1887

Abstract

Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne pathogen causing significant morbidity and mortality in Asia. NSs protein of SFTSV is known to perturb type I IFN induction and signalling, but the mechanism remains to be fully understood. Here, we showed the suppression of both type I and type III IFN signalling by SFTSV NSs protein is mediated through inhibition of STAT1 phosphorylation and activation. Infection with live SFTSV or expression of NSs potently suppressed IFN-stimulated genes but not NFκB activation. NSs was capable of counteracting the activity of IFN-α1, IFN-β, IFN-λ1 and IFN-λ2. Mechanistically, NSs associated with STAT1 and STAT2, mitigated IFN-β-induced phosphorylation of STAT1 at S727, and reduced the expression and activity of STAT1 protein in IFN-β-treated cells, resulting in the inhibition of STAT1 and STAT2 recruitment to IFN-stimulated promoters. Taken together, SFTSV NSs protein is an IFN antagonist that suppresses phosphorylation and activation of STAT1.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000280
2015-11-01
2020-08-08
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/11/3204.html?itemId=/content/journal/jgv/10.1099/jgv.0.000280&mimeType=html&fmt=ahah

References

  1. Bao C.J., Guo X.L., Qi X., Hu J.L., Zhou M.H., Varma J.K., Cui L.B., Yang H.T., Jiao Y.J., other authors. 2011; A family cluster of infections by a newly recognized bunyavirus in eastern China, 2007: further evidence of person-to-person transmission. Clin Infect Dis 53:1208–1214 [CrossRef][PubMed]
    [Google Scholar]
  2. Billecocq A., Spiegel M., Vialat P., Kohl A., Weber F., Bouloy M., Haller O. 2004; NSs protein of Rift Valley fever virus blocks interferon production by inhibiting host gene transcription. J Virol 78:9798–9806 [CrossRef][PubMed]
    [Google Scholar]
  3. Cárdenas W.B., Loo Y.M., Gale M. Jr, Hartman A.L., Kimberlin C.R., Martínez-Sobrido L., Saphire E.O., Basler C.F. 2006; Ebola virus VP35 protein binds double-stranded RNA and inhibits α/β interferon production induced by RIG-I signaling. J Virol 80:5168–5178 [CrossRef][PubMed]
    [Google Scholar]
  4. Chan C.P., Mak T.Y., Chin K.T., Ng I.O.L., Jin D.Y. 2010; N-linked glycosylation is required for optimal proteolytic activation of membrane-bound transcription factor CREB-H. J Cell Sci 123:1438–1448 [CrossRef][PubMed]
    [Google Scholar]
  5. Chin K.T., Zhou H.J., Wong C.M., Lee J.M., Chan C.P., Qiang B.Q., Yuan J.G., Ng I.O.L., Jin D.Y. 2005; The liver-enriched transcription factor CREB-H is a growth suppressor protein underexpressed in hepatocellular carcinoma. Nucleic Acids Res 33:1859–1873 [CrossRef][PubMed]
    [Google Scholar]
  6. Chun A.C.S., Kok K.H., Jin D.Y. 2013; REV7 is required for anaphase-promoting complex-dependent ubiquitination and degradation of translesion DNA polymerase REV1. Cell Cycle 12:365–378 [CrossRef][PubMed]
    [Google Scholar]
  7. Deng B., Zhang S., Geng Y., Zhang Y., Wang Y., Yao W., Wen Y., Cui W., Zhou Y., other authors. 2012; Cytokine and chemokine levels in patients with severe fever with thrombocytopenia syndrome virus. PLoS One 7:e41365 [CrossRef][PubMed]
    [Google Scholar]
  8. Gai Z.T., Zhang Y., Liang M.F., Jin C., Zhang S., Zhu C.B., Li C., Li X.Y., Zhang Q.F., other authors. 2012; Clinical progress and risk factors for death in severe fever with thrombocytopenia syndrome patients. J Infect Dis 206:1095–1102 [CrossRef][PubMed]
