1887

Abstract

Human respiratory syncytial virus (RSV) is a major health challenge in the young and elderly owing to the lack of a safe and effective vaccine and proven antiviral drugs. Understanding the mechanisms by which viral genes and proteins modulate the host response to infection is critical for identifying novel disease intervention strategies. In this study, the RSV non-structural protein NS1 was shown to suppress miR-24 expression during infection. Lack of NS1 was linked to increased expression of miR-24, whilst NS1 overexpression suppressed miR-24 expression. NS1 was found to induce Kruppel-like factor 6 (KLF6), a transcription factor that positively regulates the transforming growth factor (TGF)-β pathway to induce cell cycle arrest. Silencing of KLF6 led to increased miR-24 expression via downregulation of TGF-β. Treatment with exogenous TGF-β suppressed miR-24 expression and induced KLF6. Confocal microscopy showed co-localization of KLF6 and RSV NS1. These findings indicated that RSV NS1 interacts with KLF6 and modulates miR-24 expression and TGF-β, which facilitates RSV replication.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000261
2015-11-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/11/3179.html?itemId=/content/journal/jgv/10.1099/jgv.0.000261&mimeType=html&fmt=ahah

References

  1. Andreoli V. , Gehrau R.C. , Bocco J.L. . ( 2010;). Biology of Krüppel-like factor 6 transcriptional regulator in cell life and death. IUBMB Life 62: 896–905 [CrossRef] [PubMed].
    [Google Scholar]
  2. Atreya P.L. , Peeples M.E. , Collins P.L. . ( 1998;). The NS1 protein of human respiratory syncytial virus is a potent inhibitor of minigenome transcription and RNA replication. J Virol 72: 1452–1461 [PubMed].
    [Google Scholar]
  3. Bakre A. , Mitchell P. , Coleman J.K. , Jones L.P. , Saavedra G. , Teng M. , Tompkins S.M. , Tripp R.A. . ( 2012;). Respiratory syncytial virus modifies microRNAs regulating host genes that affect virus replication. J Gen Virol 93: 2346–2356 [CrossRef] [PubMed].
    [Google Scholar]
  4. Basak A. , Zhong M. , Munzer J.S. , Chrétien M. , Seidah N.G. . ( 2001;). Implication of the proprotein convertases furin, PC5 and PC7 in the cleavage of surface glycoproteins of Hong Kong, Ebola and respiratory syncytial viruses: a comparative analysis with fluorogenic peptides. Biochem J 353: 537–545 [CrossRef] [PubMed].
    [Google Scholar]
  5. Bolt G. , Pedersen L.O. , Birkeslund H.H. . ( 2000;). Cleavage of the respiratory syncytial virus fusion protein is required for its surface expression: role of furin. Virus Res 68: 25–33 [CrossRef] [PubMed].
    [Google Scholar]
  6. Bossert B. , Marozin S. , Conzelmann K.K. . ( 2003;). Nonstructural proteins NS1 and NS2 of bovine respiratory syncytial virus block activation of interferon regulatory factor 3. J Virol 77: 8661–8668 [CrossRef] [PubMed].
    [Google Scholar]
  7. Boyapalle S. , Wong T. , Garay J. , Teng M. , San Juan-Vergara H. , Mohapatra S. , Mohapatra S. . ( 2012;). Respiratory syncytial virus NS1 protein colocalizes with mitochondrial antiviral signaling protein MAVS following infection. PLoS One 7: e29386 [CrossRef] [PubMed].
    [Google Scholar]
  8. Budge P.J. , Graham B.S. . ( 2004;). Inhibition of respiratory syncytial virus by RhoA-derived peptides: implications for the development of improved antiviral agents targeting heparin-binding viruses. J Antimicrob Chemother 54: 299–302 [CrossRef] [PubMed].
    [Google Scholar]
  9. Cao M. , Seike M. , Soeno C. , Mizutani H. , Kitamura K. , Minegishi Y. , Noro R. , Yoshimura A. , Cai L. , Gemma A. . ( 2012;). MiR-23a regulates TGF-β-induced epithelial–mesenchymal transition by targeting E-cadherin in lung cancer cells. Int J Oncol 41: 869–875 [PubMed].
