1887

Abstract

Infection of epithelial surfaces with low-risk human papillomavirus (HPV) types 6 and 11 causes troublesome clinical diseases, such as recurrent respiratory papillomatosis, that carry a significant cost burden to the healthcare system. Despite this, less has been studied at the molecular level for the low-risk HPV types when compared with their high-risk counterparts. Recent studies have shown the ability of the HPV E6 protein to degrade the pro-apoptotic family member Bak in high-risk and betapapillomavirus HPV types, which confers a cytoprotective advantage on E6-expressing cells. It is unknown whether low-risk E6 expression disrupts the apoptosis pathway and confers a cytoprotective advantage as a result of Bak degradation. We tested the abilities of 6E6 and 11E6 to degrade Bak and protect keratinocytes from UV-initiated apoptosis. Both low-risk 6E6 and 11E6 proteins were able to degrade activated Bak following UV treatment of keratinocytes. The degradation of Bak in 6E6- and 11E6-expressing cells occurred through the proteasomal pathway, and protected them from apoptosis, specifically through the intrinsic pathway to the same extent as their high-risk HPV16 E6 counterpart. In conclusion, we have found a new, critical and conserved function of low-risk HPV E6 proteins, i.e. the ability to degrade Bak, which gives them a cytoprotective advantage over normal, uninfected cells by specifically disrupting the intrinsic pathway of apoptosis.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000392
2016-03-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/3/715.html?itemId=/content/journal/jgv/10.1099/jgv.0.000392&mimeType=html&fmt=ahah

References

  1. Assefa Z. , Van Laethem A. , Garmyn M. , Agostinis P. . ( 2005;). Ultraviolet radiation-induced apoptosis in keratinocytes: on the role of cytosolic factors. Biochim Biophys Acta 1755: 90–106,[PubMed].
    [Google Scholar]
  2. Barbosa M. S. , Vass W. C. , Lowy D. R. , Schiller J. T. . ( 1991;). In vitro biological activities of the E6 and E7 genes vary among human papillomaviruses of different oncogenic potential. J Virol 65: 292–298,[PubMed].
    [Google Scholar]
  3. Bartz S. R. , Vodicka M. A. . ( 1997;). Production of high-titer human immunodeficiency virus type 1 pseudotyped with vesicular stomatitis virus glycoprotein. Methods 12: 337–342 [CrossRef] [PubMed].
    [Google Scholar]
  4. Cheah P. L. , Looi L. M. . ( 1998;). Biology and pathological associations of the human papillomaviruses: a review. Malays J Pathol 20: 1–10,[PubMed].
    [Google Scholar]
  5. Chesson H. W. , Ekwueme D. U. , Saraiya M. , Watson M. , Lowy D. R. , Markowitz L. E. . ( 2012;). Estimates of the annual direct medical costs of the prevention and treatment of disease associated with human papillomavirus in the United States. Vaccine 30: 6016–6019 [CrossRef] [PubMed].
    [Google Scholar]
  6. Derkay C. S. . ( 1995;). Task force on recurrent respiratory papillomas. A preliminary report. Arch Otolaryngol Head Neck Surg 121: 1386–1391 [CrossRef] [PubMed].
    [Google Scholar]
  7. Dougherty T. J. , Gomer C. J. , Henderson B. W. , Jori G. , Kessel D. , Korbelik M. , Moan J. , Peng Q. . ( 1998;). Photodynamic therapy. J Natl Cancer Inst 90: 889–905 [CrossRef] [PubMed].
    [Google Scholar]
  8. Garnett T. O. , Filippova M. , Duerksen-Hughes P. J. . ( 2006;). Accelerated degradation of FADD and procaspase 8 in cells expressing human papilloma virus 16 E6 impairs TRAIL-mediated apoptosis. Cell Death Differ 13: 1915–1926 [CrossRef] [PubMed].
    [Google Scholar]
  9. Giampieri S. , García-Escudero R. , Green J. , Storey A. . ( 2004;). Human papillomavirus type 77 E6 protein selectively inhibits p53-dependent transcription of proapoptotic genes following UV-B irradiation. Oncogene 23: 5864–5870 [CrossRef] [PubMed].