    [Google Scholar]
  9. Habjan M., Pichlmair A. 2015; Cytoplasmic sensing of viral nucleic acids. Curr Opin Virol 11:31–37 [CrossRef][PubMed]
    [Google Scholar]
  10. Hoffmann H.H., Schneider W.M., Rice C.M. 2015; Interferons and viruses: an evolutionary arms race of molecular interactions. Trends Immunol 36:124–138 [CrossRef][PubMed]
    [Google Scholar]
  11. Ikegami T., Makino S. 2011; The pathogenesis of Rift Valley fever. Viruses 3:493–519 [CrossRef][PubMed]
    [Google Scholar]
  12. Ikegami T., Narayanan K., Won S., Kamitani W., Peters C.J., Makino S. 2009; Rift Valley fever virus NSs protein promotes post-transcriptional downregulation of protein kinase PKR and inhibits eIF2α phosphorylation. PLoS Pathog 5:e1000287 [CrossRef][PubMed]
    [Google Scholar]
  13. Jin C., Liang M., Ning J., Gu W., Jiang H., Wu W., Zhang F., Li C., Zhang Q., other authors. 2012; Pathogenesis of emerging severe fever with thrombocytopenia syndrome virus in C57/BL6 mouse model. Proc Natl Acad Sci U S A 109:10053–10058 [CrossRef][PubMed]
    [Google Scholar]
  14. Jin C., Jiang H., Liang M., Han Y., Gu W., Zhang F., Zhu H., Wu W., Chen T., other authors. 2015; SFTS virus infection in nonhuman primates. J Infect Dis 211:915–925 [CrossRef][PubMed]
    [Google Scholar]
  15. Kalveram B., Lihoradova O., Indran S.V., Lokugamage N., Head J.A., Ikegami T. 2013; Rift Valley fever virus NSs inhibits host transcription independently of the degradation of dsRNA-dependent protein kinase PKR. Virology 435:415–424 [CrossRef][PubMed]
    [Google Scholar]
  16. Kim K.H., Yi J., Kim G., Choi S.J., Jun K.I., Kim N.H., Choe P.G., Kim N.J., Lee J.K., Oh M.D. 2013; Severe fever with thrombocytopenia syndrome, South Korea, 2012. Emerg Infect Dis 19:1892–1894 [CrossRef][PubMed]
    [Google Scholar]
  17. Kok K.H., Lui P.Y., Ng M.H.J., Siu K.L., Au S.W.N., Jin D.Y. 2011; The double-stranded RNA-binding protein PACT functions as a cellular activator of RIG-I to facilitate innate antiviral response. Cell Host Microbe 9:299–309 [CrossRef][PubMed]
    [Google Scholar]
  18. Kunsch C., Rosen C.A. 1993; NF-κ B subunit-specific regulation of the interleukin-8 promoter. Mol Cell Biol 13:6137–6146[PubMed] [CrossRef]
    [Google Scholar]
  19. Li D.X. 2015; Severe fever with thrombocytopenia syndrome: a newly discovered emerging infectious disease. Clin Microbiol Infect 21:614–620 [CrossRef][PubMed]
    [Google Scholar]
  20. Lin R., Heylbroeck C., Pitha P.M., Hiscott J. 1998; Virus-dependent phosphorylation of the IRF-3 transcription factor regulates nuclear translocation, transactivation potential, and proteasome-mediated degradation. Mol Cell Biol 18:2986–2996[PubMed] [CrossRef]
    [Google Scholar]
  21. Liu Q., He B., Huang S.Y., Wei F., Zhu X.Q. 2014; Severe fever with thrombocytopenia syndrome, an emerging tick-borne zoonosis. Lancet Infect Dis 14:763–772 [CrossRef][PubMed]
    [Google Scholar]
  22. McMullan L.K., Folk S.M., Kelly A.J., MacNeil A., Goldsmith C.S., Metcalfe M.G., Batten B.C., Albariño C.G., Zaki S.R., other authors. 2012; A new phlebovirus associated with severe febrile illness in Missouri. N Engl J Med 367:834–841 [CrossRef][PubMed]
    [Google Scholar]