    [Google Scholar]
  10. CDC ( 2008;). Respiratory syncytial virus activity – United States, July 2007–December 2008. MMWR Morb Mortal Wkly Rep 57: 1355–1358 [PubMed].
    [Google Scholar]
  11. CDC ( 2013;). Respiratory syncytial virus activity – United States, July 2011–January 2013. MMWR Morb Mortal Wkly Rep 62: 141–144 [PubMed].
    [Google Scholar]
  12. Cheng A.M. , Byrom M.W. , Shelton J. , Ford L.P. . ( 2005;). Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 33: 1290–1297 [CrossRef] [PubMed].
    [Google Scholar]
  13. Chhabra R. , Dubey R. , Saini N. . ( 2010;). Cooperative and individualistic functions of the microRNAs in the miR-23a∼27a∼24-2 cluster and its implication in human diseases. Mol Cancer 9: 232 [CrossRef] [PubMed].
    [Google Scholar]
  14. Date D. , Das R. , Narla G. , Simon D.I. , Jain M.K. , Mahabeleshwar G.H. . ( 2014;). Kruppel-like transcription factor 6 regulates inflammatory macrophage polarization. J Biol Chem 289: 10318–10329 [CrossRef] [PubMed].
    [Google Scholar]
  15. de Faria I.C.J. , de Faria E.J. , Toro A.A.D.C. , Ribeiro J.D. , Bertuzzo C.S. . ( 2008;). Association of TGF-beta1, CD14, IL-4, IL-4R and ADAM33 gene polymorphisms with asthma severity in children and adolescents. J Pediatr (Rio J) 84: 203–210 [PubMed].
    [Google Scholar]
  16. Eis P.S. , Tam W. , Sun L. , Chadburn A. , Li Z. , Gomez M.F. , Lund E. , Dahlberg J.E. . ( 2005;). Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci U S A 102: 3627–3632 [CrossRef] [PubMed].
    [Google Scholar]
  17. Elliott J. , Lynch O.T. , Suessmuth Y. , Qian P. , Boyd C.R. , Burrows J.F. , Buick R. , Stevenson N.J. , Touzelet O. , other authors . ( 2007;). Respiratory syncytial virus NS1 protein degrades STAT2 by using the Elongin-Cullin E3 ligase. J Virol 81: 3428–3436 [CrossRef] [PubMed].
    [Google Scholar]
  18. Fong C.Y. , Pang L. , Holland E. , Knox A.J. . ( 2000;). TGF-beta1 stimulates IL-8 release, COX-2 expression, and PGE2 release in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 279: L201–L207 [PubMed].
    [Google Scholar]
  19. Foronjy R.F. , Dabo A.J. , Taggart C.C. , Weldon S. , Geraghty P. . ( 2014;). Respiratory syncytial virus infections enhance cigarette smoke induced COPD in mice. PLoS One 9: e90567 [CrossRef] [PubMed].
    [Google Scholar]
  20. Friedman R.C. , Farh K.K. , Burge C.B. , Bartel D.P. . ( 2009;). Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19: 92–105 [CrossRef] [PubMed].
    [Google Scholar]
  21. Gagliardo R. , Chanez P. , Gjomarkaj M. , La Grutta S. , Bonanno A. , Montalbano A.M. , Di Sano C. , Albano G.D. , Gras D. , other authors . ( 2013;). The role of transforming growth factor-β1 in airway inflammation of childhood asthma. Int J Immunopathol Pharmacol 26: 725–738 [PubMed].
    [Google Scholar]
  22. Garcia D.M. , Baek D. , Shin C. , Bell G.W. , Grimson A. , Bartel D.P. . ( 2011;). Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat Struct Mol Biol 18: 1139–1146 [CrossRef] [PubMed].
    [Google Scholar]
  23. Gibbs J.D. , Ornoff D.M. , Igo H.A. , Zeng J.Y. , Imani F. . ( 2009;). Cell cycle arrest by transforming growth factor beta1 enhances replication of respiratory syncytial virus in lung epithelial cells. J Virol 83: 12424–12431 [CrossRef] [PubMed].
    [Google Scholar]
  24. Goswami R. , Majumdar T. , Dhar J. , Chattopadhyay S. , Bandyopadhyay S.K. , Verbovetskaya V. , Sen G.C. , Barik S. . ( 2013;). Viral degradasome hijacks mitochondria to suppress innate immunity. Cell Res 23: 1025–1042 [CrossRef] [PubMed].
