1887

Abstract

Holins are phage-encoded hydrophobic membrane proteins that spontaneously and non-specifically accumulate and form lesions in the cytoplasmic membrane. The ORF72 gene (also designated ) derived from the genome of the phage GH15 was predicted to encode a membrane protein. An analysis indicated that the protein encoded by potentially consisted of two hydrophobic transmembrane helices. This protein exhibited the structural characteristics of class II holins and belonged to the phage_holin_1 superfamily. Expression of HolGH15 in BL21 cells resulted in growth retardation of the host cells, which was triggered prematurely by the addition of 2,4-dinitrophenol. The expression of HolGH15 caused morphological alterations in engineered cells, including loss of the cell wall and cytoplasmic membrane integrity and release of intracellular components, which were visualized by transmission electron microscopy. HolGH15 exerted efficient antibacterial activity at 37 °C and pH 5.2. Mutation analysis indicated that the two transmembrane domains of HolGH15 were indispensable for the activity of the full-length protein. HolGH15 showed a broad antibacterial range: it not only inhibited , but also demonstrated antibacterial activity against other species, including , , , and . At the minimal inhibitory concentration, HolGH15 evoked the release of cellular contents and resulted in the shrinkage and death of and cells. To the best of our knowledge, this study is the first report of a phage holin that exerts antibacterial activity against heterogeneous pathogens.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000428
2016-05-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/5/1272.html?itemId=/content/journal/jgv/10.1099/jgv.0.000428&mimeType=html&fmt=ahah

