1887

Abstract

A complex interaction exists between elements of the host innate immune system and viral pathogens. It is essential that the host mount a robust immune response during viral infection and effectively resolve inflammation once the pathogen has been eliminated. Members of the nucleotide-binding domain leucine-rich repeat [NBD-LRR; known as NOD-like receptor (NLR)] family of cytosolic pattern-recognition receptors are essential components of these immunological processes and have diverse functions in the host antiviral immune response. NLRs can be subgrouped based on their general function. The inflammasome-forming subgroup of NLRs are the best-characterized family members, and several have been found to modulate the maturation of IL-1β and IL-18 following virus exposure. However, the members of the regulatory NLR subgroups are significantly less characterized. These NLRs uniquely function to modulate signalling pathways initiated by other families of pattern-recognition receptors, such as Toll-like receptors and/or Rig-I-like helicase receptors. Regulatory NLRs that augment pro-inflammatory pathways include nucleotide-binding oligomerization domain-containing protein 1 (NOD1) and NOD2, which have been shown to form a multiprotein complex termed the NODosome that significantly modulates IFN and NF-κB signalling following viral infection. Conversely, a second subgroup of regulatory NLRs functions to negatively regulate inflammation. These inhibitory NLRs include NLRX1, NLRP12 and NLRC3, which have been shown to interact with TRAF molecules and various kinases to modulate diverse cellular processes. Targeting NLR signalling following infection with a virus represents a novel and promising therapeutic strategy. However, significant effort is still required to translate the current understanding of NLR biology into effective therapies.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000401
2016-04-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/4/825.html?itemId=/content/journal/jgv/10.1099/jgv.0.000401&mimeType=html&fmt=ahah

References

  1. Abbott D. W., Wilkins A., Asara J. M., Cantley L. C.. 2004; The Crohn's disease protein, NOD2, requires RIP2 in order to induce ubiquitinylation of a novel site on NEMO. Curr Biol14:2217–2227 [CrossRef][PubMed]
    [Google Scholar]
  2. Abdul-Sater A. A., Saïd-Sadier N., Lam V. M., Singh B., Pettengill M. A., Soares F., Tattoli I., Lipinski S., Girardin S. E., other authors. 2010; Enhancement of reactive oxygen species production and chlamydial infection by the mitochondrial Nod-like family member NLRX1. J Biol Chem285:41637–41645 [CrossRef][PubMed]
    [Google Scholar]
  3. Agostini L., Martinon F., Burns K., McDermott M. F., Hawkins P. N., Tschopp J.. 2004; NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity20:319–325 [CrossRef][PubMed]
    [Google Scholar]
  4. Allen I. C., Moore C. B., Schneider M., Lei Y., Davis B. K., Scull M. A., Gris D., Roney K. E., Zimmermann A. G., other authors. 2011; NLRX1 protein attenuates inflammatory responses to infection by interfering with the RIG-I-MAVS and TRAF6-NF-κB signaling pathways. Immunity34:854–865 [CrossRef][PubMed]
    [Google Scholar]
  5. Allen I. C., Lich J. D., Arthur J. C., Jania C. M., Roberts R. A., Callaway J. B., Tilley S. L., Ting J. P.. 2012a; Characterization of NLRP12 during the development of allergic airway disease in mice. PLoS One7:e30612 [CrossRef][PubMed]
    [Google Scholar]
  6. Allen I. C., Wilson J. E., Schneider M., Lich J. D., Roberts R. A., Arthur J. C., Woodford R. M., Davis B. K., Uronis J. M., other authors. 2012b; NLRP12 suppresses colon inflammation and tumorigenesis through the negative regulation of noncanonical NF-κB signaling. Immunity36:742–754 [CrossRef][PubMed]