    [Google Scholar]
  25. Grimson A. , Farh K.K. , Johnston W.K. , Garrett-Engele P. , Lim L.P. , Bartel D.P. . ( 2007;). MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27: 91–105 [CrossRef] [PubMed].
    [Google Scholar]
  26. Hall C.B. , Weinberg G.A. , Iwane M.K. , Blumkin A.K. , Edwards K.M. , Staat M.A. , Auinger P. , Griffin M.R. , Poehling K.A. , other authors . ( 2009;). The burden of respiratory syncytial virus infection in young children. N Engl J Med 360: 588–598 [CrossRef] [PubMed].
    [Google Scholar]
  27. Hallak L.K. , Spillmann D. , Collins P.L. , Peeples M.E. . ( 2000;). Glycosaminoglycan sulfation requirements for respiratory syncytial virus infection. J Virol 74: 10508–10513 [CrossRef] [PubMed].
    [Google Scholar]
  28. Hirakawa S. , Kojima T. , Obata K. , Okabayashi T. , Yokota S. , Nomura K. , Obonai T. , Fuchimoto J. , Himi T. , other authors . ( 2013;). Marked induction of matrix metalloproteinase-10 by respiratory syncytial virus infection in human nasal epithelial cells. J Med Virol 85: 2141–2150 [PubMed].[CrossRef]
    [Google Scholar]
  29. Hoffman S.J. , Laham F.R. , Polack F.P. . ( 2004;). Mechanisms of illness during respiratory syncytial virus infection: the lungs, the virus and the immune response. Microbes Infect 6: 767–772 [CrossRef] [PubMed].
    [Google Scholar]
  30. Hoshino M. , Nakamura Y. , Sim J.J. . ( 1998;). Expression of growth factors and remodelling of the airway wall in bronchial asthma. Thorax 53: 21–27 [CrossRef] [PubMed].
    [Google Scholar]
  31. Hotard A.L. , Lee S. , Currier M.G. , Crowe J.E. Jr , Sakamoto K. , Newcomb D.C. , Peebles R.S. Jr , Plemper R.K. , Moore M.L. . ( 2015;). Identification of residues in the human respiratory syncytial virus fusion protein that modulate fusion activity and pathogenesis. J Virol 89: 512–522 [CrossRef] [PubMed].
    [Google Scholar]
  32. Howell J.E. , McAnulty R.J. . ( 2006;). TGF-beta: its role in asthma and therapeutic potential. Curr Drug Targets 7: 547–565 [CrossRef] [PubMed].
    [Google Scholar]
  33. Huang W. , Sherman B.T. , Lempicki R.A. . ( 2009;). Systematic and integrative analysis of large gene lists using david bioinformatics resources. Nat Protoc 4: 44–57 [CrossRef] [PubMed].
    [Google Scholar]
  34. Jensen L.J. , Kuhn M. , Stark M. , Chaffron S. , Creevey C. , Muller J. , Doerks T. , Julien P. , Roth A. , other authors . ( 2009;). string 8 – a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res 37: (Database), D412–D416 [CrossRef] [PubMed].
    [Google Scholar]
  35. Jin H. , Zhou H. , Cheng X. , Tang R. , Munoz M. , Nguyen N. . ( 2000;). Recombinant respiratory syncytial viruses with deletions in the NS1, NS2, SH, and M2-2 genes are attenuated in vitro and in vivo . Virology 273: 210–218 [CrossRef] [PubMed].
    [Google Scholar]
  36. Kidane Y.H. , Lawrence C. , Murali T.M. . ( 2013;). The landscape of host transcriptional response programs commonly perturbed by bacterial pathogens: towards host-oriented broad-spectrum drug targets. PLoS One 8: e58553 [CrossRef] [PubMed].
    [Google Scholar]
  37. Kong X. , Zhang W. , Lockey R.F. , Auais A. , Piedimonte G. , Mohapatra S.S. . ( 2007;). Respiratory syncytial virus infection in Fischer 344 rats is attenuated by short interfering RNA against the RSV-NS1 gene. Genet Vaccines Ther 5: 4 [CrossRef] [PubMed].
