1887

Abstract

Canine influenza viruses (CIVs) circulate continuously in the dog population, providing opportunities for exposure to humans and other species. Although the dog genome has been sequenced, innate immunity in dogs is not well characterized, which limits the understanding of H3N2 canine influenza virus pathogenesis. Equally, how this virus evades the canine host innate immune response to successfully establish infection remains unclear. To analyse the IFN-β response to CIV infection in Madin–Darby canine kidney cells, the canine IFN-β promoter sequence and its positive regulatory domain motifs were first cloned and identified using a luciferase reporter system. Next, we found that infection with the CIV strain GD/12 blocked the IFN-β response primarily by inhibiting the NF-κB and IFN regulatory factor 3 (IRF3) signalling pathways. Expression of GD/12 non-structural protein 1 alone was sufficient to inhibit Sendai virus-induced NF-κB and IRF3 activation by suppressing p65 and IRF3 phosphorylation, suggesting the important role of this protein in the CIV-mediated inhibition of the IFN-β response. These results suggest that inhibition of the IFN-β signalling pathway may have played a role in CIV establishment and spread in dog populations.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000322
2016-01-01
2020-03-31
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/1/18.html?itemId=/content/journal/jgv/10.1099/jgv.0.000322&mimeType=html&fmt=ahah

References

  1. Artursson K., Gobl A., Lindersson M., Johansson M., Alm G.. 1992; Molecular cloning of a gene encoding porcine interferon-β. J Interferon Res12:153–160 [CrossRef][PubMed]
    [Google Scholar]
  2. Centers for Disease Control and Prevention (CDC) 2015; Update on H3N2 Canine Influenza (Dog Flu) Virus. Updated: April 28, 2015. Available at: http://www.cdc.gov/flu/news/canine-influenza-sequencing.htm.
    [Google Scholar]
  3. Crawford P. C., Dubovi E. J., Castleman W. L., Stephenson I., Gibbs E. P., Chen L., Smith C., Hill R. C., Ferro P., other authors. 2005; Transmission of equine influenza virus to dogs. Science310:482–485 [CrossRef][PubMed]
    [Google Scholar]
  4. De los Santos T., de Avila Botton S., Weiblen R., Grubman M. J.. 2006; The leader proteinase of foot-and-mouth disease virus inhibits the induction of beta interferon mRNA and blocks the host innate immune response. J Virol80:1906–1914 [CrossRef][PubMed]
    [Google Scholar]
  5. Didcock L., Young D. F., Goodbourn S., Randall R. E.. 1999; The V protein of simian virus 5 inhibits interferon signalling by targeting STAT1 for proteasome-mediated degradation. J Virol73:9928–9933[PubMed]
    [Google Scholar]
  6. Donelan N. R., Basler C. F., García-Sastre A.. 2003; A recombinant influenza A virus expressing an RNA-binding-defective NS1 protein induces high levels of beta interferon and is attenuated in mice. J Virol77:13257–13266 [CrossRef][PubMed]
    [Google Scholar]
  7. Fensterl V., Grotheer D., Berk I., Schlemminger S., Vallbracht A., Dotzauer A.. 2005; Hepatitis A virus suppresses RIG-I-mediated IRF-3 activation to block induction of beta interferon. J Virol79:10968–10977 [CrossRef][PubMed]
    [Google Scholar]
  8. Fernandez-Sesma A., Marukian S., Ebersole B. J., Kaminski D., Park M. S., Yuen T., Sealfon S. C., García-Sastre A., Moran T. M.. 2006; Influenza virus evades innate and adaptive immunity via the NS1 protein. J Virol80:6295–6304 [CrossRef][PubMed]
    [Google Scholar]
  9. Gack M. U., Albrecht R. A., Urano T., Inn K. S., Huang I. C., Carnero E., Farzan M., Inoue S., Jung J. U., García-Sastre A.. 2009; Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe5:439–449 [CrossRef][PubMed]
    [Google Scholar]
  10. Hale B. G., Randall R. E., Ortín J., Jackson D.. 2008; The multifunctional NS1 protein of influenza A viruses. J Gen Virol89:2359–2376 [CrossRef][PubMed]
    [Google Scholar]
