1887

Abstract

Infection of epithelial surfaces with low-risk human papillomavirus (HPV) types 6 and 11 causes troublesome clinical diseases, such as recurrent respiratory papillomatosis, that carry a significant cost burden to the healthcare system. Despite this, less has been studied at the molecular level for the low-risk HPV types when compared with their high-risk counterparts. Recent studies have shown the ability of the HPV E6 protein to degrade the pro-apoptotic family member Bak in high-risk and betapapillomavirus HPV types, which confers a cytoprotective advantage on E6-expressing cells. It is unknown whether low-risk E6 expression disrupts the apoptosis pathway and confers a cytoprotective advantage as a result of Bak degradation. We tested the abilities of 6E6 and 11E6 to degrade Bak and protect keratinocytes from UV-initiated apoptosis. Both low-risk 6E6 and 11E6 proteins were able to degrade activated Bak following UV treatment of keratinocytes. The degradation of Bak in 6E6- and 11E6-expressing cells occurred through the proteasomal pathway, and protected them from apoptosis, specifically through the intrinsic pathway to the same extent as their high-risk HPV16 E6 counterpart. In conclusion, we have found a new, critical and conserved function of low-risk HPV E6 proteins, i.e. the ability to degrade Bak, which gives them a cytoprotective advantage over normal, uninfected cells by specifically disrupting the intrinsic pathway of apoptosis.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000392
2016-03-01
2020-03-31
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/3/715.html?itemId=/content/journal/jgv/10.1099/jgv.0.000392&mimeType=html&fmt=ahah

References

  1. Assefa Z., Van Laethem A., Garmyn M., Agostinis P.. 2005; Ultraviolet radiation-induced apoptosis in keratinocytes: on the role of cytosolic factors. Biochim Biophys Acta1755:90–106[PubMed]
    [Google Scholar]
  2. Barbosa M. S., Vass W. C., Lowy D. R., Schiller J. T.. 1991; In vitro biological activities of the E6 and E7 genes vary among human papillomaviruses of different oncogenic potential. J Virol65:292–298[PubMed]
    [Google Scholar]
  3. Bartz S. R., Vodicka M. A.. 1997; Production of high-titer human immunodeficiency virus type 1 pseudotyped with vesicular stomatitis virus glycoprotein. Methods12:337–342 [CrossRef][PubMed]
    [Google Scholar]
  4. Cheah P. L., Looi L. M.. 1998; Biology and pathological associations of the human papillomaviruses: a review. Malays J Pathol20:1–10[PubMed]
    [Google Scholar]
  5. Chesson H. W., Ekwueme D. U., Saraiya M., Watson M., Lowy D. R., Markowitz L. E.. 2012; Estimates of the annual direct medical costs of the prevention and treatment of disease associated with human papillomavirus in the United States. Vaccine30:6016–6019 [CrossRef][PubMed]
    [Google Scholar]
  6. Derkay C. S.. 1995; Task force on recurrent respiratory papillomas. A preliminary report. Arch Otolaryngol Head Neck Surg121:1386–1391 [CrossRef][PubMed]
    [Google Scholar]
  7. Dougherty T. J., Gomer C. J., Henderson B. W., Jori G., Kessel D., Korbelik M., Moan J., Peng Q.. 1998; Photodynamic therapy. J Natl Cancer Inst90:889–905 [CrossRef][PubMed]
    [Google Scholar]
  8. Garnett T. O., Filippova M., Duerksen-Hughes P. J.. 2006; Accelerated degradation of FADD and procaspase 8 in cells expressing human papilloma virus 16 E6 impairs TRAIL-mediated apoptosis. Cell Death Differ13:1915–1926 [CrossRef][PubMed]