    [Google Scholar]
  38. Kotelkin A. , Belyakov I.M. , Yang L. , Berzofsky J.A. , Collins P.L. , Bukreyev A. . ( 2006;). The NS2 protein of human respiratory syncytial virus suppresses the cytotoxic T-cell response as a consequence of suppressing the type I interferon response. J Virol 80: 5958–5967 [CrossRef] [PubMed].
    [Google Scholar]
  39. Krzyzaniak M.A. , Zumstein M.T. , Gerez J.A. , Picotti P. , Helenius A. . ( 2013;). Host cell entry of respiratory syncytial virus involves macropinocytosis followed by proteolytic activation of the F protein. PLoS Pathog 9: e1003309 [CrossRef] [PubMed].
    [Google Scholar]
  40. Kurt-Jones E.A. , Popova L. , Kwinn L. , Haynes L.M. , Jones L.P. , Tripp R.A. , Walsh E.E. , Freeman M.W. , Golenbock D.T. , other authors . ( 2000;). Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol 1: 398–401 [CrossRef] [PubMed].
    [Google Scholar]
  41. Lewis B.P. , Burge C.B. , Bartel D.P. . ( 2005;). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: 15–20 [CrossRef] [PubMed].
    [Google Scholar]
  42. Li W. , Lewis-Antes A. , Huang J. , Balan M. , Kotenko S.V. . ( 2008;). Regulation of apoptosis by type III interferons. Cell Prolif 41: 960–979 [CrossRef] [PubMed].
    [Google Scholar]
  43. Li Q. , Kawamura K. , Ma G. , Iwata F. , Numasaki M. , Suzuki N. , Shimada H. , Tagawa M. . ( 2010;). Interferon-lambda induces G1 phase arrest or apoptosis in oesophageal carcinoma cells and produces anti-tumour effects in combination with anti-cancer agents. Eur J Cancer 46: 180–190 [CrossRef] [PubMed].
    [Google Scholar]
  44. Li W. , Huang X. , Liu Z. , Wang Y. , Zhang H. , Tong H. , Wu H. , Lin S. . ( 2012;). Type III interferon induces apoptosis in human lung cancer cells. Oncol Rep 28: 1117–1125 [PubMed].
    [Google Scholar]
  45. Liesman R.M. , Buchholz U.J. , Luongo C.L. , Yang L. , Proia A.D. , DeVincenzo J.P. , Collins P.L. , Pickles R.J. . ( 2014;). RSV-encoded NS2 promotes epithelial cell shedding and distal airway obstruction. J Clin Invest 124: 2219–2233 [CrossRef] [PubMed].
    [Google Scholar]
  46. Ling Z. , Tran K.C. , Teng M.N. . ( 2009;). Human respiratory syncytial virus nonstructural protein NS2 antagonizes the activation of beta interferon transcription by interacting with RIG-I. J Virol 83: 3734–3742 [CrossRef] [PubMed].
    [Google Scholar]
  47. Liu G. , Friggeri A. , Yang Y. , Park Y.J. , Tsuruta Y. , Abraham E. . ( 2009;). miR-147, a microRNA that is induced upon Toll-like receptor stimulation, regulates murine macrophage inflammatory responses. Proc Natl Acad Sci U S A 106: 15819–15824 [CrossRef] [PubMed].
    [Google Scholar]
  48. Lo M.S. , Brazas R.M. , Holtzman M.J. . ( 2005;). Respiratory syncytial virus nonstructural proteins NS1 and NS2 mediate inhibition of Stat2 expression and alpha/beta interferon responsiveness. J Virol 79: 9315–9319 [CrossRef] [PubMed].
    [Google Scholar]
  49. Loveday E.K. , Diederich S. , Pasick J. , Jean F. . ( 2015;). Human microRNA-24 modulates highly pathogenic avian-origin H5N1 influenza A virus infection in A549 cells by targeting secretory pathway furin. J Gen Virol 96: 30–39 [CrossRef] [PubMed].
    [Google Scholar]
  50. Luna C. , Li G. , Qiu J. , Epstein D.L. , Gonzalez P. . ( 2011;). MicroRNA-24 regulates the processing of latent TGFβ1 during cyclic mechanical stress in human trabecular meshwork cells through direct targeting of FURIN. J Cell Physiol 226: 1407–1414 [CrossRef] [PubMed].