    [Google Scholar]
  7. Anders M., Christian C., McMahon M., McCormick F., Korn W. M.. 2003; Inhibition of the Raf/MEK/ERK pathway up-regulates expression of the coxsackievirus and adenovirus receptor in cancer cells. Cancer Res63:2088–2095[PubMed]
    [Google Scholar]
  8. Arnoult D., Soares F., Tattoli I., Castanier C., Philpott D. J., Girardin S. E.. 2009; An N-terminal addressing sequence targets NLRX1 to the mitochondrial matrix. J Cell Sci122:3161–3168 [CrossRef][PubMed]
    [Google Scholar]
  9. Arthur J. C., Lich J. D., Aziz R. K., Kotb M., Ting J. P.. 2007; Heat shock protein 90 associates with Monarch-1 and regulates its ability to promote degradation of NF-κB-inducing kinase. J Immunol179:6291–6296 [CrossRef][PubMed]
    [Google Scholar]
  10. Asano J., Tada H., Onai N., Sato T., Horie Y., Fujimoto Y., Fukase K., Suzuki A., Mak T. W., Ohteki T.. 2010; Nucleotide oligomerization binding domain-like receptor signaling enhances dendritic cell-mediated cross-priming in vivo. J Immunol184:736–745 [CrossRef][PubMed]
    [Google Scholar]
  11. Askari N., Correa R. G., Zhai D., Reed J. C.. 2012; Expression, purification, and characterization of recombinant NOD1 (NLRC1): a NLR family member. J Biotechnol157:75–81 [CrossRef][PubMed]
    [Google Scholar]
  12. Benko S., Magalhaes J. G., Philpott D. J., Girardin S. E.. 2010; NLRC5 limits the activation of inflammatory pathways. J Immunol185:1681–1691 [CrossRef][PubMed]
    [Google Scholar]
  13. Bortoluci K. R., Medzhitov R.. 2010; Control of infection by pyroptosis and autophagy: role of TLR and NLR. Cell Mol Life Sci67:1643–1651 [CrossRef][PubMed]
    [Google Scholar]
  14. Broz P., Monack D. M.. 2013; Newly described pattern recognition receptors team up against intracellular pathogens. Nat Rev Immunol13:551–565 [CrossRef][PubMed]
    [Google Scholar]
  15. Burdette D. L., Monroe K. M., Sotelo-Troha K., Iwig J. S., Eckert B., Hyodo M., Hayakawa Y., Vance R. E.. 2011; STING is a direct innate immune sensor of cyclic di-GMP. Nature478:515–518 [CrossRef][PubMed]
    [Google Scholar]
  16. Chamaillard M., Hashimoto M., Horie Y., Masumoto J., Qiu S., Saab L., Ogura Y., Kawasaki A., Fukase K., other authors. 2003; An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat Immunol4:702–707 [CrossRef][PubMed]
    [Google Scholar]
  17. Collins S. J., Robertson K. A., Mueller L.. 1990; Retinoic acid-induced granulocytic differentiation of HL-60 myeloid leukemia cells is mediated directly through the retinoic acid receptor (RAR-α). Mol Cell Biol10:2154–2163 [CrossRef][PubMed]
    [Google Scholar]
  18. Conti B. J., Davis B. K., Zhang J., O'connor W. Jr, Williams K. L., Ting J. P.. 2005; CATERPILLER 16.2 (CLR16.2), a novel NBD/LRR family member that negatively regulates T cell function. J Biol Chem280:18375–18385 [CrossRef][PubMed]
    [Google Scholar]
  19. da Silva Correia J., Miranda Y., Leonard N., Ulevitch R.. 2007; SGT1 is essential for Nod1 activation. Proc Natl Acad Sci U S A104:6764–6769 [CrossRef][PubMed]
    [Google Scholar]
  20. Davis B. K., Roberts R. A., Huang M. T., Willingham S. B., Conti B. J., Brickey W. J., Barker B. R., Kwan M., Taxman D. J., other authors. 2011; Cutting edge: NLRC5-dependent activation of the inflammasome. J Immunol186:1333–1337 [CrossRef][PubMed]
    [Google Scholar]
  21. Fernandes-Alnemri T., Yu J. W., Datta P., Wu J., Alnemri E. S.. 2009; AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature458:509–513 [CrossRef][PubMed]
    [Google Scholar]
