1887

Abstract

Puumala virus (PUUV) grows slowly in cell culture. To study antigenic properties of PUUV, an amenable method for their expression would be beneficial. To achieve this, a replication-defective recombinant vesicular stomatitis virus, rVSVΔG*EGFP, was rescued using BSRT7/5 and encephalomyocarditis virus (EMCV) internal ribosomal entry site (IRES)-enabled rescue plasmids. Using these particles, pseudotypes bearing PUUV Sotkamo strain glycoproteins were produced, with titres in the range 10–10, and were used in pseudotype focus reduction neutralization tests (pFRNTs) with neutralizing monoclonal antibodies and patient sera. The results were compared with those from orthodox focus reduction neutralization tests (oFRNTs) using native PUUV with the same samples and showed a strong positive correlation (r = 0.82) between the methods. While developing the system we identified three amino acids which were mutated in the Vero E6 cell culture adapted PUUV prototype Sotkamo strain sequence, and changing these residues was critical for expression and neutralizing antibody binding of PUUV glycoproteins.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000437
2016-05-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/5/1052.html?itemId=/content/journal/jgv/10.1099/jgv.0.000437&mimeType=html&fmt=ahah

References

  1. Acha P. N., Szyfres B.. 2003; Vesicular stomatitis. In Zoonoses and Communicable Diseases Common to Man and Animals, 3rd edn. pp347–355Edited by Acha P. N., Szyfres B.. Washington, DC: Pan American Health Organization;
    [Google Scholar]
  2. Acuña R., Cifuentes-Muñoz N., Márquez C. L., Bulling M., Klingström J., Mancini R., Lozach P. Y., Tischler N. D.. 2014; Hantavirus Gn and Gc glycoproteins self-assemble into virus-like particles. J Virol88:2344–2348 [CrossRef][PubMed]
    [Google Scholar]
  3. Andersson A. M., Melin L., Bean A., Pettersson R. F.. 1997; A retention signal necessary and sufficient for Golgi localization maps to the cytoplasmic tail of a Bunyaviridae (Uukuniemi virus) membrane glycoprotein. J Virol71:4717–4727[PubMed]
    [Google Scholar]
  4. Antic D., Wright K. E., Kang C. Y.. 1992; Maturation of Hantaan virus glycoproteins G1 and G2. Virology189:324–328 [CrossRef][PubMed]
    [Google Scholar]
  5. Arnold K., Bordoli L., Kopp J., Schwede T.. 2006; The swiss-model workspace: a web-based environment for protein structure homology modelling. Bioinformatics22:195–201 [CrossRef][PubMed]
    [Google Scholar]
  6. Benkert P., Künzli M., Schwede T.. 2009; QMEAN server for protein model quality estimation. Nucleic Acids Res37:(Web Server)W510–W514 [CrossRef][PubMed]
    [Google Scholar]
  7. Bressanelli S., Stiasny K., Allison S. L., Stura E. A., Duquerroy S., Lescar J., Heinz F. X., Rey F. A.. 2004; Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. EMBO J23:728–738 [CrossRef][PubMed]
    [Google Scholar]
  8. Brown E. L., Lyles D. S.. 2005; Pseudotypes of vesicular stomatitis virus with CD4 formed by clustering of membrane microdomains during budding. J Virol79:7077–7086 [CrossRef][PubMed]
    [Google Scholar]
  9. Buchholz U. J., Finke S., Conzelmann K. K.. 1999; Generation of bovine respiratory syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter. J Virol73:251–259[PubMed]
    [Google Scholar]
  10. Buonocore L., Blight K. J., Rice C. M., Rose J. K.. 2002; Characterization of vesicular stomatitis virus recombinants that express and incorporate high levels of hepatitis C virus glycoproteins. J Virol76:6865–6872 [CrossRef][PubMed]
    [Google Scholar]
  11. Chosewood L. C., Wilson D. E.. editors 2009; Biosafety in Microbiological and Biomedical Laboratories, 5th edn. Washington, DC: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institutes of Health;
    [Google Scholar]
  12. Custer D. M., Thompson E., Schmaljohn C. S., Ksiazek T. G., Hooper J. W.. 2003; Active and passive vaccination against hantavirus pulmonary syndrome with Andes virus M genome segment-based DNA vaccine. J Virol77:9894–9905 [CrossRef][PubMed]
    [Google Scholar]
