1887

Abstract

Type I IFNs play an important role in the immune response to enterovirus infections. Their importance is underscored by observations showing that many enteroviruses including coxsackie B viruses (CVBs) have developed strategies to block type I IFN production. Recent studies have highlighted a role for the type III IFNs (also called IFNλs) in reducing permissiveness to infections with enteric viruses including coxsackievirus. However, whether or not CVBs have measures to evade the effects of type III IFNs remains unknown. By combining virus infection studies and different modes of administrating the dsRNA mimic poly I : C, we discovered that CVBs target both Toll-like receptor 3- and MDA5/RIG-I-mediated type III IFN expression. Consistent with this, the cellular protein expression levels of the signal transduction proteins TRIF and IPS1 were reduced and no hyperphosphorylation of interferon regulatory factor 3 was observed following infection with the virus. Notably, decreased expression of full-length TRIF and IPS1 and the appearance of cleavage products was observed upon both CVB3 infection and in cellular protein extracts incubated with recombinant 2A, indicating an important role for the viral protease in subverting the cellular immune system. Collectively, our study reveals that CVBs block the expression of type III IFNs, and that this is achieved by a similar mechanism as the virus uses to block type I IFN production. We also demonstrate that the virus blocks several intracellular viral recognition pathways of importance for both type I and III IFN production. The simultaneous targeting of numerous arms of the host immune response may be required for successful viral replication and dissemination.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000443
2016-06-01
2020-01-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/6/1368.html?itemId=/content/journal/jgv/10.1099/jgv.0.000443&mimeType=html&fmt=ahah

References

  1. Andrejeva J., Childs K. S., Young D. F., Carlos T. S., Stock N., Goodbourn S., Randall R. E.. 2004; The V proteins of paramyxo viruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-beta promoter. Proc Natl Acad Sci U S A101:17264–17269 [CrossRef][PubMed]
    [Google Scholar]
  2. Barral P. M., Morrison J. M., Drahos J., Gupta P., Sarkar D., Fisher P. B., Racaniello V. R.. 2007; MDA-5 is cleaved in polio virus-infected cells. J Virol81:3677–3684 [CrossRef][PubMed]
    [Google Scholar]
  3. Chapman N. M., Kim K. S.. 2008; Persistent coxsackievirus infection: enterovirus persistence in chronic myocarditis and dilated cardiomyopathy. Curr Top Microbiol Immunol323:275–292[PubMed]
    [Google Scholar]
  4. Dauletbaev N., Cammisano M., Herscovitch K., Lands L. C.. 2015; Stimulation of the RIG-I/MAVS pathway by polyinosinic: acid upregulates IFN-β in airway epithelial cells with minimal costimulation of IL-8. J Immunol195:2829–2841 [CrossRef][PubMed]
    [Google Scholar]
  5. de Weerd N. A., Nguyen T.. 2012; The interferons and their receptors–distribution and regulation. Immunol Cell Biol90:483–491 [CrossRef][PubMed]
    [Google Scholar]
  6. Díaz-San Segundo F., Weiss M., Perez-Martín E., Koster M. J., Zhu J., Grubman M. J., de los Santos T.. 2011; Antiviral activity of bovine type III interferon against foot-and-mouth disease virus. Arch Virol413:283–292 [CrossRef][PubMed]
    [Google Scholar]
  7. Ding Q., Huang B., Lu J., Liu Y. J., Zhong J.. 2012; Hepatitis C virus NS3/4A protease blocks IL-28 production. Eur J Immunol42:2374–2382 [CrossRef][PubMed]
    [Google Scholar]
  8. Drahos J., Racaniello V. R.. 2009; Cleavage of IPS-1 in cells infected with human rhinovirus. J Virol83:11581–11587 [CrossRef][PubMed]
    [Google Scholar]
  9. Egli A., Santer D. M., O’Shea D., Tyrrell D. L., Houghton M.. 2014; The impact of the interferon-lambda family on the innate and adaptive immune response to viral infections. Emerg Microbes Infect3:e51 [CrossRef][PubMed]
    [Google Scholar]
  10. Feng Q., Langereis M. A., Lork M., Nguyen M., Hato S. V., Lanke K., Emdad L., Bhoopathi P., Fisher P. B., other authors. 2014a; Enterovirus 2Apro targets MDA5 and MAVS in infected cells. J Virol88:3369–3378 [CrossRef][PubMed]
