1887

Abstract

Activation of CD8T-cells is an essential part of immune responses elicited by recombinant modified vaccinia virus Ankara (MVA). Strategies to enhance T-cell responses to antigens may be particularly necessary for broadly protective immunization against influenza A virus infections or for candidate vaccines targeting chronic infections and cancer. Here, we tested recombinant MVAs that targeted a model antigen, GFP, to different localizations in infected cells. characterization demonstrated that GFP accumulated in the nucleus (MVA-nls–GFP), associated with cellular membranes (MVA-myr–GFP) or was equally distributed throughout the cell (MVA–GFP). On vaccination, we found significantly higher levels of GFP-specific CD8T-cells in MVA-myr–GFP-vaccinated BALB/c mice than in those immunized with MVA–GFP or MVA-nls–GFP. Thus, myristoyl modification may be a useful strategy to enhance CD8T-cell responses to MVA-delivered target antigens.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000425
2016-04-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/4/934.html?itemId=/content/journal/jgv/10.1099/jgv.0.000425&mimeType=html&fmt=ahah

References

  1. Ahlers J. D., Belyakov I. M.. 2010; Memories that last forever: strategies for optimizing vaccine T-cell memory. Blood115:1678–1689 [CrossRef][PubMed]
    [Google Scholar]
  2. Altenburg A. F., Kreijtz J. H., de Vries R. D., Song F., Fux R., Rimmelzwaan G. F., Sutter G., Volz A.. 2014; Modified vaccinia virus ankara (MVA) as production platform for vaccines against influenza and other viral respiratory diseases. Viruses6:2735–2761 [CrossRef][PubMed]
    [Google Scholar]
  3. Becker P. D., Nörder M., Weissmann S., Ljapoci R., Erfle V., Drexler I., Guzmán C. A.. 2014; Gene expression driven by a strong viral promoter in MVA increases vaccination efficiency by enhancing antibody responses and unmasking CD8+T cell epitopes. Vaccines (Basel)2:581–600 [CrossRef][PubMed]
    [Google Scholar]
  4. Boulanger D., Green P., Jones B., Henriquet G., Hunt L. G., Laidlaw S. M., Monaghan P., Skinner M. A.. 2002; Identification and characterization of three immunodominant structural proteins of fowlpox virus. J Virol76:9844–9855 [CrossRef][PubMed]
    [Google Scholar]
  5. Brandler S., Lepelley A., Desdouits M., Guivel-Benhassine F., Ceccaldi P. E., Lévy Y., Schwartz O., Moris A.. 2010; Preclinical studies of a modified vaccinia virus Ankara-based HIV candidate vaccine: antigen presentation and antiviral effect. J Virol84:5314–5328 [CrossRef][PubMed]
    [Google Scholar]
  6. Bronte V., Carroll M. W., Goletz T. J., Wang M., Overwijk W. W., Marincola F., Rosenberg S. A., Moss B., Restifo N. P.. 1997; Antigen expression by dendritic cells correlates with the therapeutic effectiveness of a model recombinant poxvirus tumor vaccine. Proc Natl Acad Sci U S A94:3183–3188 [CrossRef][PubMed]
    [Google Scholar]
  7. Brown L. E., Kelso A.. 2009; Prospects for an influenza vaccine that induces cross-protective cytotoxic T lymphocytes. Immunol Cell Biol87:300–308 [CrossRef][PubMed]
    [Google Scholar]
  8. Broyles S. S., Li J., Moss B.. 1991; Promoter DNA contacts made by the vaccinia virus early transcription factor. J Biol Chem266:15539–15544[PubMed]
    [Google Scholar]
  9. Chan T. O., Zhang J., Rodeck U., Pascal J. M., Armen R. S., Spring M., Dumitru C. D., Myers V., Li X., other authors. 2011; Resistance of Akt kinases to dephosphorylation through ATP-dependent conformational plasticity. Proc Natl Acad Sci U S A108:E1120–E1127 [CrossRef][PubMed]
    [Google Scholar]
  10. Gasteiger G., Kastenmuller W., Ljapoci R., Sutter G., Drexler I.. 2007; Cross-priming of cytotoxic T cells dictates antigen requisites for modified vaccinia virus Ankara vector vaccines. J Virol81:11925–11936 [CrossRef][PubMed]
    [Google Scholar]
  11. Gilbert S. C.. 2013; Clinical development of modified vaccinia virus Ankara vaccines. Vaccine31:4241–4246 [CrossRef][PubMed]
    [Google Scholar]
  12. Goebel S. J., Johnson G. P., Perkus M. E., Davis S. W., Winslow J. P., Paoletti E.. 1990; The complete DNA sequence of vaccinia virus. Virology179: 247266517–563[CrossRef]
    [Google Scholar]
  13. Gómez C. E., Perdiguero B., García-Arriaza J., Esteban M.. 2013; Clinical applications of attenuated MVA poxvirus strain. Expert Rev Vaccines12:1395–1416 [CrossRef][PubMed]
    [Google Scholar]