  13. European Centre for Disease Prevention and Control 2011; Annual Epidemiological Report 2011. Reporting on 2009 Surveillance Data and 2010 Epidemic Intelligence Data Stockholm: European Centre for Disease Prevention and Control;
    [Google Scholar]
  14. Firth C., Tokarz R., Simith D. B., Nunes M. R., Bhat M., Rosa E. S., Medeiros D. B., Palacios G., Vasconcelos P. F., Lipkin W. I.. 2012; Diversity and distribution of hantaviruses in South America. J Virol86:13756–13766 [CrossRef][PubMed]
    [Google Scholar]
  15. Foley H. D., Otero M., Orenstein J. M., Pomerantz R. J., Schnell M. J.. 2002; Rhabdovirus-based vectors with human immunodeficiency virus type 1 (HIV-1) envelopes display HIV-1-like tropism and target human dendritic cells. J Virol76:19–31 [CrossRef][PubMed]
    [Google Scholar]
  16. Fuerst T. R., Niles E. G., Studier F. W., Moss B.. 1986; Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A83:8122–8126 [CrossRef][PubMed]
    [Google Scholar]
  17. Garbutt M., Liebscher R., Wahl-Jensen V., Jones S., Möller P., Wagner R., Volchkov V., Klenk H. D., Feldmann H., Ströher U.. 2004; Properties of replication-competent vesicular stomatitis virus vectors expressing glycoproteins of filoviruses and arenaviruses. J Virol78:5458–5465 [CrossRef][PubMed]
    [Google Scholar]
  18. Habjan M., Penski N., Spiegel M., Weber F.. 2008; T7 RNA polymerase-dependent and -independent systems for cDNA-based rescue of Rift Valley fever virus. J Gen Virol89:2157–2166 [CrossRef][PubMed]
    [Google Scholar]
  19. Handke W., Krüger D. H., Rang A.. 2009; Defective particles can lead to underestimated antibody titers in virus neutralization tests. Intervirology52:335–339 [CrossRef][PubMed]
    [Google Scholar]
  20. Hanika A., Larisch B., Steinmann E., Schwegmann-Wessels C., Herrler G., Zimmer G.. 2005; Use of influenza C virus glycoprotein HEF for generation of vesicular stomatitis virus pseudotypes. J Gen Virol86:1455–1465 [CrossRef][PubMed]
    [Google Scholar]
  21. Harty R. N., Brown M. E., Hayes F. P., Wright N. T., Schnell M. J.. 2001a; Vaccinia virus-free recovery of vesicular stomatitis virus. J Mol Microbiol Biotechnol3:513–517[PubMed]
    [Google Scholar]
  22. Heiskanen T., Lundkvist A., Soliymani R., Koivunen E., Vaheri A., Lankinen H.. 1999; Phage-displayed peptides mimicking the discontinuous neutralization sites of puumala Hantavirus envelope glycoproteins. Virology262:321–332 [CrossRef][PubMed]
    [Google Scholar]
  23. Hepojoki J., Strandin T., Vaheri A., Lankinen H.. 2010a; Interactions and oligomerization of hantavirus glycoproteins. J Virol84:227–242 [CrossRef][PubMed]
    [Google Scholar]
  24. Hepojoki J., Strandin T., Wang H., Vapalahti O., Vaheri A., Lankinen H.. 2010b; Cytoplasmic tails of hantavirus glycoproteins interact with the nucleocapsid protein. J Gen Virol91:2341–2350 [CrossRef][PubMed]
    [Google Scholar]
  25. Hepojoki J., Strandin T., Lankinen H., Vaheri A.. 2012; Hantavirus structure—molecular interactions behind the scene. J Gen Virol93:1631–1644 [CrossRef][PubMed]
    [Google Scholar]
  26. Higa M. M., Petersen J., Hooper J., Doms R. W.. 2012; Efficient production of Hantaan and Puumala pseudovirions for viral tropism and neutralization studies. Virology423:134–142 [CrossRef][PubMed]
    [Google Scholar]
  27. Hooper J. W., Kamrud K. I., Elgh F., Custer D., Schmaljohn C. S.. 1999; DNA vaccination with hantavirus M segment elicits neutralizing antibodies and protects against seoul virus infection. Virology255:269–278 [CrossRef][PubMed]
    [Google Scholar]
  28. Hooper J. W., Custer D. M., Thompson E., Schmaljohn C. S.. 2001; DNA vaccination with the Hantaan virus M gene protects Hamsters against three of four HFRS hantaviruses and elicits a high-titer neutralizing antibody response in Rhesus monkeys. J Virol75:8469–8477 [CrossRef][PubMed]
    [Google Scholar]
  29. Johansson P., Olsson M., Lindgren L., Ahlm C., Elgh F., Holmström A., Bucht G.. 2004; Complete gene sequence of a human Puumala hantavirus isolate, Puumala Umeå/hu: sequence comparison and characterisation of encoded gene products. Virus Res105:147–155 [CrossRef][PubMed]
