1887

Abstract

Prior studies have demonstrated that the mouse hepatitis virus (MHV) A59 strain ns2 protein is a member of the 2H phosphoesterase family and exhibits 2′,5′-phosphodiesterase (PDE) activity. During the IFN antiviral response, ns2 cleaves 2′,5′-oligoadenylate (2-5A), a key mediator of RNase L activation, thereby subverting the activation of RNase L and evading host innate immunity. However, the mechanism of 2-5A cleavage by ns2 remains unclear. Here, we present the crystal structure of the MHV ns2 PDE domain and demonstrate a PDE fold similar to that of the cellular protein, a kinase anchoring protein 7 central domain (AKAP7) and rotavirus VP3 carboxy-terminal domain. The structure displays a pair of strictly conserved HxT/Sx motifs and forms a deep, positively charged catalytic groove with β-sheets and an arginine-containing loop. These findings provide insight into the structural basis for 2-5A binding of MHV ns2.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000395
2016-04-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/4/880.html?itemId=/content/journal/jgv/10.1099/jgv.0.000395&mimeType=html&fmt=ahah

References

  1. Adams P. D., Grosse-Kunstleve R. W., Hung L.-W., Ioerger T. R., McCoy A. J., Moriarty N. W., Read R. J., Sacchettini J. C., Sauter N. K., Terwilliger T. C.. 2002; phenix: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr58:1948–1954 [CrossRef][PubMed]
    [Google Scholar]
  2. Brandmann T., Jinek M.. 2015; Crystal structure of the C-terminal 2′,5′-phosphodiesterase domain of group A rotavirus protein VP3. Proteins83:997–1002 [CrossRef][PubMed]
    [Google Scholar]
  3. Cole J. L., Carroll S. S., Blue E. S., Viscount T., Kuo L. C.. 1997; Activation of RNase L by 2′,5′-oligoadenylates. Biophysical characterization. J Biol Chem272:19187–19192 [CrossRef][PubMed]
    [Google Scholar]
  4. Der S. D., Zhou A., Williams B. R., Silverman R. H.. 1998; Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays. Proc Natl Acad Sci U S A95:15623–15628 [CrossRef][PubMed]
    [Google Scholar]
  5. Desselberger U.. 2014; Rotaviruses. Virus Res190:75–96 [CrossRef][PubMed]
    [Google Scholar]
  6. Dong B., Silverman R. H.. 1995; 2-5A-dependent RNase molecules dimerize during activation by 2-5A. J Biol Chem270:4133–4137 [CrossRef][PubMed]
    [Google Scholar]
  7. Emsley P., Cowtan K.. 2004; Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr60:2126–2132 [CrossRef][PubMed]
    [Google Scholar]
  8. Gold M. G., Smith F. D., Scott J. D., Barford D.. 2008; AKAP18 contains a phosphoesterase domain that binds AMP. J Mol Biol375:1329–1343 [CrossRef][PubMed]
    [Google Scholar]
  9. Gusho E., Zhang R., Jha B. K., Thornbrough J. M., Dong B., Gaughan C., Elliott R., Weiss S. R., Silverman R. H.. 2014; Murine AKAP7 has a 2′,5′-phosphodiesterase domain that can complement an inactive murine coronavirus ns2 gene. MBio5:e01312–e01314 [CrossRef][PubMed]
    [Google Scholar]
  10. Han Y., Donovan J., Rath S., Whitney G., Chitrakar A., Korennykh A.. 2014; Structure of human RNase L reveals the basis for regulated RNA decay in the IFN response. Science343:1244–1248 [CrossRef][PubMed]
    [Google Scholar]
  11. Heras B., Martin J. L.. 2005; Post-crystallization treatments for improving diffraction quality of protein crystals. Acta Crystallogr D Biol Crystallogr61:1173–1180 [CrossRef][PubMed]
    [Google Scholar]
  12. Hovanessian A. G., Justesen J.. 2007; The human 2′-5’oligoadenylate synthetase family: unique interferon-inducible enzymes catalyzing 2′-5′ instead of 3′-5′ phosphodiester bond formation. Biochimie89:779–788 [CrossRef][PubMed]
    [Google Scholar]