    [Google Scholar]
  51. Luongo C. , Winter C.C. , Collins P.L. , Buchholz U.J. . ( 2013;). Respiratory syncytial virus modified by deletions of the NS2 gene and amino acid S1313 of the L polymerase protein is a temperature-sensitive, live-attenuated vaccine candidate that is phenotypically stable at physiological temperature. J Virol 87: 1985–1996 [CrossRef] [PubMed].
    [Google Scholar]
  52. Martínez I. , Lombardía L. , García-Barreno B. , Domínguez O. , Melero J.A. . ( 2007;). Distinct gene subsets are induced at different time points after human respiratory syncytial virus infection of A549 cells. J Gen Virol 88: 570–581 [CrossRef] [PubMed].
    [Google Scholar]
  53. Mastrangelo P. , Hegele R.G. . ( 2013;). RSV fusion: time for a new model. Viruses 5: 873–885 [CrossRef] [PubMed].
    [Google Scholar]
  54. Mata M. , Sarrion I. , Armengot M. , Carda C. , Martinez I. , Melero J.A. , Cortijo J. . ( 2012;). Respiratory syncytial virus inhibits ciliagenesis in differentiated normal human bronchial epithelial cells: effectiveness of N-acetylcysteine. PLoS One 7: e48037 [CrossRef] [PubMed].
    [Google Scholar]
  55. McCann K.L. , Imani F. . ( 2007;). Transforming growth factor beta enhances respiratory syncytial virus replication and tumor necrosis factor alpha induction in human epithelial cells. J Virol 81: 2880–2886 [CrossRef] [PubMed].
    [Google Scholar]
  56. Meng J. , Lee S. , Hotard A.L. , Moore M.L. . ( 2014;). Refining the balance of attenuation and immunogenicity of respiratory syncytial virus by targeted codon deoptimization of virulence genes. MBio 5: e01704–e01714 [CrossRef] [PubMed].
    [Google Scholar]
  57. Mgbemena V. , Segovia J. , Chang T. , Bose S. . ( 2011;). Krüppel-like factor 6 regulates transforming growth factor-β gene expression during human respiratory syncytial virus infection. Virol J 8: 409 [CrossRef] [PubMed].
    [Google Scholar]
  58. Mgbemena V. , Segovia J.A. , Chang T.H. , Tsai S.Y. , Cole G.T. , Hung C.Y. , Bose S. . ( 2012;). Transactivation of inducible nitric oxide synthase gene by Kruppel-like factor 6 regulates apoptosis during influenza A virus infection. J Immunol 189: 606–615 [CrossRef] [PubMed].
    [Google Scholar]
  59. Mgbemena V. , Segovia J. , Chang T.-H. , Bose S. . ( 2013;). KLF6 and iNOS regulates apoptosis during respiratory syncytial virus infection. Cell Immunol 283: 1–7 [CrossRef] [PubMed].
    [Google Scholar]
  60. Moore E.C. , Barber J. , Tripp R.A. . ( 2008;). Respiratory syncytial virus (RSV) attachment and nonstructural proteins modify the type I interferon response associated with suppressor of cytokine signaling (SOCS) proteins and IFN-stimulated gene-15 (ISG15). Virol J 5: 116 [CrossRef] [PubMed].
    [Google Scholar]
  61. Moore M.L. , Stokes K.L. , Hartert T.V. . ( 2013;). The impact of viral genotype on pathogenesis and disease severity: respiratory syncytial virus and human rhinoviruses. Curr Opin Immunol 25: 761–768 [CrossRef] [PubMed].
    [Google Scholar]
  62. Mori M. , Morio T. , Ito S. , Morimoto A. , Ota S. , Mizuta K. , Iwata T. , Hara T. , Saji T. . ( 2014;). Risks and prevention of severe RS virus infection among children with immunodeficiency and Down's syndrome. J Infect Chemother 20: 455–459 [CrossRef] [PubMed].
    [Google Scholar]
  63. Munday D.C. , Emmott E. , Surtees R. , Lardeau C.H. , Wu W. , Duprex W.P. , Dove B.K. , Barr J.N. , Hiscox J.A. . ( 2010;). Quantitative proteomic analysis of A549 cells infected with human respiratory syncytial virus. Mol Cell Proteomics 9: 2438–2459 [CrossRef] [PubMed].