  22. Ferwerda G., Girardin S. E., Kullberg B. J., Le Bourhis L., de Jong D. J., Langenberg D. M., van Crevel R., Adema G. J., Ottenhoff T. H., other authors. 2005; NOD2 and toll-like receptors are nonredundant recognition systems of Mycobacterium tuberculosis. PLoS Pathog1:279–285 [CrossRef][PubMed]
    [Google Scholar]
  23. Girardin S. E., Tournebize R., Mavris M., Page A. L., Li X., Stark G. R., Bertin J., DiStefano P. S., Yaniv M., other authors. 2001; CARD4/Nod1 mediates NF-κB and JNK activation by invasive Shigella flexneri. EMBO Rep2:736–742 [CrossRef][PubMed]
    [Google Scholar]
  24. Hasegawa M., Fujimoto Y., Lucas P. C., Nakano H., Fukase K., Núñez G., Inohara N.. 2008; A critical role of RICK/RIP2 polyubiquitination in Nod-induced NF-κB activation. EMBO J27:373–383 [CrossRef][PubMed]
    [Google Scholar]
  25. Hisamatsu T., Suzuki M., Reinecker H. C., Nadeau W. J., McCormick B. A., Podolsky D. K.. 2003; CARD15/NOD2 functions as an antibacterial factor in human intestinal epithelial cells. Gastroenterology124:993–1000 [CrossRef][PubMed]
    [Google Scholar]
  26. Hong M., Yoon S. I., Wilson I. A.. 2012; Structure and functional characterization of the RNA-binding element of the NLRX1 innate immune modulator. Immunity36:337–347 [CrossRef][PubMed]
    [Google Scholar]
  27. Hornung V., Ablasser A., Charrel-Dennis M., Bauernfeind F., Horvath G., Caffrey D. R., Latz E., Fitzgerald K. A.. 2009; AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature458:514–518 [CrossRef][PubMed]
    [Google Scholar]
  28. Hruz P., Eckmann L.. 2011; Innate immune defence: NOD2 and autophagy in the pathogenesis of Crohn's disease. Swiss Med Wkly140:w13135[PubMed]
    [Google Scholar]
  29. Hugot J. P., Chamaillard M., Zouali H., Lesage S., Cézard J. P., Belaiche J., Almer S., Tysk C., O'Morain C. A., other authors. 2001; Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature411:599–603 [CrossRef][PubMed]
    [Google Scholar]
  30. Inohara N., Ogura Y., Fontalba A., Gutierrez O., Pons F., Crespo J., Fukase K., Inamura S., Kusumoto S., other authors. 2003; Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn's disease. J Biol Chem278:5509–5512 [CrossRef][PubMed]
    [Google Scholar]
  31. Ishikawa H., Barber G. N.. 2008; STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature455:674–678 [CrossRef][PubMed]
    [Google Scholar]
  32. Ishikawa H., Ma Z., Barber G. N.. 2009; STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature461:788–792 [CrossRef][PubMed]
    [Google Scholar]
  33. Jaworska J., Coulombe F., Downey J., Tzelepis F., Shalaby K., Tattoli I., Berube J., Rousseau S., Martin J. G., other authors. 2014; NLRX1 prevents mitochondrial induced apoptosis and enhances macrophage antiviral immunity by interacting with influenza virus PB1-F2 protein. Proc Natl Acad Sci U S A111:E2110–E2119 [CrossRef][PubMed]
    [Google Scholar]
  34. Jin J., Hu H., Li H. S., Yu J., Xiao Y., Brittain G. C., Zou Q., Cheng X., Mallette F. A., other authors. 2014; Noncanonical NF-κB pathway controls the production of type I interferons in antiviral innate immunity. Immunity40:342–354 [CrossRef][PubMed]
    [Google Scholar]
  35. Jing H., Fang L., Wang D., Ding Z., Luo R., Chen H., Xiao S.. 2014; Porcine reproductive and respiratory syndrome virus infection activates NOD2-RIP2 signal pathway in MARC-145 cells. Virology458-459:162–171 [CrossRef][PubMed]
    [Google Scholar]
  36. Kang M. J., Yoon C. M., Kim B. H., Lee C. M., Zhou Y., Sauler M., Homer R., Dhamija A., Boffa D., other authors. 2015; Suppression of NLRX1 in chronic obstructive pulmonary disease. J Clin Invest125:2458–2462 [CrossRef][PubMed]
    [Google Scholar]
