1887

Abstract

Colorectal cancer (CRC) is amongst the leading causes of cancer-related mortality worldwide. Emerging evidence suggests that human cytomegalovirus (HCMV) exists in the tumour tissue of CRC and is associated with disease outcome. To study whether tumoral HCMV is related to viral reactivation in blood, tumour specimens and pre- and post-operative blood samples from CRC patients were collected prospectively. PCR and quantitative PCR were performed to detect HCMV DNA. HCMV IgG and IgM antibodies were measured using a microparticle enzyme immunoassay. Transcription of a spliced HCMV gene transcript was analysed by quantitative reverse transcription PCR. HCMV was detected in 42.2 % (35/83) of the tumour samples, with a low median viral load (30.08, range 2.33–5704 copies per 500 ng genomic DNA). The vast majority (80/81, 98.8 %) of the CRC patients were seropositive for HCMV IgG. HCMV DNA was positive in 11.3 % (22/194) of the pre-operative and 8.9 % (15/168) of the post-operative blood samples. However, presence of HCMV and its viral load in tumours were not associated with the detection or viral loads in blood samples. About 26.67 % (8/30) of the HCMV-positive tumours with available RNA had detectable viral transcripts, whilst none of the blood samples were positive for viral RNA ( < 0.0001). Therefore, presence of HCMV in tumours does not correlate with the serological or viraemic status of CRC patients. Active viral gene transcription occurred in the tumour but not in the blood of CRC patients. HCMV reactivation in CRC patients is possibly due to virus–cancer interactions in the CRC tumour microenvironment.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000315
2016-01-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/1/152.html?itemId=/content/journal/jgv/10.1099/jgv.0.000315&mimeType=html&fmt=ahah