    [Google Scholar]
  10. Goon P. , Sonnex C. , Jani P. , Stanley M. , Sudhoff H. . ( 2008;). Recurrent respiratory papillomatosis: an overview of current thinking and treatment. Eur Arch Otorhinolaryngol 265: 147–151 [CrossRef] [PubMed].
    [Google Scholar]
  11. Gupta S. , Takhar P. P. S. , Degenkolbe R. , Koh C. H. , Zimmermann H. , Yang C. M. , Guan Sim K. I. , Hong Hsu S. , Bernard H.-U. . ( 2003;). The human papillomavirus type 11 and 16 E6 proteins modulate the cell-cycle regulator and transcription cofactor TRIP-Br1. Virology 317: 155–164 [CrossRef] [PubMed].
    [Google Scholar]
  12. Holloway A. , Simmonds M. , Azad A. , Fox J. , Storey A. . ( 2015;).[PubMed] Resistance to UV-induced apoptosis by beta HPV5 E6 involves targeting of activated BAK for proteolysis by recruitment of the HERC1 ubiquitin ligase. Int J Cancer 136: 2831–2843.[CrossRef]
    [Google Scholar]
  13. Howie H. L. , Katzenellenbogen R. A. , Galloway D. A. . ( 2009;). Papillomavirus E6 proteins. Virology 384: 324–334 [CrossRef] [PubMed].
    [Google Scholar]
  14. Huibregtse J. M. , Scheffner M. , Howley P. M. . ( 1993;). Localization of the E6-AP regions that direct human papillomavirus E6 binding, association with p53, and ubiquitination of associated proteins. Mol Cell Biol 13: 4918–4927 [CrossRef] [PubMed].
    [Google Scholar]
  15. Huibregtse J. M. , Scheffner M. , Beaudenon S. , Howley P. M. . ( 1995;). A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc Natl Acad Sci U S A 92: 2563–2567 [CrossRef] [PubMed].
    [Google Scholar]
  16. Jackson S. , Harwood C. , Thomas M. , Banks L. , Storey A. . ( 2000;). Role of Bak in UV-induced apoptosis in skin cancer and abrogation by HPV E6 proteins. Genes Dev 14: 3065–3073 [CrossRef] [PubMed].
    [Google Scholar]
  17. Jha S. , Vande Pol S. , Banerjee N. S. , Dutta A. B. , Chow L. T. , Dutta A. . ( 2010;). Destabilization of TIP60 by human papillomavirus E6 results in attenuation of TIP60-dependent transcriptional regulation and apoptotic pathway. Mol Cell 38: 700–711 [CrossRef] [PubMed].
    [Google Scholar]
  18. Kulms D. , Schwarz T. . ( 2000;). Molecular mechanisms of UV-induced apoptosis. Photodermatol Photoimmunol Photomed 16: 195–201 [CrossRef] [PubMed].
    [Google Scholar]
  19. Larson D. A. , Derkay C. S. . ( 2010;). Epidemiology of recurrent respiratory papillomatosis. APMIS 118: 450–454 [CrossRef] [PubMed].
    [Google Scholar]
  20. Latonen L. , Laiho M. . ( 2005;). Cellular UV damage responses – functions of tumor suppressor p53. Biochim Biophys Acta 1755: 71–89 [PubMed].
    [Google Scholar]
  21. Leverrier S. , Bergamaschi D. , Ghali L. , Ola A. , Warnes G. , Akgül B. , Blight K. , García-Escudero R. , Penna A. , other authors . ( 2007;). Role of HPV E6 proteins in preventing UV-B-induced release of pro-apoptotic factors from the mitochondria. Apoptosis 12: 549–560 [CrossRef] [PubMed].
    [Google Scholar]
  22. Naik E. , Michalak E. M. , Villunger A. , Adams J. M. , Strasser A. . ( 2007;). Ultraviolet radiation triggers apoptosis of fibroblasts and skin keratinocytes mainly via the BH3-only protein Noxa. J Cell Biol 176: 415–424 [CrossRef] [PubMed].
    [Google Scholar]
  23. Nijhawan D. , Fang M. , Traer E. , Zhong Q. , Gao W. , Du F. , Wang X. . ( 2003;). Elimination of Mcl-1 is required for the initiation of apoptosis following ultraviolet irradiation. Genes Dev 17: 1475–1486 [CrossRef] [PubMed].
