1887

Abstract

Holins are phage-encoded hydrophobic membrane proteins that spontaneously and non-specifically accumulate and form lesions in the cytoplasmic membrane. The ORF72 gene (also designated ) derived from the genome of the phage GH15 was predicted to encode a membrane protein. An analysis indicated that the protein encoded by potentially consisted of two hydrophobic transmembrane helices. This protein exhibited the structural characteristics of class II holins and belonged to the phage_holin_1 superfamily. Expression of HolGH15 in BL21 cells resulted in growth retardation of the host cells, which was triggered prematurely by the addition of 2,4-dinitrophenol. The expression of HolGH15 caused morphological alterations in engineered cells, including loss of the cell wall and cytoplasmic membrane integrity and release of intracellular components, which were visualized by transmission electron microscopy. HolGH15 exerted efficient antibacterial activity at 37 °C and pH 5.2. Mutation analysis indicated that the two transmembrane domains of HolGH15 were indispensable for the activity of the full-length protein. HolGH15 showed a broad antibacterial range: it not only inhibited , but also demonstrated antibacterial activity against other species, including , , , and . At the minimal inhibitory concentration, HolGH15 evoked the release of cellular contents and resulted in the shrinkage and death of and cells. To the best of our knowledge, this study is the first report of a phage holin that exerts antibacterial activity against heterogeneous pathogens.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000428
2016-05-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/5/1272.html?itemId=/content/journal/jgv/10.1099/jgv.0.000428&mimeType=html&fmt=ahah