    [Google Scholar]
  64. Munir S. , Hillyer P. , Le Nouën C. , Buchholz U.J. , Rabin R.L. , Collins P.L. , Bukreyev A. . ( 2011;). Respiratory syncytial virus interferon antagonist NS1 protein suppresses and skews the human T lymphocyte response. PLoS Pathog 7: e1001336 [CrossRef] [PubMed].
    [Google Scholar]
  65. Nahid M.A. , Pauley K.M. , Satoh M. , Chan E.K. . ( 2009;). miR-146a is critical for endotoxin-induced tolerance: implication in innate immunity. J Biol Chem 284: 34590–34599 [CrossRef] [PubMed].
    [Google Scholar]
  66. Nahid M.A. , Satoh M. , Chan E.K. . ( 2011a;). Mechanistic role of microRNA-146a in endotoxin-induced differential cross-regulation of TLR signaling. J Immunol 186: 1723–1734 [CrossRef] [PubMed].
    [Google Scholar]
  67. Nahid M.A. , Satoh M. , Chan E.K. . ( 2011b;). MicroRNA in TLR signaling and endotoxin tolerance. Cell Mol Immunol 8: 388–403 [CrossRef] [PubMed].
    [Google Scholar]
  68. Nair H. , Nokes D.J. , Gessner B.D. , Dherani M. , Madhi S.A. , Singleton R.J. , O'Brien K.L. , Roca A. , Wright P.F. , other authors . ( 2010;). Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis. Lancet 375: 1545–1555 [CrossRef] [PubMed].
    [Google Scholar]
  69. Nakamura-López Y. , Villegas-Sepúlveda N. , Sarmiento-Silva R.E. , Gómez B. . ( 2011;). Intrinsic apoptotic pathway is subverted in mouse macrophages persistently infected by RSV. Virus Res 158: 98–107 [CrossRef] [PubMed].
    [Google Scholar]
  70. O'Connell R.M. , Taganov K.D. , Boldin M.P. , Cheng G. , Baltimore D. . ( 2007;). MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci U S A 104: 1604–1609 [CrossRef] [PubMed].
    [Google Scholar]
  71. Openshaw P.J. , Chiu C. . ( 2013;). Protective and dysregulated T cell immunity in RSV infection. Curr Opin Virol 3: 468–474 [CrossRef] [PubMed].
    [Google Scholar]
  72. Oshansky C.M. , Krunkosky T.M. , Barber J. , Jones L.P. , Tripp R.A. . ( 2009a;). Respiratory syncytial virus proteins modulate suppressors of cytokine signaling 1 and 3 and the type I interferon response to infection by a toll-like receptor pathway. Viral Immunol 22: 147–161 [CrossRef] [PubMed].
    [Google Scholar]
  73. Oshansky C.M. , Zhang W. , Moore E. , Tripp R.A. . ( 2009b;). The host response and molecular pathogenesis associated with respiratory syncytial virus infection. Future Microbiol 4: 279–297 [CrossRef] [PubMed].
    [Google Scholar]
  74. Papic N. , Maxwell C.I. , Delker D.A. , Liu S. , Heale B.S. , Hagedorn C.H. . ( 2012;). RNA-sequencing analysis of 5′ capped RNAs identifies many new differentially expressed genes in acute hepatitis C virus infection. Viruses 4: 581–612 [CrossRef] [PubMed].
    [Google Scholar]
  75. Pastey M.K. , Crowe J.E. Jr , Graham B.S. . ( 1999;). RhoA interacts with the fusion glycoprotein of respiratory syncytial virus and facilitates virus-induced syncytium formation. J Virol 73: 7262–7270 [PubMed].
    [Google Scholar]
  76. Pauley K.M. , Satoh M. , Pauley B.A. , Dominguez-Gutierrez P.R. , Wallet S.M. , Holliday L.S. , Cha S. , Reeves W.H. , Chan E.K. . ( 2010;). Formation of GW/P bodies as marker for microRNA-mediated regulation of innate immune signaling in THP-1 cells. Immunol Cell Biol 88: 205–212 [CrossRef] [PubMed].
    [Google Scholar]
  77. Pelaia G. , Gallelli L. , D'Agostino B. , Vatrella A. , Cuda G. , Fratto D. , Renda T. , Galderisi U. , Piegari E. , other authors . ( 2007;). Effects of TGF-beta and glucocorticoids on map kinase phosphorylation, IL-6/IL-11 secretion and cell proliferation in primary cultures of human lung fibroblasts. J Cell Physiol 210: 489–497 [CrossRef] [PubMed].
