Tenth Egyptian dies of H5N1 bird flu. The Japan Times, 25 December 2014. Tokyo: The Japan Times. .
  48. Richard M., Deléage C., Barthélémy M., Lin Y. P., Hay A., Lina B., Ferraris O..( 2008;). Impact of influenza a virus neuraminidase mutations on the stability, activity, and sensibility of the neuraminidase to neuraminidase inhibitors. . J Clin Virol 41: 20–24. [CrossRef] [PubMed]
    [Google Scholar]
  49. Rungrotmongkol T., Udommaneethanakit T., Malaisree M., Nunthaboot N., Intharathep P., Sompornpisut P., Hannongbua S..( 2009a;). How does each substituent functional group of oseltamivir lose its activity against virulent H5N1 influenza mutants?. Biophys Chem 145: 29–36. [CrossRef] [PubMed]
    [Google Scholar]
  50. Rungrotmongkol T., Intharathep P., Malaisree M., Nunthaboot N., Kaiyawet N., Sompornpisut P., Payungporn S., Poovorawan Y., Hannongbua S..( 2009b;). Susceptibility of antiviral drugs against 2009 influenza A (H1N1) virus. . Biochem Biophys Res Commun 385: 390–394. [CrossRef] [PubMed]
    [Google Scholar]
  51. Russell R. J., Haire L. F., Stevens D. J., Collins P. J., Lin Y. P., Blackburn G. M., Hay A. J., Gamblin S. J., Skehel J. J..( 2006;). The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. . Nature 443: 45–49. [CrossRef] [PubMed]
    [Google Scholar]
  52. Ryckaert J. P., Ciccotti G., Berendsen H. J. C..( 1977;). Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. . J Comput Phys 23: 327–341. [CrossRef]
    [Google Scholar]
  53. Singh A., Soliman M. E..( 2015;). Understanding the cross-resistance of oseltamivir to H1N1 and H5N1 influenza a neuraminidase mutations using multidimensional computational analyses. . Drug Des Devel Ther 9: 4137–4154. [CrossRef] [PubMed]
    [Google Scholar]
  54. Söderström H., Järhult J. D., Olsen B., Lindberg R. H., Tanaka H., Fick J..( 2009;). Detection of the antiviral drug oseltamivir in aquatic environments. . PLoS One 4: e6064. [CrossRef] [PubMed]
    [Google Scholar]
  55. Songserm T., Jam-on R., Sae-Heng N., Meemak N., Hulse-Post D. J., Sturm-Ramirez K. M., Webster R. G..( 2006;). Domestic ducks and H5N1 influenza epidemic, Thailand. . Emerg Infect Dis 12: 575–581. [CrossRef] [PubMed]
    [Google Scholar]
  56. Stoner T. D., Krauss S., DuBois R. M., Negovetich N. J., Stallknecht D. E., Senne D. A., Gramer M. R., Swafford S., DeLiberto T., other authors .( 2010;). Antiviral susceptibility of avian and swine influenza virus of the N1 neuraminidase subtype. . J Virol 84: 9800–9809. [CrossRef] [PubMed]
    [Google Scholar]
  57. Tamura K., Dudley J., Nei M., Kumar S..( 2007;). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. . Mol Biol Evol 24: 1596–1599. [CrossRef] [PubMed]
    [Google Scholar]
  58. Tolentino-Lopez L., Segura-Cabrera A., Reyes-Loyola P., Zimic M., Quiliano M., Briz V., Muñoz-Fernández A., Rodríguez-Pérez M., Ilizaliturri-Flores I., Correa-Basurto J..( 2013;). Outside-binding site mutations modify the active site's shapes in neuraminidase from influenza A H1N1. . Biopolymers 99: 10–21. [CrossRef] [PubMed]
    [Google Scholar]
  59. Ubol S., Suksatu A., Modhiran N., Sangma C., Thitithanyanont A., Fukuda M., Juthayothin T..( 2011;). Intra-host diversities of the receptor-binding domain of stork faeces-derived avian H5N1 viruses and its significance as predicted by molecular dynamic simulation. . J Gen Virol 92: 307–314. [CrossRef] [PubMed]
    [Google Scholar]