    [Google Scholar]
  11. Feng Q., Langereis M. A., van Kuppeveld F. J.. 2014b; Induction and suppression of innate antiviral responses by picornaviruses. Cytokine Growth Factor Rev25:577–585 [CrossRef][PubMed]
    [Google Scholar]
  12. Gitlin L., Barchet W., Gilfillan S., Cella M., Beutler B., Flavell R. A., Diamond M. S., Colonna M.. 2006; Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc Natl Acad Sci U S A103:8459–8464 [CrossRef][PubMed]
    [Google Scholar]
  13. Hermant P., Michiels T.. 2014; Interferon-λ in the context of viral infections: production, response and therapeutic implications. J Innate Immun6:563–574 [CrossRef][PubMed]
    [Google Scholar]
  14. Hoffmann H. H., Schneider W. M., Rice C. M.. 2015; Interferons and viruses: an evolutionary arms race of molecular interactions. Mod Trends Immunol36:124–138 [CrossRef][PubMed]
    [Google Scholar]
  15. Huber S.. 2008; Host immune responses to coxsackievirus B3. Curr Top Microbiol Immunol323:199–221[PubMed]
    [Google Scholar]
  16. Hühn M. H., Hultcrantz M., Lind K., Ljunggren H. G., Malmberg K. J., Flodström-Tullberg M.. 2008; IFN-gamma production dominates the early human natural killer cell response to Coxsackievirus infection. Cell Microbiol10:426–436 [CrossRef][PubMed]
    [Google Scholar]
  17. Hühn M. H., McCartney S. A., Lind K., Svedin E., Colonna M., Flodström-Tullberg M.. 2010; Melanoma differentiation-associated protein-5 (MDA-5) limits early viral replication but is not essential for the induction of type 1 interferons after coxsackievirus infection. Virology401:42–48 [CrossRef][PubMed]
    [Google Scholar]
  18. Jensen S., Thomsen A. R.. 2012; Sensing of RNA viruses: a review of innate immune receptors involved in recognizing RNA virus invasion. J Virol86:2900–2910 [CrossRef][PubMed]
    [Google Scholar]
  19. Joachims M., Van Breugel P. C., Lloyd R. E.. 1999; Cleavage of poly(A)-binding protein by enterovirus proteases concurrent with inhibition of translation in vitro. J Virol73:718–727[PubMed]
    [Google Scholar]
  20. Knip M., Simell O.. 2012; Environmental triggers of type 1 diabetes. Cold Spring Harb Perspect Med2:a007690 [CrossRef][PubMed]
    [Google Scholar]
  21. Kotenko S. V.. 2011; IFN-λs. Curr Opin Immunol23:583–590 [CrossRef][PubMed]
    [Google Scholar]
  22. Kräusslich H. G., Nicklin M. J., Toyoda H., Etchison D., Wimmer E.. 1987; Poliovirus proteinase 2A induces cleavage of eucaryotic initiation factor 4F polypeptide p220. J Virol61:2711–2718[PubMed]
    [Google Scholar]
  23. Lazear H. M., Nice T. J., Diamond M. S.. 2015; Interferon-λ: immune functions at barrier surfaces and beyond. Immunity43:15–28 [CrossRef][PubMed]
    [Google Scholar]
  24. Lei X., Sun Z., Liu X., Jin Q., He B., Wang J.. 2011; Cleavage of the adaptor protein TRIF by enterovirus 71 3C inhibits antiviral responses mediated by Toll-like receptor 3. J Virol85:8811–8818 [CrossRef][PubMed]
    [Google Scholar]
  25. Li M., Liu X., Zhou Y., Su S. B.. 2009; Interferon-λ: the modulators of antivirus, antitumor, and immune responses. J Leukoc Biol86:23–32 [CrossRef][PubMed]
    [Google Scholar]
  26. Lin R., Mamane Y., Hiscott J.. 1999; Structural and functional analysis of interferon regulatory factor 3: localization of the transactivation and autoinhibitory domains. Mol Cell Biol19:2465–2474 [CrossRef][PubMed]
    [Google Scholar]
  27. Lind K., Hühn M. H., Flodström-Tullberg M.. 2012; Immunology in the clinic review series; focus on type 1 diabetes and viruses: the innate immune response to enteroviruses and its possible role in regulating type 1 diabetes. Clin Exp Immunol168:30–38 [CrossRef][PubMed]
    [Google Scholar]
  28. Lind K., Richardson S. J., Leete P., Morgan N. G., Korsgren O., Flodström-Tullberg M.. 2013; Induction of an antiviral state and attenuated coxsackievirus replication in type III interferon-treated primary human pancreatic islets. J Virol87:7646–7654 [CrossRef][PubMed]
    [Google Scholar]
  29. Lind K., Svedin E., Utorova R., Stone V. M., Flodström-Tullberg M.. 2014; Type III interferons are expressed by coxsackievirus-infected human primary hepatocytes and regulate hepatocyte permissiveness to infection. Clin Exp Immunol177:687–695 [CrossRef][PubMed]