    [Google Scholar]
  78. Piedimonte G. . ( 2002;). Pathophysiological mechanisms for the respiratory syncytial virus-reactive airway disease link. Respir Res 3: (Suppl 1), S21–S25 [CrossRef] [PubMed].
    [Google Scholar]
  79. Piedimonte G. . ( 2003;). Contribution of neuroimmune mechanisms to airway inflammation and remodeling during and after respiratory syncytial virus infection. Pediatr Infect Dis J 22: (Suppl), S66–S75 [CrossRef] [PubMed].
    [Google Scholar]
  80. Psarras S. , Papadopoulos N.G. , Johnston S.L. . ( 2004;). Pathogenesis of respiratory syncytial virus bronchiolitis-related wheezing. Paediatr Respir Rev 5: (Suppl A), S179–S184 [CrossRef] [PubMed].
    [Google Scholar]
  81. Qin L. , Peng D. , Hu C. , Xiang Y. , Zhou Y. , Tan Y. , Qin X. . ( 2014;). Differentiation of Th subsets inhibited by nonstructural proteins of respiratory syncytial virus is mediated by ubiquitination. PLoS One 9: e101469 [CrossRef] [PubMed].
    [Google Scholar]
  82. Ren J. , Liu T. , Pang L. , Li K. , Garofalo R.P. , Casola A. , Bao X. . ( 2011;). A novel mechanism for the inhibition of interferon regulatory factor-3-dependent gene expression by human respiratory syncytial virus NS1 protein. J Gen Virol 92: 2153–2159 [CrossRef] [PubMed].
    [Google Scholar]
  83. Schlender J. , Bossert B. , Buchholz U. , Conzelmann K.K. . ( 2000;). Bovine respiratory syncytial virus nonstructural proteins NS1 and NS2 cooperatively antagonize alpha/beta interferon-induced antiviral response. J Virol 74: 8234–8242 [CrossRef] [PubMed].
    [Google Scholar]
  84. Schulte L.N. , Westermann A.J. , Vogel J. . ( 2013;). Differential activation and functional specialization of miR-146 and miR-155 in innate immune sensing. Nucleic Acids Res 41: 542–553 [CrossRef] [PubMed].
    [Google Scholar]
  85. Sharma S. , Raby B.A. , Hunninghake G.M. , Soto-Quirós M. , Avila L. , Murphy A.J. , Lasky-Su J. , Klanderman B.J. , Sylvia J.S. , other authors . ( 2009;). Variants in TGFB1, dust mite exposure, and disease severity in children with asthma. Am J Respir Crit Care Med 179: 356–362 [CrossRef] [PubMed].
    [Google Scholar]
  86. Spann K.M. , Tran K.C. , Chi B. , Rabin R.L. , Collins P.L. . ( 2004;). Suppression of the induction of alpha, beta, and lambda interferons by the NS1 and NS2 proteins of human respiratory syncytial virus in human epithelial cells and macrophages [corrected]. J Virol 78: 4363–4369 [CrossRef] [PubMed].
    [Google Scholar]
  87. Spann K.M. , Tran K.C. , Collins P.L. . ( 2005;). Effects of nonstructural proteins NS1 and NS2 of human respiratory syncytial virus on interferon regulatory factor 3, NF-kappaB, and proinflammatory cytokines. J Virol 79: 5353–5362 [CrossRef] [PubMed].
    [Google Scholar]
  88. Stockman L.J. , Curns A.T. , Anderson L.J. , Fischer-Langley G. . ( 2012;). Respiratory syncytial virus-associated hospitalizations among infants and young children in the United States, 1997–2006. Pediatr Infect Dis J 31: 5–9 [CrossRef] [PubMed].
    [Google Scholar]
  89. Straub C.P. , Lau W.H. , Preston F.M. , Headlam M.J. , Gorman J.J. , Collins P.L. , Spann K.M. . ( 2011;). Mutation of the elongin C binding domain of human respiratory syncytial virus non-structural protein 1 (NS1) results in degradation of NS1 and attenuation of the virus. Virol J 8: 252 [CrossRef] [PubMed].