References

  1. Blaheta R. A., Beecken W. D., Engl T., Jonas D., Oppermann E., Hundemer M., Doerr H. W., Scholz M., Cinatl J. Jr. 2004; Human cytomegalovirus infection of tumor cells downregulates NCAM (CD56): a novel mechanism for virus-induced tumor invasiveness. Neoplasia6:323–331 [CrossRef][PubMed]
    [Google Scholar]
  2. Caposio P., Orloff S. L., Streblow D. N.. 2011; The role of cytomegalovirus in angiogenesis. Virus Res157:204–211 [CrossRef][PubMed]
    [Google Scholar]
  3. Chemaly R. F., Torres H. A., Hachem R. Y., Nogueras G. M., Aguilera E. A., Younes A., Luna M. A., Rodriguez G., Tarrand J. J., Raad I. I.. 2005; Cytomegalovirus pneumonia in patients with lymphoma. Cancer104:1213–1220 [CrossRef][PubMed]
    [Google Scholar]
  4. Chen H. P., Jiang J. K., Chen C. Y., Chou T. Y., Chen Y. C., Chang Y. T., Lin S. F., Chan C. H., Yang C. Y., other authors. 2012; Human cytomegalovirus preferentially infects the neoplastic epithelium of colorectal cancer: a quantitative and histological analysis. J Clin Virol54:240–244 [CrossRef][PubMed]
    [Google Scholar]
  5. Chen H. P., Jiang J. K., Lai P. Y., Chen C. Y., Chou T. Y., Chen Y. C., Chan C. H., Lin S. F., Yang C. Y., other authors. 2014; Tumoral presence of human cytomegalovirus is associated with shorter disease-free survival in elderly patients with colorectal cancer and higher levels of intratumoral interleukin-17. Clin Microbiol Infect20:664–671 [CrossRef][PubMed]
    [Google Scholar]
  6. Cobbs C. S.. 2011; Evolving evidence implicates cytomegalovirus as a promoter of malignant glioma pathogenesis. Herpesviridae2:10 [CrossRef][PubMed]
    [Google Scholar]
  7. Dal Monte P., Pignatelli S., Mach M., Landini M. P.. 2001; The product of human cytomegalovirus UL73 is a new polymorphic structural glycoprotein (gpUL73). J Hum Virol4:26–34[PubMed]
    [Google Scholar]
  8. Dimberg J., Hong T. T., Skarstedt M., Löfgren S., Zar N., Matussek A.. 2013; Detection of cytomegalovirus DNA in colorectal tissue from Swedish and Vietnamese patients with colorectal cancer. Anticancer Res33:4947–4950[PubMed]
    [Google Scholar]
  9. Evans C., Dalgleish A. G., Kumar D.. 2006; Review article: immune suppression and colorectal cancer. Aliment Pharmacol Ther24:1163–1177 [CrossRef][PubMed]
    [Google Scholar]
  10. Fisher R. A.. 2009; Cytomegalovirus infection and disease in the new era of immunosuppression following solid organ transplantation. Transpl Infect Dis11:195–202 [CrossRef][PubMed]
    [Google Scholar]
  11. Galon J., Costes A., Sanchez-Cabo F., Kirilovsky A., Mlecnik B., Lagorce-Pagès C., Tosolini M., Camus M., Berger A., other authors. 2006; Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science313:1960–1964 [CrossRef][PubMed]
    [Google Scholar]
  12. Gandhi M. K., Khanna R.. 2004; Human cytomegalovirus: clinical aspects, immune regulation, and emerging treatments. Lancet Infect Dis4:725–738 [CrossRef][PubMed]
    [Google Scholar]
  13. Geder K. M., Lausch R., O'Neill F., Rapp F.. 1976; Oncogenic transformation of human embryo lung cells by human cytomegalovirus. Science192:1134–1137 [CrossRef][PubMed]
    [Google Scholar]
  14. Geder L., Laychock A. M., Gorodecki J., Rapp F.. 1978; Alterations in biological properties of different lines of cytomegalorivus-transformed human embryo lung cells following in vitro cultivation. IARC Sci Publ24:(Part 2)591–601[PubMed]
    [Google Scholar]
  15. Hahn G., Jores R., Mocarski E. S.. 1998; Cytomegalovirus remains latent in a common precursor of dendritic and myeloid cells. Proc Natl Acad Sci U S A95:3937–3942 [CrossRef][PubMed]
    [Google Scholar]
  16. Han X. Y.. 2007; Epidemiologic analysis of reactivated cytomegalovirus antigenemia in patients with cancer. J Clin Microbiol45:1126–1132 [CrossRef][PubMed]
    [Google Scholar]
  17. Harkins L., Volk A. L., Samanta M., Mikolaenko I., Britt W. J., Bland K. I., Cobbs C. S.. 2002; Specific localisation of human cytomegalovirus nucleic acids and proteins in human colorectal cancer. Lancet360:1557–1563 [CrossRef][PubMed]
    [Google Scholar]
  18. Huang E. S., Roche J. K.. 1978; Cytomegalovirus D.N.A. and adenocarcinoma of the colon: evidence for latent viral infection. Lancet311:957–960 [CrossRef][PubMed]
    [Google Scholar]
  19. Ives D. V.. 1997; Cytomegalovirus disease in AIDS. AIDS11:1791–1797 [CrossRef][PubMed]
    [Google Scholar]
  20. Mach M., Kropff B., Dal Monte P., Britt W.. 2000; Complex formation by human cytomegalovirus glycoproteins M (gpUL100) and N (gpUL73). J Virol74:11881–11892 [CrossRef][PubMed]
    [Google Scholar]
  21. Michaelis M., Doerr H. W., Cinatl J. Jr. 2009; Oncomodulation by human cytomegalovirus: evidence becomes stronger. Med Microbiol Immunol (Berl)198:79–81 [CrossRef][PubMed]
    [Google Scholar]
  22. Rahbar A., Peredo I., Solberg N. W., Taher C., Dzabic M., Xu X., Skarman P., Fornara O., Tammik C., other authors. 2015; Discordant humoral and cellular immune responses to Cytomegalovirus (CMV) in glioblastoma patients whose tumors are positive for CMV. OncoImmunology4:e982391 [CrossRef][PubMed]
    [Google Scholar]
  23. Reeves M., Sinclair J.. 2008; Aspects of human cytomegalovirus latency and reactivation. Curr Top Microbiol Immunol325:297–313[PubMed]
    [Google Scholar]
  24. Saga K., Fukui T., Kato Y., Komeda T., Nakase H., Watanabe N., Nishio A., Chiba T.. 2007; Localized cytomegalovirus reactivation after radiotherapy for high-grade gastric lymphoma. Gastrointest Endosc65:545–547 [CrossRef][PubMed]
    [Google Scholar]
  25. Shen Y., Zhu H., Shenk T.. 1997; Human cytomagalovirus IE1 and IE2 proteins are mutagenic and mediate hit-and-run oncogenic transformation in cooperation with the adenovirus E1A proteins. Proc Natl Acad Sci U S A94:3341–3345 [CrossRef][PubMed]
    [Google Scholar]
  26. Sinclair J., Sissons P.. 2006; Latency and reactivation of human cytomegalovirus. J Gen Virol87:1763–1779 [CrossRef][PubMed]
    [Google Scholar]
  27. Söderberg-Nauclér C., Rahbar A., Stragliotto G.. 2013; Survival in patients with glioblastoma receiving valganciclovir. N Engl J Med369:985–986 [CrossRef][PubMed]
    [Google Scholar]
  28. Stragliotto G., Rahbar A., Solberg N. W., Lilja A., Taher C., Orrego A., Bjurman B., Tammik C., Skarman P., other authors. 2013; Effects of valganciclovir as an add-on therapy in patients with cytomegalovirus-positive glioblastoma: a randomized, double-blind, hypothesis-generating study. Int J Cancer133:1204–1213 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000315
Loading
/content/journal/jgv/10.1099/jgv.0.000315
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error