  14. Kastenmuller W., Drexler I., Ludwig H., Erfle V., Peschel C., Bernhard H., Sutter G.. 2006; Infection of human dendritic cells with recombinant vaccinia virus MVA reveals general persistence of viral early transcription but distinct maturation-dependent cytopathogenicity. Virology350:276–288 [CrossRef][PubMed]
    [Google Scholar]
  15. Kastenmuller W., Gasteiger G., Gronau J. H., Baier R., Ljapoci R., Busch D. H., Drexler I.. 2007; Cross-competition of CD8+T cells shapes the immunodominance hierarchy during boost vaccination. J Exp Med204:2187–2198 [CrossRef][PubMed]
    [Google Scholar]
  16. Katsafanas G. C., Moss B.. 2007; Colocalization of transcription and translation within cytoplasmic poxvirus factories coordinates viral expression and subjugates host functions. Cell Host Microbe2:221–228 [CrossRef][PubMed]
    [Google Scholar]
  17. Kreijtz J. H., Gilbert S. C., Sutter G.. 2013; Poxvirus vectors. Vaccine31:4217–4219 [CrossRef][PubMed]
    [Google Scholar]
  18. Kreijtz J. H., Goeijenbier M., Moesker F. M., van den Dries L., Goeijenbier S., De Gruyter H. L., Lehmann M. H., Mutsert G., van de Vijver D. A., other authors. 2014; Safety and immunogenicity of a modified-vaccinia-virus-Ankara-based influenza A H5N1 vaccine: a randomised, double-blind phase 1/2a clinical trial. Lancet Infect Dis14:1196–1207 [CrossRef][PubMed]
    [Google Scholar]
  19. Kremer M., Suezer Y., Volz A., Frenz T., Majzoub M., Hanschmann K. M., Lehmann M. H., Kalinke U., Sutter G.. 2012a; Critical role of perforin-dependent CD8+T cell immunity for rapid protective vaccination in a murine model for human smallpox. PLoS Pathog8:e1002557 [CrossRef][PubMed]
    [Google Scholar]
  20. Kremer M., Volz A., Kreijtz J. H., Fux R., Lehmann M. H., Sutter G.. 2012b; Easy and efficient protocols for working with recombinant vaccinia virus MVA. Methods Mol Biol890:59–92 [CrossRef][PubMed]
    [Google Scholar]
  21. Mackett M., Smith G. L., Moss B.. 1982; Vaccinia virus: a selectable eukaryotic cloning and expression vector. Proc Natl Acad Sci U S A79:7415–7419 [CrossRef][PubMed]
    [Google Scholar]
  22. Maurer-Stroh S., Eisenhaber B., Eisenhaber F.. 2002; N-terminal N-myristoylation of proteins: refinement of the sequence motif and its taxon-specific differences. J Mol Biol317:523–540 [CrossRef][PubMed]
    [Google Scholar]
  23. Nörder M., Becker P. D., Drexler I., Link C., Erfle V., Guzmán C. A.. 2010; Modified vaccinia virus Ankara exerts potent immune modulatory activities in a murine model. PLoS One5:e11400 [CrossRef][PubMed]
    [Google Scholar]
  24. Pascutti M. F., Rodríguez A. M., Falivene J., Giavedoni L., Drexler I., Gherardi M. M.. 2011; Interplay between modified vaccinia virus Ankara and dendritic cells: phenotypic and functional maturation of bystander dendritic cells. J Virol85:5532–5545 [CrossRef][PubMed]
    [Google Scholar]
  25. Sebastian S., Gilbert S. C.. 2016; Recombinant modified vaccinia virus Ankara-based malaria vaccines. Expert Rev Vaccines15:91–103 [CrossRef][PubMed]
    [Google Scholar]
  26. Sutter G., Moss B.. 1992; Nonreplicating vaccinia vector efficiently expresses recombinant genes. Proc Natl Acad Sci U S A89:10847–10851 [CrossRef][PubMed]
    [Google Scholar]
  27. Sutter G., Wyatt L. S., Foley P. L., Bennink J. R., Moss B.. 1994; A recombinant vector derived from the host range-restricted and highly attenuated MVA strain of vaccinia virus stimulates protective immunity in mice to influenza virus. Vaccine12:1032–1040 [CrossRef][PubMed]
    [Google Scholar]
  28. Tscharke D. C., Woo W.-P., Sakala I. G., Sidney J., Sette A., Moss D. J., Bennink J. R., Karupiah G., Yewdell J. W.. 2006; Poxvirus CD8+T-cell determinants and cross-reactivity in BALB/c mice. J Virol80:6318–6323 [CrossRef][PubMed]
    [Google Scholar]
  29. Volz A., Sutter G.. 2013; Protective efficacy of modified vaccinia virus Ankara in preclinical studies. Vaccine31:4235–4240 [CrossRef][PubMed]
    [Google Scholar]
  30. Wang P., Palese P., O'Neill R. E.. 1997; The NPI-1/NPI-3 (karyopherin α) binding site on the influenza A virus nucleoprotein NP is a nonconventional nuclear localization signal. J Virol71:1850–1856[PubMed]
    [Google Scholar]
  31. Yang Z., Cao S., Martens C. A., Porcella S. F., Xie Z., Ma M., Shen B., Moss B.. 2015; Deciphering poxvirus gene expression by RNA sequencing and ribosome profiling. J Virol89:6874–6886 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000425
Loading
/content/journal/jgv/10.1099/jgv.0.000425
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error