  11. Haller O., Kochs G., Weber F.. 2006; The interferon response circuit: induction and suppression by pathogenic viruses. Virology344:119–130 [CrossRef][PubMed]
    [Google Scholar]
  12. Killip M. J., Fodor E., Randall R. E.. 2015; Influenza virus activation of the interferon system. Virus Res209:11–22 [CrossRef][PubMed]
    [Google Scholar]
  13. Krug R. M., Yuan W., Noah D. L., Latham A. G.. 2003; Intracellular warfare between human influenza viruses and human cells: the roles of the viral NS1 protein. Virology309:181–189 [CrossRef][PubMed]
    [Google Scholar]
  14. Kuo R. L., Zhao C., Malur M., Krug R. M.. 2010; Influenza A virus strains that circulate in humans differ in the ability of their NS1 proteins to block the activation of IRF3 and interferon-β transcription. Virology408:146–158 [CrossRef][PubMed]
    [Google Scholar]
  15. Li S., Shi Z., Jiao P., Zhang G., Zhong Z., Tian W., Long L. P., Cai Z., Zhu X., other authors. 2010; Avian-origin H3N2 canine influenza A viruses in Southern China. Infect Genet Evol10:1286–1288 [CrossRef][PubMed]
    [Google Scholar]
  16. Lin Y., Zhao Y. B., Zeng X. J., Lu C. P., Liu Y. J.. 2012; Complete genome sequence of an H3N2 canine influenza virus from dogs in Jiangsu, China. J Virol86:11402 [CrossRef][PubMed]
    [Google Scholar]
  17. Ludwig S., Wang X., Ehrhardt C., Zheng H., Donelan N., Planz O., Pleschka S., García-Sastre A., Heins G., Wolff T.. 2002; The influenza A virus NS1 protein inhibits activation of Jun N-terminal kinase and AP-1 transcription factors. J Virol76:11166–11171 [CrossRef][PubMed]
    [Google Scholar]
  18. Pauli E. K., Schmolke M., Wolff T., Viemann D., Roth J., Bode J. G., Ludwig S.. 2008; Influenza A virus inhibits type I IFN signaling via NF-κB-dependent induction of SOCS-3 expression. PLoS Pathog4:e1000196 [CrossRef][PubMed]
    [Google Scholar]
  19. Pichlmair A., Schulz O., Tan C. P., Näslund T. I., Liljeström P., Weber F., Reis e Sousa C.. 2006; RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science314:997–1001 [CrossRef][PubMed]
    [Google Scholar]
  20. Reed L. J., Muench H.. 1938; A simple method of estimating fifty percent endpoints. Am J Epidemiol27:493–497
    [Google Scholar]
  21. Rodríguez-Calvo T., Rojas J. M., Martín V., Sevilla N.. 2014; Type I interferon limits the capacity of bluetongue virus to infect hematopoietic precursors and dendritic cells in vitro and in vivo. J Virol88:859–867 [CrossRef][PubMed]
    [Google Scholar]
  22. Rückle A., Haasbach E., Julkunen I., Planz O., Ehrhardt C., Ludwig S.. 2012; The NS1 protein of influenza A virus blocks RIG-I-mediated activation of the noncanonical NF-κB pathway and p52/RelB-dependent gene expression in lung epithelial cells. J Virol86:10211–10217 [CrossRef][PubMed]
    [Google Scholar]
  23. Song D., Kang B., Lee C., Jung K., Ha G., Kang D., Park S., Park B., Oh J.. 2008; Transmission of avian influenza virus (H3N2) to dogs. Emerg Infect Dis14:741–746 [CrossRef][PubMed]
    [Google Scholar]
  24. Song D., Lee C., Kang B., Jung K., Oh T., Kim H., Park B., Oh J.. 2009; Experimental infection of dogs with avian-origin canine influenza A virus (H3N2). Emerg Infect Dis15:56–58 [CrossRef][PubMed]
    [Google Scholar]
  25. Song D. S., An D. J., Moon H. J., Yeom M. J., Jeong H. Y., Jeong W. S., Park S. J., Kim H. K., Han S. Y., other authors. 2011; Interspecies transmission of the canine influenza H3N2 virus to domestic cats in South Korea, 2010. J Gen Virol92:2350–2355 [CrossRef][PubMed]
    [Google Scholar]
  26. Songserm T., Amonsin A., Jam-on R., Sae-Heng N., Pariyothorn N., Payungporn S., Theamboonlers A., Chutinimitkul S., Thanawongnuwech R., Poovorawan Y.. 2006; Fatal avian influenza A H5N1 in a dog. Emerg Infect Dis12:1744–1747 [CrossRef][PubMed]
    [Google Scholar]
  27. Su S., Li H. T., Zhao F. R., Chen J. D., Xie J. X., Chen Z. M., Huang Z., Hu Y. M., Zhang M. Z., other authors. 2013; Avian-origin H3N2 canine influenza virus circulating in farmed dogs in Guangdong, China. Infect Genet Evol14:444–449 [CrossRef][PubMed]