    [Google Scholar]
  30. Kahn J. S., Schnell M. J., Buonocore L., Rose J. K.. 1999; Recombinant vesicular stomatitis virus expressing respiratory syncytial virus (RSV) glycoproteins: RSV fusion protein can mediate infection and cell fusion. Virology254:81–91 [CrossRef][PubMed]
    [Google Scholar]
  31. Kallio-Kokko H., Leveelahti R., Brummer-Korvenkontio M., Lundkvist A, Vaheri A., Vapalahti O.. 2001; Human immune response to Puumala virus glycoproteins and nucleocapsid protein expressed in mammalian cells. J Med Virol65:605–613 [CrossRef][PubMed]
    [Google Scholar]
  32. Krauss H., Weber A., Appel M., Enders B., Isenberg H. D., Schiefer H. G., Slenczka W., von Graevenitz A., Zahner H.. 2003; Zoonoses: Infectious Diseases Transmissible from Animals to Humans, 3rd edn. Washington, DC: American Society for Microbiology; [CrossRef]
    [Google Scholar]
  33. Kretzschmar E., Buonocore L., Schnell M. J., Rose J. K.. 1997; High-efficiency incorporation of functional influenza virus glycoproteins into recombinant vesicular stomatitis viruses. J Virol71:5982–5989[PubMed]
    [Google Scholar]
  34. Krieger E., Vriend G.. 2014; YASARA View—molecular graphics for all devices—from smartphones to workstations. Bioinformatics30:2981–2982 [CrossRef][PubMed]
    [Google Scholar]
  35. Lawson N. D., Stillman E. A., Whitt M. A., Rose J. K.. 1995; Recombinant vesicular stomatitis viruses from DNA. Proc Natl Acad Sci U S A92:4477–4481 [CrossRef][PubMed]
    [Google Scholar]
  36. Letchworth G. J., Rodriguez L. L., Del Cbarrera J.. 1999; Vesicular stomatitis. Vet J157:239–260 [CrossRef][PubMed]
    [Google Scholar]
  37. Löber C., Anheier B., Lindow S., Klenk H. D., Feldmann H.. 2001; The Hantaan virus glycoprotein precursor is cleaved at the conserved pentapeptide WAASA. Virology289:224–229 [CrossRef][PubMed]
    [Google Scholar]
  38. Lundkvist A., Hörling J., Athlin L., Rosén A., Niklasson B.. 1993; Neutralizing human monoclonal antibodies against Puumala virus, causative agent of nephropathia epidemica: a novel method using antigen-coated magnetic beads for specific B cell isolation. J Gen Virol74:1303–1310 [CrossRef][PubMed]
    [Google Scholar]
  39. Lyles D. S., Rupprecht C. E.. 2007; Rhabdoviridae. In Fields Virology, 5th edn. pp1363–1408Edited by Knipe D. M., Howley P. M.. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins;
    [Google Scholar]
  40. Matsuoka Y., Chen S. Y., Compans R. W.. 1994; A signal for Golgi retention in the bunyavirus G1 glycoprotein. J Biol Chem269:22565–22573[PubMed]
    [Google Scholar]
  41. Matsuoka Y., Chen S. Y., Holland C. E., Compans R. W.. 1996; Molecular determinants of Golgi retention in the Punta Toro virus G1 protein. Arch Biochem Biophys336:184–189 [CrossRef][PubMed]
    [Google Scholar]
  42. Matsuura Y., Tani H., Suzuki K., Kimura-Someya T., Suzuki R., Aizaki H., Ishii K., Moriishi K., Robison C. S., other authors. 2001; Characterization of pseudotype VSV possessing HCV envelope proteins. Virology286:263–275 [CrossRef][PubMed]
    [Google Scholar]
  43. Mebatsion T., Konig M., Conzelmann K. K.. 1996; Budding of rabies virus particles in the absence of the spike glycoprotein. Cell84:941–951 [CrossRef][PubMed]
    [Google Scholar]
  44. Niwa H., Yamamura K., Miyazaki J.. 1991; Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene108:193–199 [CrossRef][PubMed]
    [Google Scholar]
  45. Ogino M., Ebihara H., Lee B. H., Araki K., Lundkvist A., Kawaoka Y., Yoshimatsu K., Arikawa J.. 2003; Use of vesicular stomatitis virus pseudotypes bearing Hantaan or Seoul virus envelope proteins in a rapid and safe neutralization test. Clin Diagn Lab Immunol10:154–160[PubMed]
    [Google Scholar]
  46. Pensiero M. N., Jennings G. B., Schmaljohn C. S., Hay J.. 1988; Expression of the Hantaan virus M genome segment by using a vaccinia virus recombinant. J Virol62:696–702[PubMed]
    [Google Scholar]
  47. Pensiero M. N., Hay J.. 1992; The hantaan virus M-segment glycoproteins G1 and G2 can be expressed independently. Journal of Virology66:1907–14
    [Google Scholar]
