1887

Abstract

Avian influenza viruses of subtype H9N2 that are found worldwide are occasionally transmitted to humans and pigs. Furthermore, by co-circulating with other influenza subtypes, they can generate new viruses with the potential to also cause zoonotic infections, as observed in 1997 with H5N1 or more recently with H7N9 and H10N8 viruses. Comparative analysis of the adaptive mutations in polymerases of different viruses indicates that their impact on the phylogenetically related H9N2 and H7N9 polymerases is higher than on the non-related H7N7 and H1N1pdm09 polymerases. Analysis of polymerase reassortants composed of subunits of different viruses demonstrated that the efficient enhancement of polymerase activity by H9N2-PB2 does not depend on PA and PB1. These observations suggest that the PB2 subunit of the H9N2 polymerase has a high adaptive potential and may therefore be an important pandemic risk factor.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000333
2016-01-01
2020-01-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/1/39.html?itemId=/content/journal/jgv/10.1099/jgv.0.000333&mimeType=html&fmt=ahah

References

  1. Bussey K. A., Bousse T. L., Desmet E. A., Kim B., Takimoto T.. 2010; PB2 residue 271 plays a key role in enhanced polymerase activity of influenza A viruses in mammalian host cells. J Virol84:4395–4406 [CrossRef][PubMed]
    [Google Scholar]
  2. Butt K. M., Smith G. J., Chen H., Zhang L. J., Leung Y. H., Xu K. M., Lim W., Webster R. G., Yuen K. Y., other authors. 2005; Human infection with an avian H9N2 influenza A virus in Hong Kong in 2003. J Clin Microbiol43:5760–5767 [CrossRef][PubMed]
    [Google Scholar]
  3. Cauldwell A. V., Long J. S., Moncorgé O., Barclay W. S.. 2014; Viral determinants of influenza A virus host range. J Gen Virol95:1193–1210 [CrossRef][PubMed]
    [Google Scholar]
  4. Chen G. W., Chang S. C., Mok C. K., Lo Y. L., Kung Y. N., Huang J. H., Shih Y. H., Wang J. Y., Chiang C., other authors. 2006; Genomic signatures of human versus avian influenza A viruses. Emerg Infect Dis12:1353–1360 [CrossRef][PubMed]
    [Google Scholar]
  5. Chen H., Yuan H., Gao R., Zhang J., Wang D., Xiong Y., Fan G., Yang F., Li X., other authors. 2014; Clinical and epidemiological characteristics of a fatal case of avian influenza A H10N8 virus infection: a descriptive study. Lancet383:714–721 [CrossRef][PubMed]
    [Google Scholar]
  6. Choi Y. K., Ozaki H., Webby R. J., Webster R. G., Peiris J. S., Poon L., Butt C., Leung Y. H., Guan Y.. 2004; Continuing evolution of H9N2 influenza viruses in Southeastern China. J Virol78:8609–8614 [CrossRef][PubMed]
    [Google Scholar]
  7. Cong Y. L., Pu J., Liu Q. F., Wang S., Zhang G. Z., Zhang X. L., Fan W. X., Brown E. G., Liu J. H.. 2007; Antigenic and genetic characterization of H9N2 swine influenza viruses in China. J Gen Virol88:2035–2041 [CrossRef][PubMed]
    [Google Scholar]
  8. Cong Y. L., Wang C. F., Yan C. M., Peng J. S., Jiang Z. L., Liu J. H.. 2008; Swine infection with H9N2 influenza viruses in China in 2004. Virus Genes36:461–469 [CrossRef][PubMed]
    [Google Scholar]
  9. Czudai-Matwich V., Otte A., Matrosovich M., Gabriel G., Klenk H. D.. 2014; PB2 mutations D701N and S714R promote adaptation of an influenza H5N1 virus to a mammalian host. J Virol88:8735–8742 [CrossRef][PubMed]
    [Google Scholar]
  10. Feng Y., Mao H., Xu C., Jiang J., Chen Y., Yan J., Gao J., Li Z., Xia S., Lu Y.. 2013; Origin and characteristics of internal genes affect infectivity of the novel avian-origin influenza A (H7N9) virus. PLoS One8:e81136 [CrossRef][PubMed]
    [Google Scholar]
  11. Gabriel G., Fodor E.. 2014; Molecular determinants of pathogenicity in the polymerase complex. Curr Top Microbiol Immunol385:35–60[PubMed]
    [Google Scholar]
  12. Gabriel G., Dauber B., Wolff T., Planz O., Klenk H. D., Stech J.. 2005; The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. Proc Natl Acad Sci U S A102:18590–18595 [CrossRef][PubMed]
    [Google Scholar]
  13. Gabriel G., Herwig A., Klenk H. D.. 2008; Interaction of polymerase subunit PB2 and NP with importin alpha1 is a determinant of host range of influenza A virus. PLoS Pathog4:e11 [CrossRef][PubMed]
    [Google Scholar]