    [Google Scholar]
  24. Park J. S. , Kim E. J. , Lee J. Y. , Sin H. S. , Namkoong S. E. , Um S. J. . ( 2001;). Functional inactivation of p73, a homolog of p53 tumor suppressor protein, by human papillomavirus E6 proteins. Int J Cancer 91: 822–827 [CrossRef] [PubMed].
    [Google Scholar]
  25. Patel D. , Huang S. M. , Baglia L. A. , McCance D. J. . ( 1999;). The E6 protein of human papillomavirus type 16 binds to and inhibits co-activation by CBP and p300. EMBO J 18: 5061–5072 [CrossRef] [PubMed].
    [Google Scholar]
  26. Ploner C. , Kofler R. , Villunger A. . ( 2008;). Noxa: at the tip of the balance between life and death. Oncogene 27: (Suppl 1), S84–S92 [CrossRef] [PubMed].
    [Google Scholar]
  27. Scheffner M. , Werness B. A. , Huibregtse J. M. , Levine A. J. , Howley P. M. . ( 1990;). The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63: 1129–1136 [CrossRef] [PubMed].
    [Google Scholar]
  28. Shikowitz M. J. , Abramson A. L. , Steinberg B. M. , DeVoti J. , Bonagura V. R. , Mullooly V. , Nouri M. , Ronn A. M. , Inglis A. , other authors . ( 2005;). Clinical trial of photodynamic therapy with meso-tetra (hydroxyphenyl) chlorin for respiratory papillomatosis. Arch Otolaryngol Head Neck Surg 131: 99–105 [CrossRef] [PubMed].
    [Google Scholar]
  29. Simmonds M. , Storey A. . ( 2008;). Identification of the regions of the HPV 5 E6 protein involved in Bak degradation and inhibition of apoptosis. Int J Cancer 123: 2260–2266 [CrossRef] [PubMed].
    [Google Scholar]
  30. Stamataki S. , Nikolopoulos T. P. , Korres S. , Felekis D. , Tzangaroulakis A. , Ferekidis E. . ( 2007;). Juvenile recurrent respiratory papillomatosis: still a mystery disease with difficult management. Head Neck 29: 155–162 [CrossRef] [PubMed].
    [Google Scholar]
  31. Takasawa R. , Nakamura H. , Mori T. , Tanuma S. . ( 2005;). Differential apoptotic pathways in human keratinocyte HaCaT cells exposed to UV-B and UVC. Apoptosis 10: 1121–1130 [CrossRef] [PubMed].
    [Google Scholar]
  32. Thomas M. , Banks L. . ( 1998;). Inhibition of Bak-induced apoptosis by HPV-18 E6. Oncogene 17: 2943–2954 [CrossRef] [PubMed].
    [Google Scholar]
  33. Thomas M. , Banks L. . ( 1999;). Human papillomavirus (HPV) E6 interactions with Bak are conserved amongst E6 proteins from high and low risk HPV types. J Gen Virol 80: 1513–1517 [CrossRef] [PubMed].
    [Google Scholar]
  34. Underbrink M. P. , Howie H. L. , Bedard K. M. , Koop J. I. , Galloway D. A. . ( 2008;). E6 proteins from multiple human betapapillomavirus types degrade Bak and protect keratinocytes from apoptosis after UV-B irradiation. J Virol 82: 10408–10417 [CrossRef] [PubMed].
    [Google Scholar]
  35. Willis S. N. , Adams J. M. . ( 2005;). Life in the balance: how BH3-only proteins induce apoptosis. Curr Opin Cell Biol 17: 617–625 [CrossRef] [PubMed].
    [Google Scholar]
  36. Willis S. N. , Chen L. , Dewson G. , Wei A. , Naik E. , Fletcher J. I. , Adams J. M. , Huang D. C. . ( 2005;). Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev 19: 1294–1305 [CrossRef] [PubMed].
    [Google Scholar]
  37. Yuan C. H. , Filippova M. , Duerksen-Hughes P. . ( 2012;). Modulation of apoptotic pathways by human papillomaviruses (HPV): mechanisms and implications for therapy. Viruses 4: 3831–3850 [CrossRef] [PubMed].
    [Google Scholar]
  38. zur Hausen H. . ( 1996;). Papillomavirus infections – a major cause of human cancers. Biochim Biophys Acta 1288: F55–F78 [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000392
Loading
/content/journal/jgv/10.1099/jgv.0.000392
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error