References

  1. Bergh O., Børsheim K. Y., Bratbak G., Heldal M.. 1989; High abundance of viruses found in aquatic environments. Nature340:467–468 [CrossRef][PubMed]
    [Google Scholar]
  2. Bläsi U., Young R.. 1996; Two beginnings for a single purpose: the dual-start holins in the regulation of phage lysis. Mol Microbiol21:675–682 [CrossRef][PubMed]
    [Google Scholar]
  3. Catalão M. J., Gil F., Moniz-Pereira J., Pimentel M.. 2010; The mycobacteriophage Ms6 encodes a chaperone-like protein involved in the endolysin delivery to the peptidoglycan. Mol Microbiol77:672–686 [CrossRef][PubMed]
    [Google Scholar]
  4. Chang C. Y., Nam K., Young R.. 1995; S gene expression and the timing of lysis by bacteriophage lambda. J Bacteriol177:3283–3294[PubMed]
    [Google Scholar]
  5. CLSI 2012; Performance Standards for Antimicrobial Disk Susceptibility Testing Approved Standard, 22nd Informational Supplement M100-S22. Wayne, PA: Clinical and Laboratory Standards Institute
    [Google Scholar]
  6. Diao Y., Han W., Zhao H., Zhu S., Liu X., Feng X., Gu J., Yao C., Liu S., other authors. 2012; Designed synthetic analogs of the α-helical peptide temporin-La with improved antitumor efficacies via charge modification and incorporation of the integrin αvβ3 homing domain. J Pept Sci18:476–486 [CrossRef][PubMed]
    [Google Scholar]
  7. Donovan D. M.. 2007; Bacteriophage and peptidoglycan degrading enzymes with antimicrobial applications. Recent Pat Biotechnol1:113–122 [CrossRef][PubMed]
    [Google Scholar]
  8. Fischetti V. A.. 2001; Phage antibacterials make a comeback. Nat Biotechnol19:734–735 [CrossRef][PubMed]
    [Google Scholar]
  9. Gao Y., Feng X., Xian M., Wang Q., Zhao G.. 2013; Inducible cell lysis systems in microbial production of bio-based chemicals. Appl Microbiol Biotechnol97:7121–7129 [CrossRef][PubMed]
    [Google Scholar]
  10. Garrett J., Bruno C., Young R.. 1990; Lysis protein S of phage lambda functions in Saccharomyces cerevisiae. J Bacteriol172:7275–7277[PubMed]
    [Google Scholar]
  11. Golec P., Wiczk A., Majchrzyk A., Loś J. M., Węgrzyn G., Loś M.. 2010; A role for accessory genes rI.-1 and rI.1 in the regulation of lysis inhibition by bacteriophage T4. Virus Genes41:459–468 [CrossRef][PubMed]
    [Google Scholar]
  12. Gründling A., Manson M. D., Young R.. 2001; Holins kill without warning. Proc Natl Acad Sci U S A98:9348–9352 [CrossRef][PubMed]
    [Google Scholar]
  13. Gu J., Xu W., Lei L., Huang J., Feng X., Sun C., Du C., Zuo J., Li Y., other authors. 2011; LysGH15, a novel bacteriophage lysin, protects a murine bacteremia model efficiently against lethal methicillin-resistant Staphylococcus aureus infection. J Clin Microbiol49:111–117 [CrossRef][PubMed]
    [Google Scholar]
  14. Gu J., Liu X., Lu R., Li Y., Song J., Lei L., Sun C., Feng X., Du C., other authors. 2012; Complete genome sequence of Staphylococcus aureus bacteriophage GH15. J Virol86:8914–8915 [CrossRef][PubMed]
    [Google Scholar]
  15. Gu J., Liu X., Yang M., Li Y., Sun C., Lu R., Song J., Zhang Q., Lei L., other authors. 2013; Genomic characterization of lytic Staphylococcus aureus phage GH15: providing new clues to intron shift in phages. J Gen Virol94:906–915 [CrossRef][PubMed]
    [Google Scholar]
  16. Gu J., Feng Y., Feng X., Sun C., Lei L., Ding W., Niu F., Jiao L., Yang M., other authors. 2014; Structural and biochemical characterization reveals LysGH15 as an unprecedented “EF-hand-like” calcium-binding phage lysin. PLoS Pathog10:e1004109 [CrossRef][PubMed]
    [Google Scholar]
  17. Hudson J. A., Billington C., Carey-Smith G., Greening G.. 2005; Bacteriophages as biocontrol agents in food. J Food Prot68:426–437[PubMed]
    [Google Scholar]
  18. Krupovic M., Bamford D. H.. 2008; Holin of bacteriophage lambda: structural insights into a membrane lesion. Mol Microbiol69:781–783 [CrossRef][PubMed]
    [Google Scholar]
  19. Lang A. S., Beatty J. T.. 2001; The gene transfer agent of Rhodobacter capsulatus and “constitutive transduction” in prokaryotes. Arch Microbiol175:241–249 [CrossRef][PubMed]
    [Google Scholar]
  20. Merril C. R., Scholl D., Adhya S. L.. 2003; The prospect for bacteriophage therapy in Western medicine. Nat Rev Drug Discov2:489–497 [CrossRef][PubMed]
    [Google Scholar]
  21. Ninomiya Y., Suzuki K., Ishii C., Inoue H.. 2004; Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci U S A101:16391–16391 [CrossRef]
    [Google Scholar]
  22. Pang T., Savva C. G., Fleming K. G., Struck D. K., Young R.. 2009; Structure of the lethal phage pinhole. Proc Natl Acad Sci U S A106:18966–18971 [CrossRef][PubMed]
    [Google Scholar]
  23. Pang T., Park T., Young R.. 2010a; Mapping the pinhole formation pathway of S21. Mol Microbiol78:710–719 [CrossRef][PubMed]
    [Google Scholar]
  24. Pang T., Park T., Young R.. 2010b; Mutational analysis of the S21 pinholin. Mol Microbiol76:68–77 [CrossRef][PubMed]
    [Google Scholar]
  25. Pang T., Fleming T. C., Pogliano K., Young R.. 2013; Visualization of pinholin lesions in vivo. Proc Natl Acad Sci U S A110:E2054–E2063 [CrossRef][PubMed]
    [Google Scholar]
  26. Ranjit D. K., Endres J. L., Bayles K. W.. 2011; Staphylococcus aureus CidA and LrgA proteins exhibit holin-like properties. J Bacteriol193:2468–2476 [CrossRef][PubMed]
    [Google Scholar]
  27. Reddy B. L., Saier M.H., Jr.. 2013; Topological and phylogenetic analyses of bacterial holin families and superfamilies. Biochim Biophys Acta1828:2654–2671 [CrossRef][PubMed]
    [Google Scholar]
  28. Rydman P. S., Bamford D. H.. 2003; Identification and mutational analysis of bacteriophage PRD1 holin protein P35. J Bacteriol185:3795–3803 [CrossRef][PubMed]
    [Google Scholar]
  29. Saier M.H., Jr., Reddy B. L.. 2015; Holins in bacteria, eukaryotes, and archaea: multifunctional xenologues with potential biotechnological and biomedical applications. J Bacteriol197:7–17 [CrossRef][PubMed]
    [Google Scholar]
  30. Santhana Raj L., Hing H. L., Baharudin O., Teh Hamidah Z., Aida Suhana R., Nor Asiha C. P., Vimala B., Paramsarvaran S., Sumarni G., Hanjeet K.. 2007; Mesosomes are a definite event in antibiotic-treated Staphylococcus aureus ATCC 25923. Trop Biomed24:105–109[PubMed]
    [Google Scholar]
  31. Shi Y., Li N., Yan Y., Wang H., Li Y., Lu C., Sun J.. 2012a; Combined antibacterial activity of phage lytic proteins holin and lysin from Streptococcus suis bacteriophage SMP. Curr Microbiol65:28–34 [CrossRef][PubMed]
    [Google Scholar]
  32. Shi Y., Yan Y., Ji W., Du B., Meng X., Wang H., Sun J.. 2012b; Characterization and determination of holin protein of Streptococcus suis bacteriophage SMP in heterologous host. Virol J9:70 [CrossRef][PubMed]
    [Google Scholar]
  33. Steiner M., Bläsi U.. 1993; Charged amino-terminal amino acids affect the lethal capacity of Lambda lysis proteins S107 and S105. Mol Microbiol8:525–533 [CrossRef][PubMed]
    [Google Scholar]
  34. Takác M., Witte A., Bläsi U.. 2005; Functional analysis of the lysis genes of Staphylococcus aureus phage P68 in Escherichia coli. Microbiology151:2331–2342 [CrossRef][PubMed]
    [Google Scholar]
  35. Wang I. N., Smith D. L., Young R.. 2000; Holins: the protein clocks of bacteriophage infections. Annu Rev Microbiol54:799–825 [CrossRef][PubMed]
    [Google Scholar]
  36. Wang I. N., Deaton J., Young R.. 2003; Sizing the holin lesion with an endolysin-beta-galactosidase fusion. J Bacteriol185:779–787 [CrossRef][PubMed]
    [Google Scholar]
  37. Ziedaite G., Daugelavicius R., Bamford J. K. H., Bamford D. H.. 2005; The holin protein of bacteriophage PRD1 forms a pore for small-molecule and endolysin translocation. J Bacteriol187:5397–5405 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000428
Loading
/content/journal/jgv/10.1099/jgv.0.000428
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error