  23. Muehlenbachs A., Fata C.R., Lambert A.J., Paddock C.D., Velez J.O., Blau D.M., Staples J.E., Karlekar M.B., Bhatnagar J., other authors. 2014; Heartland virus-associated death in Tennessee. Clin Infect Dis 59:845–850 [CrossRef][PubMed]
    [Google Scholar]
  24. Ng M.H.J., Ho T.H., Kok K.H., Siu K.L., Li J., Jin D.Y. 2011; MIP-T3 is a negative regulator of innate type I IFN response. J Immunol 187:6473–6482 [CrossRef][PubMed]
    [Google Scholar]
  25. Ning Y.J., Wang M., Deng M., Shen S., Liu W., Cao W.C., Deng F., Wang Y.Y., Hu Z., Wang H. 2014; Viral suppression of innate immunity via spatial isolation of TBK1/IKKϵ from mitochondrial antiviral platform. J Mol Cell Biol 6:324–337 [CrossRef][PubMed]
    [Google Scholar]
  26. Ning Y.J., Feng K., Min Y.Q., Cao W.C., Wang M., Deng F., Hu Z., Wang H. 2015; Disruption of type I interferon signaling by the nonstructural protein of severe fever with thrombocytopenia syndrome virus via the hijacking of STAT2 and STAT1 into inclusion bodies. J Virol 89:4227–4236 [CrossRef][PubMed]
    [Google Scholar]
  27. Niu G., Li J., Liang M., Jiang X., Jiang M., Yin H., Wang Z., Li C., Zhang Q., other authors. 2013; Severe fever with thrombocytopenia syndrome virus among domesticated animals, China. Emerg Infect Dis 19:756–763[PubMed]
    [Google Scholar]
  28. Precious B., Childs K., Fitzpatrick-Swallow V., Goodbourn S., Randall R.E. 2005; Simian virus 5 V protein acts as an adaptor, linking DDB1 to STAT2, to facilitate the ubiquitination of STAT1. J Virol 79:13434–13441 [CrossRef][PubMed]
    [Google Scholar]
  29. Qu B., Qi X., Wu X., Liang M., Li C., Cardona C.J., Xu W., Tang F., Li Z., other authors. 2012; Suppression of the interferon and NF-κB responses by severe fever with thrombocytopenia syndrome virus. J Virol 86:8388–8401 [CrossRef][PubMed]
    [Google Scholar]
  30. Randall R.E., Goodbourn S. 2008; Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol 89:1–47 [CrossRef][PubMed]
    [Google Scholar]
  31. Samuel C.E. 2011; Adenosine deaminases acting on RNA (ADARs) are both antiviral and proviral. Virology 411:180–193 [CrossRef][PubMed]
    [Google Scholar]
  32. Santiago F.W., Covaleda L.M., Sanchez-Aparicio M.T., Silvas J.A., Diaz-Vizarreta A.C., Patel J.R., Popov V., Yu X.J., García-Sastre A., Aguilar P.V. 2014; Hijacking of RIG-I signaling proteins into virus-induced cytoplasmic structures correlates with the inhibition of type I interferon responses. J Virol 88:4572–4585 [CrossRef][PubMed]
    [Google Scholar]
  33. Schneider W.M., Chevillotte M.D., Rice C.M. 2014; Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol 32:513–545 [CrossRef][PubMed]
    [Google Scholar]
  34. Schreiber E., Matthias P., Müller M.M., Schaffner W. 1989; Rapid detection of octamer binding proteins with ‘mini-extracts’, prepared from a small number of cells. Nucleic Acids Res 17:6419 [CrossRef][PubMed]
    [Google Scholar]
  35. Sun Y., Jin C., Zhan F., Wang X., Liang M., Zhang Q., Ding S., Guan X., Huo X., other authors. 2012; Host cytokine storm is associated with disease severity of severe fever with thrombocytopenia syndrome. J Infect Dis 206:1085–1094 [CrossRef][PubMed]
    [Google Scholar]
  36. Takahashi T., Maeda K., Suzuki T., Ishido A., Shigeoka T., Tominaga T., Kamei T., Honda M., Ninomiya D., other authors. 2014; The first identification and retrospective study of Severe Fever with Thrombocytopenia Syndrome in Japan. J Infect Dis 209:816–827 [CrossRef][PubMed]