    [Google Scholar]
  9. Giampieri S., García-Escudero R., Green J., Storey A.. 2004; Human papillomavirus type 77 E6 protein selectively inhibits p53-dependent transcription of proapoptotic genes following UV-B irradiation. Oncogene23:5864–5870 [CrossRef][PubMed]
    [Google Scholar]
  10. Goon P., Sonnex C., Jani P., Stanley M., Sudhoff H.. 2008; Recurrent respiratory papillomatosis: an overview of current thinking and treatment. Eur Arch Otorhinolaryngol265:147–151 [CrossRef][PubMed]
    [Google Scholar]
  11. Gupta S., Takhar P. P. S., Degenkolbe R., Koh C. H., Zimmermann H., Yang C. M., Guan Sim K. I., Hong Hsu S., Bernard H.-U.. 2003; The human papillomavirus type 11 and 16 E6 proteins modulate the cell-cycle regulator and transcription cofactor TRIP-Br1. Virology317:155–164 [CrossRef][PubMed]
    [Google Scholar]
  12. Holloway A., Simmonds M., Azad A., Fox J., Storey A.. 2015;[PubMed] Resistance to UV-induced apoptosis by beta HPV5 E6 involves targeting of activated BAK for proteolysis by recruitment of the HERC1 ubiquitin ligase. Int J Cancer136:2831–2843[CrossRef]
    [Google Scholar]
  13. Howie H. L., Katzenellenbogen R. A., Galloway D. A.. 2009; Papillomavirus E6 proteins. Virology384:324–334 [CrossRef][PubMed]
    [Google Scholar]
  14. Huibregtse J. M., Scheffner M., Howley P. M.. 1993; Localization of the E6-AP regions that direct human papillomavirus E6 binding, association with p53, and ubiquitination of associated proteins. Mol Cell Biol13:4918–4927 [CrossRef][PubMed]
    [Google Scholar]
  15. Huibregtse J. M., Scheffner M., Beaudenon S., Howley P. M.. 1995; A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc Natl Acad Sci U S A92:2563–2567 [CrossRef][PubMed]
    [Google Scholar]
  16. Jackson S., Harwood C., Thomas M., Banks L., Storey A.. 2000; Role of Bak in UV-induced apoptosis in skin cancer and abrogation by HPV E6 proteins. Genes Dev14:3065–3073 [CrossRef][PubMed]
    [Google Scholar]
  17. Jha S., Vande Pol S., Banerjee N. S., Dutta A. B., Chow L. T., Dutta A.. 2010; Destabilization of TIP60 by human papillomavirus E6 results in attenuation of TIP60-dependent transcriptional regulation and apoptotic pathway. Mol Cell38:700–711 [CrossRef][PubMed]
    [Google Scholar]
  18. Kulms D., Schwarz T.. 2000; Molecular mechanisms of UV-induced apoptosis. Photodermatol Photoimmunol Photomed16:195–201 [CrossRef][PubMed]
    [Google Scholar]
  19. Larson D. A., Derkay C. S.. 2010; Epidemiology of recurrent respiratory papillomatosis. APMIS118:450–454 [CrossRef][PubMed]
    [Google Scholar]
  20. Latonen L., Laiho M.. 2005; Cellular UV damage responses – functions of tumor suppressor p53. Biochim Biophys Acta1755:71–89[PubMed]
    [Google Scholar]
  21. Leverrier S., Bergamaschi D., Ghali L., Ola A., Warnes G., Akgül B., Blight K., García-Escudero R., Penna A., other authors. 2007; Role of HPV E6 proteins in preventing UV-B-induced release of pro-apoptotic factors from the mitochondria. Apoptosis12:549–560 [CrossRef][PubMed]
    [Google Scholar]
  22. Naik E., Michalak E. M., Villunger A., Adams J. M., Strasser A.. 2007; Ultraviolet radiation triggers apoptosis of fibroblasts and skin keratinocytes mainly via the BH3-only protein Noxa. J Cell Biol176:415–424 [CrossRef][PubMed]
    [Google Scholar]
  23. Nijhawan D., Fang M., Traer E., Zhong Q., Gao W., Du F., Wang X.. 2003; Elimination of Mcl-1 is required for the initiation of apoptosis following ultraviolet irradiation. Genes Dev17:1475–1486 [CrossRef][PubMed]