  14. Gabriel G., Klingel K., Otte A., Thiele S., Hudjetz B., Arman-Kalcek G., Sauter M., Shmidt T., Rother F., other authors. 2011; Differential use of importin-α isoforms governs cell tropism and host adaptation of influenza virus. Nat Commun2:156 [CrossRef][PubMed]
    [Google Scholar]
  15. Gabriel G., Czudai-Matwich V., Klenk H. D.. 2013; Adaptive mutations in the H5N1 polymerase complex. Virus Res178:53–62 [CrossRef][PubMed]
    [Google Scholar]
  16. Gao R., Cao B., Hu Y., Feng Z., Wang D., Hu W., Chen J., Jie Z., Qiu H., other authors. 2013; Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med368:1888–1897 [CrossRef][PubMed]
    [Google Scholar]
  17. Guan Y., Shortridge K. F., Krauss S., Webster R. G.. 1999; Molecular characterization of H9N2 influenza viruses: were they the donors of the internal genes of H5N1 viruses in Hong Kong?. Proc Natl Acad Sci U S A96:9363–9367 [CrossRef][PubMed]
    [Google Scholar]
  18. Hoffmann E., Neumann G., Kawaoka Y., Hobom G., Webster R. G.. 2000; A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci U S A97:6108–6113 [CrossRef][PubMed]
    [Google Scholar]
  19. Hudjetz B., Gabriel G.. 2012; Human-like PB2 627K influenza virus polymerase activity is regulated by importin-α1 and -α7. PLoS Pathog8:e1002488 [CrossRef][PubMed]
    [Google Scholar]
  20. Klenk H.-D., Matrosovich M., Stech J.. 2008; Avian influenza: molecular mechanisms of pathogenesis and host range. In Animal Viruses: Molecular Biology pp253–303Edited by Mettenleiter T. C., Sobrino F.. Norwich: Caister Academic Press;
    [Google Scholar]
  21. Labadie K., Dos Santos Afonso E., Rameix-Welti M. A., van der Werf S., Naffakh N.. 2007; Host-range determinants on the PB2 protein of influenza A viruses control the interaction between the viral polymerase and nucleoprotein in human cells. Virology362:271–282 [CrossRef][PubMed]
    [Google Scholar]
  22. Li S. Q., Orlich M., Rott R.. 1990; Generation of seal influenza virus variants pathogenic for chickens, because of hemagglutinin cleavage site changes. J Virol64:3297–3303[PubMed]
    [Google Scholar]
  23. Li Z., Chen H., Jiao P., Deng G., Tian G., Li Y., Hoffmann E., Webster R. G., Matsuoka Y., Yu K.. 2005; Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. J Virol79:12058–12064 [CrossRef][PubMed]
    [Google Scholar]
  24. Li C., Hatta M., Watanabe S., Neumann G., Kawaoka Y.. 2008; Compatibility among polymerase subunit proteins is a restricting factor in reassortment between equine H7N7 and human H3N2 influenza viruses. J Virol82:11880–11888 [CrossRef][PubMed]
    [Google Scholar]
  25. Li X., Qi W., He J., Ning Z., Hu Y., Tian J., Jiao P., Xu C., Chen J., other authors. 2012; Molecular basis of efficient replication and pathogenicity of H9N2 avian influenza viruses in mice. PLoS One7:e40118 [CrossRef][PubMed]
    [Google Scholar]
  26. Li Q., Wang X., Sun Z., Hu J., Gao Z., Hao X., Li J., Liu H., Wang X., other authors. 2015; Adaptive mutations in PB2 gene contribute to the high virulence of a natural reassortant H5N2 avian influenza virus in mice. Virus Res210:255–263 [CrossRef][PubMed]
    [Google Scholar]
  27. Matrosovich M., Matrosovich T., Garten W., Klenk H. D.. 2006; New low-viscosity overlay medium for viral plaque assays. Virol J3:63 [CrossRef][PubMed]
    [Google Scholar]
  28. Mehle A., Doudna J. A.. 2009; Adaptive strategies of the influenza virus polymerase for replication in humans. Proc Natl Acad Sci U S A106:21312–21316 [CrossRef][PubMed]
    [Google Scholar]
  29. Naffakh N., Massin P., Escriou N., Crescenzo-Chaigne B., van der Werf S.. 2000; Genetic analysis of the compatibility between polymerase proteins from human and avian strains of influenza A viruses. J Gen Virol81:1283–1291 [CrossRef][PubMed]
    [Google Scholar]
  30. Otte A., Sauter M., Alleva L., Baumgarte S., Klingel K., Gabriel G.. 2011; Differential host determinants contribute to the pathogenesis of 2009 pandemic H1N1 and human H5N1 influenza A viruses in experimental mouse models. Am J Pathol179:230–239 [CrossRef][PubMed]
    [Google Scholar]
  31. Park K. J., Song M. S., Kim E. H., Kwon H. I., Baek Y. H., Choi E. H., Park S. J., Kim S. M., Kim Y. I., other authors. 2015; Molecular characterization of mammalian-adapted Korean-type avian H9N2 virus and evaluation of its virulence in mice. J Microbiol53:570–577 [CrossRef][PubMed]