    [Google Scholar]
  37. Takaoka A., Tanaka N., Mitani Y., Miyazaki T., Fujii H., Sato M., Kovarik P., Decker T., Schlessinger J., Taniguchi T. 1999; Protein tyrosine kinase Pyk2 mediates the Jak-dependent activation of MAPK and Stat1 in IFN-γ, but not IFN-α, signaling. EMBO J 18:2480–2488 [CrossRef][PubMed]
    [Google Scholar]
  38. Tang H.M.V., Gao W.W., Chan C.P., Siu Y.T., Wong C.M., Kok K.H., Ching Y.P., Takemori H., Jin D.Y. 2013; LKB1 tumor suppressor and salt-inducible kinases negatively regulate human T-cell leukemia virus type 1 transcription. Retrovirology 10:40 [CrossRef][PubMed]
    [Google Scholar]
  39. Tang H.M.V., Gao W.W., Chan C.P., Cheng Y., Chaudhary V., Deng J.J., Yuen K.S., Wong C.M., Ng I.O.L., other authors. 2014; Requirement of CRTC1 coactivator for hepatitis B virus transcription. Nucleic Acids Res 42:12455–12468 [CrossRef][PubMed]
    [Google Scholar]
  40. Walter C.T., Barr J.N. 2011; Recent advances in the molecular and cellular biology of bunyaviruses. J Gen Virol 92:2467–2484 [CrossRef][PubMed]
    [Google Scholar]
  41. Wang J., Selleck P., Yu M., Ha W., Rootes C., Gales R., Wise T., Crameri S., Chen H., other authors. 2014; Novel phlebovirus with zoonotic potential isolated from ticks. Emerg Infect Dis 20:1040–1043[PubMed] [CrossRef]
    [Google Scholar]
  42. Wen Z., Zhong Z., Darnell J.E., Jr. 1995; Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell 82:241–250 [CrossRef][PubMed]
    [Google Scholar]
  43. Wickremasinghe M.I., Thomas L.H., O'Kane C.M., Uddin J., Friedland J.S. 2004; Transcriptional mechanisms regulating alveolar epithelial cell-specific CCL5 secretion in pulmonary tuberculosis. J Biol Chem 279:27199–27210 [CrossRef][PubMed]
    [Google Scholar]
  44. Wong L.H., Sim H., Chatterjee-Kishore M., Hatzinisiriou I., Devenish R.J., Stark G., Ralph S.J. 2002; Isolation and characterization of a human STAT1 gene regulatory element. Inducibility by interferon (IFN) types I and II and role of IFN regulatory factor-1. J Biol Chem 277:19408–19417 [CrossRef][PubMed]
    [Google Scholar]
  45. Wu X., Qi X., Qu B., Zhang Z., Liang M., Li C., Cardona C.J., Li D., Xing Z. 2014; Evasion of antiviral immunity through sequestering of TBK1/IKKϵ/IRF3 into viral inclusion bodies. J Virol 88:3067–3076 [CrossRef][PubMed]
    [Google Scholar]
  46. Yu X.J., Liang M.F., Zhang S.Y., Liu Y., Li J.D., Sun Y.L., Zhang L., Zhang Q.F., Popov V.L., other authors. 2011; Fever with thrombocytopenia associated with a novel bunyavirus in China. N Engl J Med 364:1523–1532 [CrossRef][PubMed]
    [Google Scholar]
  47. Yuen K.S., Chan C.P., Wong N.H., Ho C.H., Ho T.H., Lei T., Deng W., Tsao S.W., Chen H., other authors. 2015; CRISPR/Cas9-mediated genome editing of Epstein-Barr virus in human cells. J Gen Virol 96:626–636 [CrossRef][PubMed]
    [Google Scholar]
  48. Yun S.M., Lee W.G., Ryou J., Yang S.C., Park S.W., Roh J.Y., Lee Y.J., Park C., Han M.G. 2014; Severe fever with thrombocytopenia syndrome virus in ticks collected from humans, South Korea, 2013. Emerg Infect Dis 20:1358–1361 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000280
Loading
/content/journal/jgv/10.1099/jgv.0.000280
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error