  37. Kapoor A., Forman M., Arav-Boger R.. 2014; Activation of nucleotide oligomerization domain 2 (NOD2) by human cytomegalovirus initiates innate immune responses and restricts virus replication. PLoS One9:e92704 [CrossRef][PubMed]
    [Google Scholar]
  38. Keestra A. M., Bäumler A. J.. 2014; Detection of enteric pathogens by the nodosome. Trends Immunol35:123–130 [CrossRef][PubMed]
    [Google Scholar]
  39. Kim J. G., Lee S. J., Kagnoff M. F.. 2004; Nod1 is an essential signal transducer in intestinal epithelial cells infected with bacteria that avoid recognition by toll-like receptors. Infect Immun72:1487–1495 [CrossRef][PubMed]
    [Google Scholar]
  40. Kim J. J., Simpson N., Klipfel N., Debose R., Barr N., Laine L.. 2010; Cytomegalovirus infection in patients with active inflammatory bowel disease. Dig Dis Sci55:1059–1065 [CrossRef][PubMed]
    [Google Scholar]
  41. Kim Y. G., Park J. H., Reimer T., Baker D. P., Kawai T., Kumar H., Akira S., Wobus C., Núñez G.. 2011; Viral infection augments Nod1/2 signaling to potentiate lethality associated with secondary bacterial infections. Cell Host Microbe9:496–507 [CrossRef][PubMed]
    [Google Scholar]
  42. Kobayashi K. S., Chamaillard M., Ogura Y., Henegariu O., Inohara N., Nuñez G., Flavell R. A.. 2005; Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science307:731–734 [CrossRef][PubMed]
    [Google Scholar]
  43. Krieg A., Correa R. G., Garrison J. B., Le Negrate G., Welsh K., Huang Z., Knoefel W. T., Reed J. C.. 2009; XIAP mediates NOD signaling via interaction with RIP2. Proc Natl Acad Sci U S A106:14524–14529 [CrossRef][PubMed]
    [Google Scholar]
  44. Kufer T. A., Kremmer E., Adam A. C., Philpott D. J., Sansonetti P. J.. 2008; The pattern-recognition molecule Nod1 is localized at the plasma membrane at sites of bacterial interaction. Cell Microbiol10:477–486[PubMed]
    [Google Scholar]
  45. Lee Y. H., Chiu Y. F., Wang W. H., Chang L. K., Liu S. T.. 2008; Activation of the ERK signal transduction pathway by Epstein-Barr virus immediate-early protein Rta. J Gen Virol89:2437–2446 [CrossRef][PubMed]
    [Google Scholar]
  46. Lei Y., Wen H., Yu Y., Taxman D. J., Zhang L., Widman D. G., Swanson K. V., Wen K. W., Damania B., other authors. 2012; The mitochondrial proteins NLRX1 and TUFM form a complex that regulates type I interferon and autophagy. Immunity36:933–946 [CrossRef][PubMed]
    [Google Scholar]
  47. Lei Y., Wen H., Ting J. P.. 2013; The NLR protein, NLRX1, and its partner, TUFM, reduce type I interferon, and enhance autophagy. Autophagy9:432–433 [CrossRef][PubMed]
    [Google Scholar]
  48. Lich J. D., Williams K. L., Moore C. B., Arthur J. C., Davis B. K., Taxman D. J., Ting J. P.. 2007; Monarch-1 suppresses non-canonical NF-κB activation and p52-dependent chemokine expression in monocytes. J Immunol178:1256–1260 [CrossRef][PubMed]
    [Google Scholar]
  49. Liu P., Li K., Garofalo R. P., Brasier A. R.. 2008; Respiratory syncytial virus induces RelA release from cytoplasmic 100-kDa NF-κB2 complexes via a novel retinoic acid-inducible gene-I·NF- κB-inducing kinase signaling pathway. J Biol Chem283:23169–23178 [CrossRef][PubMed]
    [Google Scholar]
  50. Lupfer C., Kanneganti T. D.. 2013; Unsolved mysteries in NLR biology. Front Immunol4:285 [CrossRef][PubMed]
    [Google Scholar]
  51. Lupfer C., Thomas P. G., Kanneganti T. D.. 2014; Nucleotide oligomerization and binding domain 2-dependent dendritic cell activation is necessary for innate immunity and optimal CD8+T cell responses to influenza A virus infection. J Virol88:8946–8955 [CrossRef][PubMed]
    [Google Scholar]