    [Google Scholar]
  30. Liu S., Cai X., Wu J., Cong Q., Chen X., Li T., Du F., Ren J., Wu Y. T., other authors. 2015; Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science347:aaa2630 [CrossRef][PubMed]
    [Google Scholar]
  31. Mukherjee A., Morosky S. A., Delorme-Axford E., Dybdahl-Sissoko N., Oberste M. S., Wang T., Coyne C. B.. 2011; The coxsackievirus B 3C protease cleaves MAVS and TRIF to attenuate host type I interferon and apoptotic signaling. PLoS Pathog7:e1001311 [CrossRef][PubMed]
    [Google Scholar]
  32. Negishi H., Osawa T., Ogami K., Ouyang X., Sakaguchi S., Koshiba R., Yanai H., Seko Y., Shitara H., other authors. 2008; A critical link between Toll-like receptor 3 and type II interferon signaling pathways in antiviral innate immunity. Proc Natl Acad Sci U S A105:20446–20451 [CrossRef][PubMed]
    [Google Scholar]
  33. Pallansch M. A., Roos R. P.. 2007; Enteroviruses: polioviruses, coxsackieviruses, echoviruses, and newer enteroviruses. In Fields Virology, 5th edn. pp.839–893 Edited by D. M. Knipe, P. M. Howley, D. E. Griffin, R. A. Lamb, M. A. Martin, B. Roizman, S. E. Straus. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  34. Pott J., Mahlakõiv T., Mordstein M., Duerr C. U., Michiels T., Stockinger S., Staeheli P., Hornef M. W.. 2011; IFN-lambda determines the intestinal epithelial antiviral host defense. Proc Natl Acad Sci U S A108:7944–7949 [CrossRef][PubMed]
    [Google Scholar]
  35. Rebsamen M., Meylan E., Curran J., Tschopp J.. 2008; The anti viral adaptor proteins Cardif and Trif are processed and inactivated by caspases. Cell Death Differ15:1804–1811 [CrossRef][PubMed]
    [Google Scholar]
  36. Richardson S. J., Leete P., Dhayal S., Russell M. A., Oikarinen M., Laiho J. E., Svedin E., Lind K., Rosenling T., Morgan N. G., other authors. 2014; Evaluation of the fidelity of immunolabelling obtained with clone 5D8/1, a monoclonal antibody directed against the enteroviral capsid protein, VP1, in human pancreas. Diabetologia57:392–401 [CrossRef][PubMed]
    [Google Scholar]
  37. Servant M. J., ten Oever B., LePage C., Conti L., Gessani S., Julkunen I., Lin R., Hiscott J.. 2001; Identification of distinct signaling pathways leading to the phosphorylation of interferon regulatory factor 3. J Biol Chem276:355–363 [CrossRef][PubMed]
    [Google Scholar]
  38. Stetson D. B., Medzhitov R.. 2006; Type I interferons in host defense. Immunity25:373–381 [CrossRef][PubMed]
    [Google Scholar]
  39. Taylor K. E., Mossman K. L.. 2013; Recent advances in understanding viral evasion of type I interferon. Immunology138:190–197 [CrossRef][PubMed]
    [Google Scholar]
  40. Wang D., Fang L., Liu L., Zhong H., Chen Q., Luo R., Liu X., Zhang Z., Chen H., Xiao S.. 2011; Foot-and-mouth disease virus (FMDV) leader proteinase negatively regulates the porcine interferon-λ1 pathway. Mol Immunol49:407–412 [CrossRef][PubMed]
    [Google Scholar]
  41. Wang B., Xi X., Lei X., Zhang X., Cui S., Wang J., Jin Q., Zhao Z.. 2013; Enterovirus 71 protease 2Apro targets MAVS to inhibit anti-viral type I interferon responses. PLoS Pathog9:e1003231 [CrossRef][PubMed]
    [Google Scholar]
  42. Wang Y., Li J., Wang X., Ye L., Zhou Y., Thomas R. M., Ho W.. 2014; Hepatitis C virus impairs TLR3 signaling and inhibits IFN-λ 1 expression in human hepatoma cell line. Innate Immun20:3–11 [CrossRef][PubMed]
    [Google Scholar]
  43. White J. P., Cardenas A. M., Marissen W. E., Lloyd R. E.. 2007; Inhibition of cytoplasmic mRNA stress granule formation by a viral proteinase. Cell Host Microbe2:295–305 [CrossRef][PubMed]
    [Google Scholar]
  44. Xiang Z., Li L., Lei X., Zhou H., Zhou Z., He B., Wang J.. 2014; Enterovirus 68 3C protease cleaves TRIF to attenuate antiviral responses mediated by Toll-like receptor 3. J Virol88:6650–6659 [CrossRef][PubMed]
    [Google Scholar]
  45. Yeung W. C., Rawlinson W. D., Craig M. E.. 2011; Enterovirus infection and type 1 diabetes mellitus: systematic review and meta-analysis of observational molecular studies. BMJ342:d35 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000443
Loading
/content/journal/jgv/10.1099/jgv.0.000443
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error