  60. Udommaneethanakit T., Rungrotmongkol T., Bren U., Frecer V., Stanislav M..( 2009;). Dynamic behavior of avian influenza A virus neuraminidase subtype H5N1 in complex with oseltamivir, zanamivir, peramivir, and their phosphonate analogues. . J Chem Inf Model 49: 2323–2332. [CrossRef] [PubMed]
    [Google Scholar]
  61. Vandegrift K. J., Sokolow S. H., Daszak P., Kilpatrick A. M..( 2010;). Ecology of avian influenza viruses in a changing world. . Ann N Y Acad Sci 1195: 113–128. [CrossRef] [PubMed]
    [Google Scholar]
  62. von Grafenstein S., Wallnoefer H. G., Kirchmair J., Fuchs J. E., Huber R. G., Schmidtke M., Sauerbrei A., Rollinger J. M., Liedl K. R..( 2015;). Interface dynamics explain assembly dependency of influenza neuraminidase catalytic activity. . J Biomol Struct Dyn 33: 104–120. [CrossRef] [PubMed]
    [Google Scholar]
  63. von Itzstein M..( 2007;). The war against influenza: discovery and development of sialidase inhibitors. . Nat Rev Drug Discov 6: 967–974. [CrossRef] [PubMed]
    [Google Scholar]
  64. Walker P., Cauchemez S., Hartemink N., Tiensin T., Ghani A. C..( 2012;). Outbreaks of H5N1 in poultry in Thailand: the relative role of poultry production types in sustaining transmission and the impact of active surveillance in control. . J R Soc Interface 9: 1836–1845. [CrossRef] [PubMed]
    [Google Scholar]
  65. Wang P., Zhang J. Z..( 2010;). Selective binding of antiinfluenza drugs and their analogues to ‘open’ and ‘closed’ conformations of H5N1 neuraminidase. . J Phys Chem B 114: 12958–12964. [CrossRef] [PubMed]
    [Google Scholar]
  66. Wang M., Qi J., Liu Y., Vavricka C. J., Wu Y., Li Q., Gao G. F..( 2011;). Influenza A virus N5 neuraminidase has an extended 150-cavity. . J Virol 85: 8431–8435. [CrossRef] [PubMed]
    [Google Scholar]
  67. WHO. ( 2015;). Cumulative Number of Confirmed Human Cases for Avian Influenza A(H5N1) Reported to WHO, 2003–2015. Geneva:: World Health Organization;.
    [Google Scholar]
  68. Xu X., Subbarao K., Cox N. J., Guo Y..( 1999;). Genetic characterization of the pathogenic influenza A/Goose/Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong. . Virology 261: 15–-19. [CrossRef] [PubMed]
    [Google Scholar]
  69. Yen H. L., Herlocher L. M., Hoffmann E., Matrosovich M. N., Monto A. S., Webster R. G., Govorkova E. A..( 2005;). Neuraminidase inhibitor-resistant influenza viruses may differ substantially in fitness and transmissibility. . Antimicrob Agents Chemother 49: 4075–4084. [CrossRef] [PubMed]
    [Google Scholar]
  70. Yen H. L., Hoffmann E., Taylor G., Scholtissek C., Monto A. S., Webster R. G., Govorkova E. A..( 2006;). Importance of neuraminidase active-site residues to the neuraminidase inhibitor resistance of influenza viruses. . J Virol 80: 8787–8795. [CrossRef] [PubMed]
    [Google Scholar]
  71. Yen H. L., Ilyushina N. A., Salomon R., Hoffmann E., Webster R. G., Govorkova E. A..( 2007;). Neuraminidase inhibitor-resistant recombinant A/Vietnam/1203/04 (H5N1) influenza viruses retain their replication efficiency and pathogenicity in vitro and in vivo. . J Virol 81: 12418–12426. [CrossRef] [PubMed]
    [Google Scholar]
  72. York D. M., Darden T. A., Pedersen L. G..( 1993;). The effect of long-range electrostatic interactions in simulations of macromolecular crystals: a comparison of the Ewald and truncated list methods. . J Chem Phys 99: 8345–8348.[Crossref]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000444
Loading
/content/journal/jgv/10.1099/jgv.0.000444
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error