  52. Magalhaes J. G., Fritz J. H., Le Bourhis L., Sellge G., Travassos L. H., Selvanantham T., Girardin S. E., Gommerman J. L., Philpott D. J.. 2008; Nod2-dependent Th2 polarization of antigen-specific immunity. J Immunol181:7925–7935 [CrossRef][PubMed]
    [Google Scholar]
  53. Mangan M. S., Latz E.. 2014; NLRC3 puts the brakes on STING. Immunity40:305–306 [CrossRef][PubMed]
    [Google Scholar]
  54. Mariathasan S., Newton K., Monack D. M., Vucic D., French D. M., Lee W. P., Roose-Girma M., Erickson S., Dixit V. M.. 2004; Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature430:213–218 [CrossRef][PubMed]
    [Google Scholar]
  55. Martinon F., Tschopp J.. 2005; NLRs join TLRs as innate sensors of pathogens. Trends Immunol26:447–454 [CrossRef][PubMed]
    [Google Scholar]
  56. Martinon F., Burns K., Tschopp J.. 2002; The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol Cell10:417–426 [CrossRef][PubMed]
    [Google Scholar]
  57. Mason D. R., Beck P. L., Muruve D. A.. 2012; Nucleotide-binding oligomerization domain-like receptors and inflammasomes in the pathogenesis of non-microbial inflammation and diseases. J Innate Immun4:16–30 [CrossRef][PubMed]
    [Google Scholar]
  58. Matsuoka K., Iwao Y., Mori T., Sakuraba A., Yajima T., Hisamatsu T., Okamoto S., Morohoshi Y., Izumiya M., other authors. 2007; Cytomegalovirus is frequently reactivated and disappears without antiviral agents in ulcerative colitis patients. Am J Gastroenterol102:331–337 [CrossRef][PubMed]
    [Google Scholar]
  59. Meissner T. B., Li A., Biswas A., Lee K. H., Liu Y. J., Bayir E., Iliopoulos D., van den Elsen P. J., Kobayashi K. S.. 2010; NLR family member NLRC5 is a transcriptional regulator of MHC class I genes. Proc Natl Acad Sci U S A107:13794–13799 [CrossRef][PubMed]
    [Google Scholar]
  60. Miao E. A., Leaf I. A., Treuting P. M., Mao D. P., Dors M., Sarkar A., Warren S. E., Wewers M. D., Aderem A.. 2010; Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol11:1136–1142 [CrossRef][PubMed]
    [Google Scholar]
  61. Mo J., Boyle J. P., Howard C. B., Monie T. P., Davis B. K., Duncan J. A.. 2012; Pathogen sensing by nucleotide-binding oligomerization domain-containing protein 2 (NOD2) is mediated by direct binding to muramyl dipeptide and ATP. J Biol Chem287:23057–23067 [CrossRef][PubMed]
    [Google Scholar]
  62. Moore C. B., Bergstralh D. T., Duncan J. A., Lei Y., Morrison T. E., Zimmermann A. G., Accavitti-Loper M. A., Madden V. J., Sun L., other authors. 2008; NLRX1 is a regulator of mitochondrial antiviral immunity. Nature451:573–577 [CrossRef][PubMed]
    [Google Scholar]
  63. Moreira L. O., Smith A. M., DeFreitas A. A., Qualls J. E., El Kasmi K. C., Murray P. J.. 2008; Modulation of adaptive immunity by different adjuvant-antigen combinations in mice lacking Nod2. Vaccine26:5808–5813 [CrossRef][PubMed]
    [Google Scholar]
  64. Ogura Y., Bonen D. K., Inohara N., Nicolae D. L., Chen F. F., Ramos R., Britton H., Moran T., Karaliuskas R., other authors. 2001; A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature411:603–606 [CrossRef][PubMed]
    [Google Scholar]
  65. Opitz B., Püschel A., Schmeck B., Hocke A. C., Rosseau S., Hammerschmidt S., Schumann R. R., Suttorp N., Hippenstiel S.. 2004; Nucleotide-binding oligomerization domain proteins are innate immune receptors for internalized Streptococcus pneumoniae. J Biol Chem279:36426–36432 [CrossRef][PubMed]
    [Google Scholar]
  66. Opitz B., Förster S., Hocke A. C., Maass M., Schmeck B., Hippenstiel S., Suttorp N., Krüll M.. 2005; Nod1-mediated endothelial cell activation by Chlamydophila pneumoniae. Circ Res96:319–326 [CrossRef][PubMed]
    [Google Scholar]