  13. Huang H., Zeqiraj E., Dong B., Jha B. K., Duffy N. M., Orlicky S., Thevakumaran N., Talukdar M., Pillon M. C., other authors. 2014; Dimeric structure of pseudokinase RNase L bound to 2-5A reveals a basis for interferon-induced antiviral activity. Mol Cell53:221–234 [CrossRef][PubMed]
    [Google Scholar]
  14. Kerr I. M., Brown R. E.. 1978; pppA2’p5’A2’p5’A: an inhibitor of protein synthesis synthesized with an enzyme fraction from interferon-treated cells. Proc Natl Acad Sci U S A75:256–260 [CrossRef][PubMed]
    [Google Scholar]
  15. Kristiansen H., Gad H. H., Eskildsen-Larsen S., Despres P., Hartmann R.. 2011; The oligoadenylate synthetase family: an ancient protein family with multiple antiviral activities. J Interferon Cytokine Res31:41–47 [CrossRef][PubMed]
    [Google Scholar]
  16. Luytjes W., Bredenbeek P. J., Noten A. F., Horzinek M. C., Spaan W. J.. 1988; Sequence of mouse hepatitis virus A59 mRNA 2: indications for RNA recombination between coronaviruses and influenza C virus. Virology166:415–422 [CrossRef][PubMed]
    [Google Scholar]
  17. Ogden K. M., Hu L., Jha B. K., Sankaran B., Weiss S. R., Silverman R. H., Patton J. T., Prasad B. V.. 2015; Structural basis for 2′-5′-oligoadenylate binding and enzyme activity of a viral RNase L antagonist. J Virol89:6633–6645 [CrossRef][PubMed]
    [Google Scholar]
  18. Otwinowski Z., Minor W.. 1997; Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol276:307–326 [CrossRef]
    [Google Scholar]
  19. Schindler C., Darnell J. E. Jr.. 1995; Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Annu Rev Biochem64:621–652 [CrossRef][PubMed]
    [Google Scholar]
  20. Silverman R. H.. 2007; Viral encounters with 2′,5′-oligoadenylate synthetase and RNase L during the interferon antiviral response. J Virol81:12720–12729 [CrossRef][PubMed]
    [Google Scholar]
  21. Silverman R. H., Weiss S. R.. 2014; Viral phosphodiesterases that antagonize double-stranded RNA signaling to RNase L by degrading 2-5A. J Interferon Cytokine Res34:455–463 [CrossRef][PubMed]
    [Google Scholar]
  22. Stark G. R., Kerr I. M., Williams B. R., Silverman R. H., Schreiber R. D.. 1998; How cells respond to interferons. Annu Rev Biochem67:227–264 [CrossRef][PubMed]
    [Google Scholar]
  23. Thakur C. S., Xu Z., Wang Z., Novince Z., Silverman R. H.. 2005; A convenient and sensitive fluorescence resonance energy transfer assay for RNase L and 2′,5′ oligoadenylates. Methods Mol Med116:103–113[PubMed]
    [Google Scholar]
  24. Wang Q., Carmichael G. G.. 2004; Effects of length and location on the cellular response to double-stranded RNA. Microbiol Mol Biol Rev68:432–452 [CrossRef][PubMed]
    [Google Scholar]
  25. Zaki A. M., van Boheemen S., Bestebroer T. M., Osterhaus A. D., Fouchier R. A.. 2012; Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med367:1814–1820 [CrossRef][PubMed]
    [Google Scholar]
  26. Zhang R., Jha B. K., Ogden K. M., Dong B., Zhao L., Elliott R., Patton J. T., Silverman R. H., Weiss S. R.. 2013; Homologous 2′,5′-phosphodiesterases from disparate RNA viruses antagonize antiviral innate immunity. Proc Natl Acad Sci U S A110:13114–13119 [CrossRef][PubMed]
    [Google Scholar]
  27. Zhao L., Rose K. M., Elliott R., Van Rooijen N., Weiss S. R.. 2011; Cell-type-specific type I interferon antagonism influences organ tropism of murine coronavirus. J Virol85:10058–10068 [CrossRef][PubMed]
    [Google Scholar]
  28. Zhao L., Jha B. K., Wu A., Elliott R., Ziebuhr J., Gorbalenya A. E., Silverman R. H., Weiss S. R.. 2012; Antagonism of the interferon-induced OAS-RNase L pathway by murine coronavirus ns2 protein is required for virus replication and liver pathology. Cell Host Microbe11:607–616 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000395
Loading
/content/journal/jgv/10.1099/jgv.0.000395
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error