    [Google Scholar]
  24. Park J. S., Kim E. J., Lee J. Y., Sin H. S., Namkoong S. E., Um S. J.. 2001; Functional inactivation of p73, a homolog of p53 tumor suppressor protein, by human papillomavirus E6 proteins. Int J Cancer91:822–827 [CrossRef][PubMed]
    [Google Scholar]
  25. Patel D., Huang S. M., Baglia L. A., McCance D. J.. 1999; The E6 protein of human papillomavirus type 16 binds to and inhibits co-activation by CBP and p300. EMBO J18:5061–5072 [CrossRef][PubMed]
    [Google Scholar]
  26. Ploner C., Kofler R., Villunger A.. 2008; Noxa: at the tip of the balance between life and death. Oncogene27:(Suppl 1)S84–S92 [CrossRef][PubMed]
    [Google Scholar]
  27. Scheffner M., Werness B. A., Huibregtse J. M., Levine A. J., Howley P. M.. 1990; The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell63:1129–1136 [CrossRef][PubMed]
    [Google Scholar]
  28. Shikowitz M. J., Abramson A. L., Steinberg B. M., DeVoti J., Bonagura V. R., Mullooly V., Nouri M., Ronn A. M., Inglis A., other authors. 2005; Clinical trial of photodynamic therapy with meso-tetra (hydroxyphenyl) chlorin for respiratory papillomatosis. Arch Otolaryngol Head Neck Surg131:99–105 [CrossRef][PubMed]
    [Google Scholar]
  29. Simmonds M., Storey A.. 2008; Identification of the regions of the HPV 5 E6 protein involved in Bak degradation and inhibition of apoptosis. Int J Cancer123:2260–2266 [CrossRef][PubMed]
    [Google Scholar]
  30. Stamataki S., Nikolopoulos T. P., Korres S., Felekis D., Tzangaroulakis A., Ferekidis E.. 2007; Juvenile recurrent respiratory papillomatosis: still a mystery disease with difficult management. Head Neck29:155–162 [CrossRef][PubMed]
    [Google Scholar]
  31. Takasawa R., Nakamura H., Mori T., Tanuma S.. 2005; Differential apoptotic pathways in human keratinocyte HaCaT cells exposed to UV-B and UVC. Apoptosis10:1121–1130 [CrossRef][PubMed]
    [Google Scholar]
  32. Thomas M., Banks L.. 1998; Inhibition of Bak-induced apoptosis by HPV-18 E6. Oncogene17:2943–2954 [CrossRef][PubMed]
    [Google Scholar]
  33. Thomas M., Banks L.. 1999; Human papillomavirus (HPV) E6 interactions with Bak are conserved amongst E6 proteins from high and low risk HPV types. J Gen Virol80:1513–1517 [CrossRef][PubMed]
    [Google Scholar]
  34. Underbrink M. P., Howie H. L., Bedard K. M., Koop J. I., Galloway D. A.. 2008; E6 proteins from multiple human betapapillomavirus types degrade Bak and protect keratinocytes from apoptosis after UV-B irradiation. J Virol82:10408–10417 [CrossRef][PubMed]
    [Google Scholar]
  35. Willis S. N., Adams J. M.. 2005; Life in the balance: how BH3-only proteins induce apoptosis. Curr Opin Cell Biol17:617–625 [CrossRef][PubMed]
    [Google Scholar]
  36. Willis S. N., Chen L., Dewson G., Wei A., Naik E., Fletcher J. I., Adams J. M., Huang D. C.. 2005; Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev19:1294–1305 [CrossRef][PubMed]
    [Google Scholar]
  37. Yuan C. H., Filippova M., Duerksen-Hughes P.. 2012; Modulation of apoptotic pathways by human papillomaviruses (HPV): mechanisms and implications for therapy. Viruses4:3831–3850 [CrossRef][PubMed]
    [Google Scholar]
  38. zur Hausen H.. 1996; Papillomavirus infections – a major cause of human cancers. Biochim Biophys Acta1288:F55–F78[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000392
Loading
/content/journal/jgv/10.1099/jgv.0.000392
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error