  67. Orlandi C., Forlani G., Tosi G., Accolla R. S.. 2011; Molecular and cellular correlates of the CIITA-mediated inhibition of HTLV-2 Tax-2 transactivator function resulting in loss of viral replication. J Transl Med9:106 [CrossRef][PubMed]
    [Google Scholar]
  68. Pleschka S., Wolff T., Ehrhardt C., Hobom G., Planz O., Rapp U. R., Ludwig S.. 2001; Influenza virus propagation is impaired by inhibition of the Raf/MEK/ERK signalling cascade. Nat Cell Biol3:301–305 [CrossRef][PubMed]
    [Google Scholar]
  69. Popik W., Hesselgesser J. E., Pitha P. M.. 1998; Binding of human immunodeficiency virus type 1 to CD4 and CXCR4 receptors differentially regulates expression of inflammatory genes and activates the MEK/ERK signaling pathway. J Virol72:6406–6413[PubMed]
    [Google Scholar]
  70. Rosenstiel P., Fantini M., Bräutigam K., Kühbacher T., Waetzig G. H., Seegert D., Schreiber S.. 2003; TNF-α and IFN-γ regulate the expression of the NOD2 (CARD15) gene in human intestinal epithelial cells. Gastroenterology124:1001–1009 [CrossRef][PubMed]
    [Google Scholar]
  71. Sabbah A., Chang T. H., Harnack R., Frohlich V., Tominaga K., Dube P. H., Xiang Y., Bose S.. 2009; Activation of innate immune antiviral responses by Nod2. Nat Immunol10:1073–1080 [CrossRef][PubMed]
    [Google Scholar]
  72. Sang Y., Ross C. R., Rowland R. R., Blecha F.. 2008; Toll-like receptor 3 activation decreases porcine arterivirus infection. Viral Immunol21:303–314 [CrossRef][PubMed]
    [Google Scholar]
  73. Schneider M., Zimmermann A. G., Roberts R. A., Zhang L., Swanson K. V., Wen H., Davis B. K., Allen I. C., Holl E. K., other authors. 2012; The innate immune sensor NLRC3 attenuates Toll-like receptor signaling via modification of the signaling adaptor TRAF6 and transcription factor NF-κB. Nat Immunol13:823–831 [CrossRef][PubMed]
    [Google Scholar]
  74. Schroder K., Tschopp J.. 2010; The inflammasomes. Cell140:821–832 [CrossRef][PubMed]
    [Google Scholar]
  75. Schwarz K. B.. 1996; Oxidative stress during viral infection: a review. Free Radic Biol Med21:641–649 [CrossRef][PubMed]
    [Google Scholar]
  76. Senft A. P., Taylor R. H., Lei W., Campbell S. A., Tipper J. L., Martinez M. J., Witt T. L., Clay C. C., Harrod K. S.. 2010; Respiratory syncytial virus impairs macrophage IFN-α/β- and IFN-γ-stimulated transcription by distinct mechanisms. Am J Respir Cell Mol Biol42:404–414 [CrossRef][PubMed]
    [Google Scholar]
  77. Shoji-Kawata S., Levine B.. 2009; Autophagy, antiviral immunity, and viral countermeasures. Biochim Biophys Acta1793:1478–1484 [CrossRef][PubMed]
    [Google Scholar]
  78. Silveira T. N., Zamboni D. S.. 2010; Pore formation triggered by Legionella spp. is an Nlrc4 inflammasome-dependent host cell response that precedes pyroptosis. Infect Immun78:1403–1413 [CrossRef][PubMed]
    [Google Scholar]
  79. Singh K., Poteryakhina A., Zheltukhin A., Bhatelia K., Prajapati P., Sripada L., Tomar D., Singh R., Singh A. K., other authors. 2015; NLRX1 acts as tumor suppressor by regulating TNF-α induced apoptosis and metabolism in cancer cells. Biochim Biophys Acta1853:1073–1086 [CrossRef][PubMed]
    [Google Scholar]
  80. Soares F., Tattoli I., Wortzman M. E., Arnoult D., Philpott D. J., Girardin S. E.. 2013; NLRX1 does not inhibit MAVS-dependent antiviral signalling. Innate Immun19:438–448 [CrossRef][PubMed]
    [Google Scholar]
  81. Soares F., Tattoli I., Rahman M. A., Robertson S. J., Belcheva A., Liu D., Streutker C., Winer S., Winer D. A., other authors. 2014; The mitochondrial protein NLRX1 controls the balance between extrinsic and intrinsic apoptosis. J Biol Chem289:19317–19330 [CrossRef][PubMed]
    [Google Scholar]