    [Google Scholar]
  28. Su S., Chen J., Jia K., Khan S. U., He S., Fu X., Hong M., Sun L., Qi W., other authors. 2014a; Evidence for subclinical influenza A(H1N1)pdm09 virus infection among dogs in Guangdong Province, China. J Clin Microbiol52:1762–1765 [CrossRef][PubMed]
    [Google Scholar]
  29. Su S., Qi W., Zhou P., Xiao C., Yan Z., Cui J., Jia K., Zhang G., Gray G. C., other authors. 2014b; First evidence of H10N8 Avian influenza virus infections among feral dogs in live poultry markets in Guangdong province, China. Clin Infect Dis59:748–750 [CrossRef][PubMed]
    [Google Scholar]
  30. Sun X., Xu X., Liu Q., Liang D., Li C., He Q., Jiang J., Cui Y., Li J., other authors. 2013; Evidence of avian-like H9N2 influenza A virus among dogs in Guangxi, China. Infect Genet Evol20:471–475 [CrossRef][PubMed]
    [Google Scholar]
  31. Sun Y., Sun S., Ma J., Tan Y., Du L., Shen Y., Mu Q., Pu J., Lin D., Liu J.. 2013; Identification and characterization of avian-origin H3N2 canine influenza viruses in northern China during 2009–2010. Virology435:301–307 [CrossRef][PubMed]
    [Google Scholar]
  32. Sun Y., Shen Y., Zhang X., Wang Q., Liu L., Han X., Jiang B., Wang R., Sun H., other authors. 2014; A serological survey of canine H3N2, pandemic H1N1/09 and human seasonal H3N2 influenza viruses in dogs in China. Vet Microbiol168:193–196 [CrossRef][PubMed]
    [Google Scholar]
  33. Talon J., Horvath C. M., Polley R., Basler C. F., Muster T., Palese P., García-Sastre A.. 2000; Activation of interferon regulatory factor 3 is inhibited by the influenza A virus NS1 protein. J Virol74:7989–7996 [CrossRef][PubMed]
    [Google Scholar]
  34. Tian J., Zhang X., Wu H., Liu C., Liu J., Hu X., Qu L.. 2015; Assessment of the IFN-β response to four feline caliciviruses: infection in CRFK cells. Infect Genet Evol34:352–360 [CrossRef][PubMed]
    [Google Scholar]
  35. van de Sandt C. E., Kreijtz J. H., Rimmelzwaan G. F.. 2012; Evasion of influenza A viruses from innate and adaptive immune responses. Viruses4:1438–1476 [CrossRef][PubMed]
    [Google Scholar]
  36. Wang X., Li M., Zheng H., Muster T., Palese P., Beg A. A., García-Sastre A.. 2000; Influenza A virus NS1 protein prevents activation of NF-κB and induction of alpha/beta interferon. J Virol74:11566–11573 [CrossRef][PubMed]
    [Google Scholar]
  37. Wang D., Fang L., Luo R., Ye R., Fang Y., Xie L., Chen H., Xiao S.. 2010; Foot-and-mouth disease virus leader proteinase inhibits dsRNA-induced type I interferon transcription by decreasing interferon regulatory factor 3/7 in protein levels. Biochem Biophys Res Commun399:72–78 [CrossRef][PubMed]
    [Google Scholar]
  38. Wang D., Fang L., Bi J., Chen Q., Cao L., Luo R., Chen H., Xiao S.. 2011; Foot-and-mouth disease virus leader proteinase inhibits dsRNA-induced RANTES transcription in PK-15 cells. Virus Genes42:388–393 [CrossRef][PubMed]
    [Google Scholar]
  39. Wathelet M. G., Lin C. H., Parekh B. S., Ronco L. V., Howley P. M., Maniatis T.. 1998; Virus infection induces the assembly of coordinately activated transcription factors on the IFN-β enhancer in vivo. Mol Cell1:507–518 [CrossRef][PubMed]
    [Google Scholar]
  40. WHO 2010; Serological diagnosis of influenza by microneutralization assay Geneva: World Health Organization.;http://www.who.int/influenza/gisrs_laboratory/2010_12_06_serological_diagnosis_of_influenza_by_microneutralization_assay.pdf
    [Google Scholar]
  41. Yie J., Senger K., Thanos D.. 1999; Mechanism by which the IFN-β enhanceosome activates transcription. Proc Natl Acad Sci U S A96:13108–13113 [CrossRef][PubMed]
    [Google Scholar]
  42. Yin X., Zhao F. R., Zhou D. H., Wei P., Chang H. Y.. 2014; Serological report of pandemic and seasonal human influenza virus infection in dogs in southern China. Arch Virol159:2877–2882 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000322
Loading
/content/journal/jgv/10.1099/jgv.0.000322
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error