References

  1. Bergh O., Børsheim K. Y., Bratbak G., Heldal M. 1989; High abundance of viruses found in aquatic environments. Nature 340:467–468 [View Article][PubMed]
    [Google Scholar]
  2. Bläsi U., Young R. 1996; Two beginnings for a single purpose: the dual-start holins in the regulation of phage lysis. Mol Microbiol 21:675–682 [View Article][PubMed]
    [Google Scholar]
  3. Catalão M. J., Gil F., Moniz-Pereira J., Pimentel M. 2010; The mycobacteriophage Ms6 encodes a chaperone-like protein involved in the endolysin delivery to the peptidoglycan. Mol Microbiol 77:672–686 [View Article][PubMed]
    [Google Scholar]
  4. Chang C. Y., Nam K., Young R. 1995; S gene expression and the timing of lysis by bacteriophage lambda. J Bacteriol 177:3283–3294[PubMed]
    [Google Scholar]
  5. CLSI 2012 Performance Standards for Antimicrobial Disk Susceptibility Testing Approved Standard, 22nd Informational Supplement M100-S22. Wayne, PA: Clinical and Laboratory Standards Institute
    [Google Scholar]
  6. Diao Y., Han W., Zhao H., Zhu S., Liu X., Feng X., Gu J., Yao C., Liu S., other authors. 2012; Designed synthetic analogs of the α-helical peptide temporin-La with improved antitumor efficacies via charge modification and incorporation of the integrin αvβ3 homing domain. J Pept Sci 18:476–486 [View Article][PubMed]
    [Google Scholar]
  7. Donovan D. M. 2007; Bacteriophage and peptidoglycan degrading enzymes with antimicrobial applications. Recent Pat Biotechnol 1:113–122 [View Article][PubMed]
    [Google Scholar]
  8. Fischetti V. A. 2001; Phage antibacterials make a comeback. Nat Biotechnol 19:734–735 [View Article][PubMed]
    [Google Scholar]
  9. Gao Y., Feng X., Xian M., Wang Q., Zhao G. 2013; Inducible cell lysis systems in microbial production of bio-based chemicals. Appl Microbiol Biotechnol 97:7121–7129 [View Article][PubMed]
    [Google Scholar]
  10. Garrett J., Bruno C., Young R. 1990; Lysis protein S of phage lambda functions in Saccharomyces cerevisiae . J Bacteriol 172:7275–7277[PubMed]
    [Google Scholar]
  11. Golec P., Wiczk A., Majchrzyk A., Loś J. M., Węgrzyn G., Loś M. 2010; A role for accessory genes rI.-1 and rI.1 in the regulation of lysis inhibition by bacteriophage T4. Virus Genes 41:459–468 [View Article][PubMed]
    [Google Scholar]
  12. Gründling A., Manson M. D., Young R. 2001; Holins kill without warning. Proc Natl Acad Sci U S A 98:9348–9352 [View Article][PubMed]
    [Google Scholar]
  13. Gu J., Xu W., Lei L., Huang J., Feng X., Sun C., Du C., Zuo J., Li Y., other authors. 2011; LysGH15, a novel bacteriophage lysin, protects a murine bacteremia model efficiently against lethal methicillin-resistant Staphylococcus aureus infection. J Clin Microbiol 49:111–117 [View Article][PubMed]
    [Google Scholar]
  14. Gu J., Liu X., Lu R., Li Y., Song J., Lei L., Sun C., Feng X., Du C., other authors. 2012; Complete genome sequence of Staphylococcus aureus bacteriophage GH15. J Virol 86:8914–8915 [View Article][PubMed]
    [Google Scholar]
  15. Gu J., Liu X., Yang M., Li Y., Sun C., Lu R., Song J., Zhang Q., Lei L., other authors. 2013; Genomic characterization of lytic Staphylococcus aureus phage GH15: providing new clues to intron shift in phages. J Gen Virol 94:906–915 [View Article][PubMed]
    [Google Scholar]
  16. Gu J., Feng Y., Feng X., Sun C., Lei L., Ding W., Niu F., Jiao L., Yang M., other authors. 2014; Structural and biochemical characterization reveals LysGH15 as an unprecedented “EF-hand-like” calcium-binding phage lysin. PLoS Pathog 10:e1004109 [View Article][PubMed]
    [Google Scholar]
  17. Hudson J. A., Billington C., Carey-Smith G., Greening G. 2005; Bacteriophages as biocontrol agents in food. J Food Prot 68:426–437[PubMed]
    [Google Scholar]
  18. Krupovic M., Bamford D. H. 2008; Holin of bacteriophage lambda: structural insights into a membrane lesion. Mol Microbiol 69:781–783 [View Article][PubMed]
    [Google Scholar]
  19. Lang A. S., Beatty J. T. 2001; The gene transfer agent of Rhodobacter capsulatus and “constitutive transduction” in prokaryotes. Arch Microbiol 175:241–249 [View Article][PubMed]
    [Google Scholar]
  20. Merril C. R., Scholl D., Adhya S. L. 2003; The prospect for bacteriophage therapy in Western medicine. Nat Rev Drug Discov 2:489–497 [View Article][PubMed]
    [Google Scholar]
  21. Ninomiya Y., Suzuki K., Ishii C., Inoue H. 2004; Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci U S A 101:16391–16391 [View Article]
    [Google Scholar]
  22. Pang T., Savva C. G., Fleming K. G., Struck D. K., Young R. 2009; Structure of the lethal phage pinhole. Proc Natl Acad Sci U S A 106:18966–18971 [View Article][PubMed]
    [Google Scholar]
  23. Pang T., Park T., Young R. 2010a; Mapping the pinhole formation pathway of S21. Mol Microbiol 78:710–719 [View Article][PubMed]
    [Google Scholar]
  24. Pang T., Park T., Young R. 2010b; Mutational analysis of the S21 pinholin. Mol Microbiol 76:68–77 [View Article][PubMed]
    [Google Scholar]
  25. Pang T., Fleming T. C., Pogliano K., Young R. 2013; Visualization of pinholin lesions in vivo . Proc Natl Acad Sci U S A 110:E2054–E2063 [View Article][PubMed]
    [Google Scholar]
  26. Ranjit D. K., Endres J. L., Bayles K. W. 2011; Staphylococcus aureus CidA and LrgA proteins exhibit holin-like properties. J Bacteriol 193:2468–2476 [View Article][PubMed]
    [Google Scholar]
  27. Reddy B. L., Saier M.H., Jr.. 2013; Topological and phylogenetic analyses of bacterial holin families and superfamilies. Biochim Biophys Acta 1828:2654–2671 [View Article][PubMed]
    [Google Scholar]
  28. Rydman P. S., Bamford D. H. 2003; Identification and mutational analysis of bacteriophage PRD1 holin protein P35. J Bacteriol 185:3795–3803 [View Article][PubMed]
    [Google Scholar]
  29. Saier M.H., Jr., Reddy B. L. 2015; Holins in bacteria, eukaryotes, and archaea: multifunctional xenologues with potential biotechnological and biomedical applications. J Bacteriol 197:7–17 [View Article][PubMed]
    [Google Scholar]
  30. Santhana Raj L., Hing H. L., Baharudin O., Teh Hamidah Z., Aida Suhana R., Nor Asiha C. P., Vimala B., Paramsarvaran S., Sumarni G., Hanjeet K. 2007; Mesosomes are a definite event in antibiotic-treated Staphylococcus aureus ATCC 25923. Trop Biomed 24:105–109[PubMed]
    [Google Scholar]
  31. Shi Y., Li N., Yan Y., Wang H., Li Y., Lu C., Sun J. 2012a; Combined antibacterial activity of phage lytic proteins holin and lysin from Streptococcus suis bacteriophage SMP. Curr Microbiol 65:28–34 [View Article][PubMed]
    [Google Scholar]
  32. Shi Y., Yan Y., Ji W., Du B., Meng X., Wang H., Sun J. 2012b; Characterization and determination of holin protein of Streptococcus suis bacteriophage SMP in heterologous host. Virol J 9:70 [View Article][PubMed]
    [Google Scholar]
  33. Steiner M., Bläsi U. 1993; Charged amino-terminal amino acids affect the lethal capacity of Lambda lysis proteins S107 and S105. Mol Microbiol 8:525–533 [View Article][PubMed]
    [Google Scholar]
  34. Takác M., Witte A., Bläsi U. 2005; Functional analysis of the lysis genes of Staphylococcus aureus phage P68 in Escherichia coli . Microbiology 151:2331–2342 [View Article][PubMed]
    [Google Scholar]
  35. Wang I. N., Smith D. L., Young R. 2000; Holins: the protein clocks of bacteriophage infections. Annu Rev Microbiol 54:799–825 [View Article][PubMed]
    [Google Scholar]
  36. Wang I. N., Deaton J., Young R. 2003; Sizing the holin lesion with an endolysin-beta-galactosidase fusion. J Bacteriol 185:779–787 [View Article][PubMed]
    [Google Scholar]
  37. Ziedaite G., Daugelavicius R., Bamford J. K. H., Bamford D. H. 2005; The holin protein of bacteriophage PRD1 forms a pore for small-molecule and endolysin translocation. J Bacteriol 187:5397–5405 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000428
Loading
/content/journal/jgv/10.1099/jgv.0.000428
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error