  82. Steele A. K., Lee E. J., Manuzak J. A., Dillon S. M., Beckham J. D., McCarter M. D., Santiago M. L., Wilson C. C.. 2014; Microbial exposure alters HIV-1-induced mucosal CD4+T cell death pathways ex vivo. Retrovirology11:14 [CrossRef][PubMed]
    [Google Scholar]
  83. Strober W., Murray P. J., Kitani A., Watanabe T.. 2006; Signalling pathways and molecular interactions of NOD1 and NOD2. Nat Rev Immunol6:9–20 [CrossRef][PubMed]
    [Google Scholar]
  84. Tada H., Aiba S., Shibata K., Ohteki T., Takada H.. 2005; Synergistic effect of Nod1 and Nod2 agonists with Toll-like receptor agonists on human dendritic cells to generate interleukin-12 and T helper type 1 cells. Infect Immun73:7967–7976 [CrossRef][PubMed]
    [Google Scholar]
  85. Tattoli I., Travassos L. H., Carneiro L. A., Magalhaes J. G., Girardin S. E.. 2007; The Nodosome: Nod1 and Nod2 control bacterial infections and inflammation. Semin Immunopathol29:289–301 [CrossRef][PubMed]
    [Google Scholar]
  86. Tattoli I., Carneiro L. A., Jéhanno M., Magalhaes J. G., Shu Y., Philpott D. J., Arnoult D., Girardin S. E.. 2008; NLRX1 is a mitochondrial NOD-like receptor that amplifies NF-κB and JNK pathways by inducing reactive oxygen species production. EMBO Rep9:293–300 [CrossRef][PubMed]
    [Google Scholar]
  87. Tosi G., Forlani G., Andresen V., Turci M., Bertazzoni U., Franchini G., Poli G., Accolla R. S.. 2011; Major histocompatibility complex class II transactivator CIITA is a viral restriction factor that targets human T-cell lymphotropic virus type 1 Tax-1 function and inhibits viral replication. J Virol85:10719–10729 [CrossRef][PubMed]
    [Google Scholar]
  88. Travassos L. H., Carneiro L. A., Girardin S. E., Boneca I. G., Lemos R., Bozza M. T., Domingues R. C., Coyle A. J., Bertin J., other authors. 2005; Nod1 participates in the innate immune response to Pseudomonas aeruginosa. J Biol Chem280:36714–36718 [CrossRef][PubMed]
    [Google Scholar]
  89. Travassos L. H., Carneiro L. A., Girardin S., Philpott D. J.. 2010a; Nod proteins link bacterial sensing and autophagy. Autophagy6:409–411 [CrossRef][PubMed]
    [Google Scholar]
  90. Travassos L. H., Carneiro L. A., Ramjeet M., Hussey S., Kim Y. G., Magalhães J. G., Yuan L., Soares F., Chea E., other authors. 2010b; Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol11:55–62 [CrossRef][PubMed]
    [Google Scholar]
  91. Tsuchiya K., Hara H., Kawamura I., Nomura T., Yamamoto T., Daim S., Dewamitta S. R., Shen Y., Fang R., Mitsuyama M.. 2010; Involvement of absent in melanoma 2 in inflammasome activation in macrophages infected with Listeria monocytogenes. J Immunol185:1186–1195 [CrossRef][PubMed]
    [Google Scholar]
  92. Tuncer S., Fiorillo M. T., Sorrentino R.. 2014; The multifaceted nature of NLRP12. J Leukoc Biol96:991–1000 [CrossRef][PubMed]
    [Google Scholar]
  93. Unger B. L., Ganesan S., Comstock A. T., Faris A. N., Hershenson M. B., Sajjan U. S.. 2014; Nod-like receptor X-1 is required for rhinovirus-induced barrier dysfunction in airway epithelial cells. J Virol88:3705–3718 [CrossRef][PubMed]
    [Google Scholar]
  94. Van Gorp H., Kuchmiy A., Van Hauwermeiren F., Lamkanfi M.. 2014; NOD-like receptors interfacing the immune and reproductive systems. FEBS J281:4568–4582 [CrossRef][PubMed]
    [Google Scholar]
  95. Vissers M., Remijn T., Oosting M., de Jong D. J., Diavatopoulos D. A., Hermans P. W., Ferwerda G.. 2012; Respiratory syncytial virus infection augments NOD2 signaling in an IFN-β-dependent manner in human primary cells. Eur J Immunol42:2727–2735 [CrossRef][PubMed]
    [Google Scholar]
  96. Wagner R. N., Proell M., Kufer T. A., Schwarzenbacher R.. 2009; Evaluation of Nod-like receptor (NLR) effector domain interactions. PLoS One4:e4931 [CrossRef][PubMed]
    [Google Scholar]