  48. Plyusnin A., Morzunov S. P.. 2001; Virus evolution and genetic diversity of hantaviruses and their rodent hosts. Curr Top Microbiol Immunol256:47–75[PubMed]
    [Google Scholar]
  49. Ramsburg E., Publicover J., Buonocore L., Poholek A., Robek M., Palin A., Rose J. K.. 2005; A vesicular stomatitis virus recombinant expressing granulocyte-macrophage colony-stimulating factor induces enhanced T-cell responses and is highly attenuated for replication in animals. J Virol79:15043–15053 [CrossRef][PubMed]
    [Google Scholar]
  50. Roussel A., Lescar J., Vaney M. C., Wengler G., Wengler G., Rey F. A.. 2006; Structure and interactions at the viral surface of the envelope protein E1 of Semliki Forest virus. Structure14:75–86 [CrossRef][PubMed]
    [Google Scholar]
  51. Rowe R. K., Suszko J. W., Pekosz A.. 2008; Roles for the recycling endosome, Rab8, and Rab11 in hantavirus release from epithelial cells. Virology382:239–249 [CrossRef][PubMed]
    [Google Scholar]
  52. Ruusala A., Persson R., Schmaljohn C. S., Pettersson R. F.. 1992; Coexpression of the membrane glycoproteins G1 and G2 of Hantaan virus is required for targeting to the Golgi complex. Virology186:53–64 [CrossRef][PubMed]
    [Google Scholar]
  53. Sanada T., Seto T., Ozaki Y., Saasa N., Yoshimatsu K., Arikawa J., Yoshii K., Kariwa H.. 2012; Isolation of hokkaido virus, genus hantavirus, using a newly established cell line derived from the kidney of the grey red-backed vole (myodes rufocanus bedfordiae). J Gen Virol93:2237–2246[CrossRef]
    [Google Scholar]
  54. Schmaljohn C. S., Chu Y. K., Schmaljohn A. L., Dalrymple J. M.. 1990; Antigenic subunits of hantaan virus expressed by baculovirus and vaccinia virus recombinants. Journal of Virology64:3162–70
    [Google Scholar]
  55. Schmaljohn C., Hjelle B.. 1997; Hantaviruses: a global disease problem. Emerg Infect Dis3:95–104 [CrossRef][PubMed]
    [Google Scholar]
  56. Schmaljohn C. S., Hasty S. E., Dalrymple J. M., LeDuc J. W., Lee H. W., von Bonsdorff C. H., Brummer-Korvenkontio M., Vaheri A., Tsai T. F., other authors. 1985; Antigenic and genetic properties of viruses linked to hemorrhagic fever with renal syndrome. Science227:1041–1044 [CrossRef][PubMed]
    [Google Scholar]
  57. Schmaljohn C. S., Hasty S. E., Rasmussen L., Dalrymple J. M.. 1986; Hantaan virus replication: effects of monensin, tunicamycin and endoglycosidases on the structural glycoproteins. J Gen Virol67:707–717 [CrossRef][PubMed]
    [Google Scholar]
  58. Schnell M. J., Buonocore L., Kretzschmar E., Johnson E., Rose J. K.. 1996; Foreign glycoproteins expressed from recombinant vesicular stomatitis viruses are incorporated efficiently into virus particles. Proc Natl Acad Sci U S A93:11359–11365 [CrossRef][PubMed]
    [Google Scholar]
  59. Shi X., Elliott R. M.. 2002; Golgi localization of Hantaan virus glycoproteins requires coexpression of G1 and G2. Virology300:31–38 [CrossRef][PubMed]
    [Google Scholar]
  60. Shi X., Elliott R. M.. 2004; Analysis of N-linked glycosylation of hantaan virus glycoproteins and the role of oligosaccharide side chains in protein folding and intracellular trafficking. J Virol78:5414–5422 [CrossRef][PubMed]
    [Google Scholar]
  61. Takada A., Robison C., Goto H., Sanchez A., Murti K. G., Whitt M. A., Kawaoka Y.. 1997; A system for functional analysis of Ebola virus glycoprotein. Proc Natl Acad Sci U S A94:14764–14769 [CrossRef][PubMed]
    [Google Scholar]
  62. Vapalahti O., Kallio-Kokko H., Salonen E. M., Brummer-Korvenkontio M., Vaheri A.. 1992; Cloning and sequencing of Puumala virus Sotkamo strain S and M RNA segments: evidence for strain variation in hantaviruses and expression of the nucleocapsid protein. J Gen Virol73:829–838 [CrossRef][PubMed]
    [Google Scholar]
  63. Whitt M. A.. 2010; Generation of VSV pseudotypes using recombinant ΔG-VSV for studies on virus entry, identification of entry inhibitors, and immune responses to vaccines. J Virol Methods169:365–374 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000437
Loading
/content/journal/jgv/10.1099/jgv.0.000437
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error