    [Google Scholar]
  32. Peiris M., Yuen K. Y., Leung C. W., Chan K. H., Ip P. L., Lai R. W., Orr W. K., Shortridge K. F.. 1999; Human infection with influenza H9N2. Lancet354:916–917 [CrossRef][PubMed]
    [Google Scholar]
  33. Qi W., Zhou X., Shi W., Huang L., Xia W., Liu D., Li H., Chen S., Lei F., other authors. 2014; Genesis of the novel human-infecting influenza A(H10N8) virus and potential genetic diversity of the virus in poultry, China. Euro Surveill19:20841 [CrossRef][PubMed]
    [Google Scholar]
  34. Resa-Infante P., Jorba N., Zamarreño N., Fernández Y., Juárez S., Ortín J.. 2008; The host-dependent interaction of alpha-importins with influenza PB2 polymerase subunit is required for virus RNA replication. PLoS One3:e3904 [CrossRef][PubMed]
    [Google Scholar]
  35. Sang X., Wang A., Chai T., He X., Ding J., Gao X., Li Y., Zhang K., Ren Z., other authors. 2015; Rapid emergence of a PB2-E627K substitution confers a virulent phenotype to an H9N2 avian influenza virus during adoption in mice. Arch Virol160:1267–1277 [CrossRef][PubMed]
    [Google Scholar]
  36. Sediri H., Schwalm F., Gabriel G., Klenk H. D.. 2015; Adaptive mutation PB2 D701N promotes nuclear import of influenza vRNPs in mammalian cells. Eur J Cell Biol94:368–374 [CrossRef][PubMed]
    [Google Scholar]
  37. Steel J., Lowen A. C., Mubareka S., Palese P.. 2009; Transmission of influenza virus in a mammalian host is increased by PB2 amino acids 627K or 627E/701N. PLoS Pathog5:e1000252 [CrossRef][PubMed]
    [Google Scholar]
  38. Subbarao E. K., London W., Murphy B. R.. 1993; A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J Virol67:1761–1764[PubMed]
    [Google Scholar]
  39. Subbarao K., Klimov A., Katz J., Regnery H., Lim W., Hall H., Perdue M., Swayne D., Bender C., other authors. 1998; Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science279:393–396 [CrossRef][PubMed]
    [Google Scholar]
  40. Sun Y., Pu J., Jiang Z., Guan T., Xia Y., Xu Q., Liu L., Ma B., Tian F., other authors. 2010; Genotypic evolution and antigenic drift of H9N2 influenza viruses in China from 1994 to 2008. Vet Microbiol146:215–225 [CrossRef][PubMed]
    [Google Scholar]
  41. Tarendeau F., Boudet J., Guilligay D., Mas P. J., Bougault C. M., Boulo S., Baudin F., Ruigrok R. W. H., Daigle N., other authors. 2007; Structure and nuclear import function of the C-terminal domain of influenza virus polymerase PB2 subunit. Nat Struct Mol Biol14:229–233 [CrossRef][PubMed]
    [Google Scholar]
  42. Wang J., Sun Y., Xu Q., Tan Y., Pu J., Yang H., Brown E. G., Liu J.. 2012; Mouse-adapted H9N2 influenza A virus PB2 protein M147L and E627K mutations are critical for high virulence. PLoS One7:e40752 [CrossRef][PubMed]
    [Google Scholar]
  43. Weber M., Sediri H., Felgenhauer U., Binzen I., Bänfer S., Jacob R., Brunotte L., García-Sastre A., Schmid-Burgk J. L., other authors. 2015; Influenza virus adaptation PB2-627K modulates nucleocapsid inhibition by the pathogen sensor RIG-I. Cell Host Microbe17:309–319 [CrossRef][PubMed]
    [Google Scholar]
  44. Wu R., Zhang H., Yang K., Liang W., Xiong Z., Liu Z., Yang X., Shao H., Zheng X., other authors. 2009; Multiple amino acid substitutions are involved in the adaptation of H9N2 avian influenza virus to mice. Vet Microbiol138:85–91 [CrossRef][PubMed]
    [Google Scholar]
  45. Xu K. M., Smith G. J., Bahl J., Duan L., Tai H., Vijaykrishna D., Wang J., Zhang J. X., Li K. S., other authors. 2007; The genesis and evolution of H9N2 influenza viruses in poultry from southern China, 2000 to 2005. J Virol81:10389–10401 [CrossRef][PubMed]
    [Google Scholar]
  46. Yu H., Zhou Y. J., Li G. X., Ma J. H., Yan L. P., Wang B., Yang F. R., Huang M., Tong G. Z.. 2011; Genetic diversity of H9N2 influenza viruses from pigs in China: a potential threat to human health?. Vet Microbiol149:254–261 [CrossRef][PubMed]
    [Google Scholar]
  47. Zhang H., Li X., Guo J., Li L., Chang C., Li Y., Bian C., Xu K., Chen H., Sun B.. 2014; The PB2 E627K mutation contributes to the high polymerase activity and enhanced replication of H7N9 influenza virus. J Gen Virol95:779–786 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000333
Loading
/content/journal/jgv/10.1099/jgv.0.000333
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error