  97. Watanabe T., Kitani A., Murray P. J., Strober W.. 2004; NOD2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses. Nat Immunol5:800–808 [CrossRef][PubMed]
    [Google Scholar]
  98. Watanabe T., Asano N., Fichtner-Feigl S., Gorelick P. L., Tsuji Y., Matsumoto Y., Chiba T., Fuss I. J., Kitani A., Strober W.. 2010; NOD1 contributes to mouse host defense against Helicobacter pylori via induction of type I IFN and activation of the ISGF3 signaling pathway. J Clin Invest120:1645–1662 [CrossRef][PubMed]
    [Google Scholar]
  99. Watanabe T., Asano N., Kitani A., Fuss I. J., Chiba T., Strober W.. 2011; Activation of type I IFN signaling by NOD1 mediates mucosal host defense against Helicobacter pylori infection. Gut Microbes2:61–65 [CrossRef][PubMed]
    [Google Scholar]
  100. Wlodarska M., Thaiss C. A., Nowarski R., Henao-Mejia J., Zhang J. P., Brown E. M., Frankel G., Levy M., Katz M. N., other authors. 2014; NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell156:1045–1059 [CrossRef][PubMed]
    [Google Scholar]
  101. Xia X., Cui J., Wang H. Y., Zhu L., Matsueda S., Wang Q., Yang X., Hong J., Songyang Z., other authors. 2011; NLRX1 negatively regulates TLR-induced NF-κB signaling by targeting TRAF6 and IKK. Immunity34:843–853 [CrossRef][PubMed]
    [Google Scholar]
  102. Yang X., Gabuzda D.. 1999; Regulation of human immunodeficiency virus type 1 infectivity by the ERK mitogen-activated protein kinase signaling pathway. J Virol73:3460–3466[PubMed]
    [Google Scholar]
  103. Ye Z., Ting J. P.. 2008; NLR, the nucleotide-binding domain leucine-rich repeat containing gene family. Curr Opin Immunol20:3–9 [CrossRef][PubMed]
    [Google Scholar]
  104. Yeretssian G., Correa R. G., Doiron K., Fitzgerald P., Dillon C. P., Green D. R., Reed J. C., Saleh M.. 2011; Non-apoptotic role of BID in inflammation and innate immunity. Nature474:96–99 [CrossRef][PubMed]
    [Google Scholar]
  105. Zaki M. H., Vogel P., Malireddi R. K., Body-Malapel M., Anand P. K., Bertin J., Green D. R., Lamkanfi M., Kanneganti T. D.. 2011; The NOD-like receptor NLRP12 attenuates colon inflammation and tumorigenesis. Cancer Cell20:649–660 [CrossRef][PubMed]
    [Google Scholar]
  106. Zaki M. H., Man S. M., Vogel P., Lamkanfi M., Kanneganti T. D.. 2014; Salmonella exploits NLRP12-dependent innate immune signaling to suppress host defenses during infection. Proc Natl Acad Sci U S A111:385–390 [CrossRef][PubMed]
    [Google Scholar]
  107. Zhang L., Mo J., Swanson K. V., Wen H., Petrucelli A., Gregory S. M., Zhang Z., Schneider M., Jiang Y., other authors. 2014; NLRC3, a member of the NLR family of proteins, is a negative regulator of innate immune signaling induced by the DNA sensor STING. Immunity40:329–341 [CrossRef][PubMed]
    [Google Scholar]
  108. Zhao L. J., Wang L., Ren H., Cao J., Li L., Ke J. S., Qi Z. T.. 2005; Hepatitis C virus E2 protein promotes human hepatoma cell proliferation through the MAPK/ERK signaling pathway via cellular receptors. Exp Cell Res305:23–32 [CrossRef][PubMed]
    [Google Scholar]
  109. Zhao L. J., Zhang X. L., Zhao P., Cao J., Cao M. M., Zhu S. Y., Liu H. Q., Qi Z. T.. 2006; Up-regulation of ERK and p38 MAPK signaling pathways by hepatitis C virus E2 envelope protein in human T lymphoma cell line. J Leukoc Biol80:424–432 [CrossRef][PubMed]
    [Google Scholar]
  110. Zhao L. J., Wang W., Ren H., Qi Z. T.. 2013; ERK signaling is triggered by hepatitis C virus E2 protein through DC-SIGN. Cell Stress Chaperones18:495–501 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000401
Loading
/content/journal/jgv/10.1099/jgv.0.000401
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error