    [Google Scholar]
  90. Sugrue R.J. , Brown C. , Brown G. , Aitken J. , McL Rixon H.W. . ( 2001;). Furin cleavage of the respiratory syncytial virus fusion protein is not a requirement for its transport to the surface of virus-infected cells. J Gen Virol 82: 1375–1386 [PubMed].[CrossRef]
    [Google Scholar]
  91. Sun Q. , Zhang Y. , Yang G. , Chen X. , Zhang Y. , Cao G. , Wang J. , Sun Y. , Zhang P. , other authors . ( 2008;). Transforming growth factor-beta-regulated miR-24 promotes skeletal muscle differentiation. Nucleic Acids Res 36: 2690–2699 [CrossRef] [PubMed].
    [Google Scholar]
  92. Taganov K.D. , Boldin M.P. , Chang K.-J. , Baltimore D. . ( 2006;). NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 103: 12481–12486 [CrossRef] [PubMed].
    [Google Scholar]
  93. Tan Y.R. , Yang T. , Liu S.P. , Xiang Y. , Qu F. , Liu H.J. , Qin X.Q. . ( 2008;). Pulmonary peptidergic innervation remodeling and development of airway hyperresponsiveness induced by RSV persistent infection. Peptides 29: 47–56 [CrossRef] [PubMed].
    [Google Scholar]
  94. Tayyari F. , Marchant D. , Moraes T.J. , Duan W. , Mastrangelo P. , Hegele R.G. . ( 2011;). Identification of nucleolin as a cellular receptor for human respiratory syncytial virus. Nat Med 17: 1132–1135 [CrossRef] [PubMed].
    [Google Scholar]
  95. Teng M.N. , Collins P.L. . ( 1999;). Altered growth characteristics of recombinant respiratory syncytial viruses which do not produce NS2 protein. J Virol 73: 466–473 [PubMed].
    [Google Scholar]
  96. Teng M.N. , Whitehead S.S. , Bermingham A. , St Claire M. , Elkins W.R. , Murphy B.R. , Collins P.L. . ( 2000;). Recombinant respiratory syncytial virus that does not express the NS1 or M2-2 protein is highly attenuated and immunogenic in chimpanzees. J Virol 74: 9317–9321 [CrossRef] [PubMed].
    [Google Scholar]
  97. Thornburg N.J. , Shepherd B. , Crowe J.E., Jr. . ( 2010;). Transforming growth factor beta is a major regulator of human neonatal immune responses following respiratory syncytial virus infection. J Virol 84: 12895–12902 [CrossRef] [PubMed].
    [Google Scholar]
  98. Thornburg N.J. , Hayward S.L. , Crowe J.E., Jr. . ( 2012;). Respiratory syncytial virus regulates human microRNAs by using mechanisms involving beta interferon and NF-κB. MBio 3: e00220-12 [CrossRef] [PubMed].
    [Google Scholar]
  99. Tripp R.A. , Jones L.P. , Haynes L.M. , Zheng H. , Murphy P.M. , Anderson L.J. . ( 2001;). CX3C chemokine mimicry by respiratory syncytial virus G glycoprotein. Nat Immunol 2: 732–738 [CrossRef] [PubMed].
    [Google Scholar]
  100. Vicencio A.G. . ( 2010;). Susceptibility to bronchiolitis in infants. Curr Opin Pediatr 22: 302–306 [CrossRef] [PubMed].
    [Google Scholar]
  101. Webster Marketon J.I. , Corry J. , Teng M.N. . ( 2014;). The respiratory syncytial virus (RSV) nonstructural proteins mediate RSV suppression of glucocorticoid receptor transactivation. Virology 449: 62–69 [CrossRef] [PubMed].
    [Google Scholar]
  102. Whitehead S.S. , Bukreyev A. , Teng M.N. , Firestone C.Y. , St Claire M. , Elkins W.R. , Collins P.L. , Murphy B.R. . ( 1999;). Recombinant respiratory syncytial virus bearing a deletion of either the NS2 or SH gene is attenuated in chimpanzees. J Virol 73: 3438–3442 [PubMed].
    [Google Scholar]
  103. Wright P.F. , Karron R.A. , Madhi S.A. , Treanor J.J. , King J.C. , O'Shea A. , Ikizler M.R. , Zhu Y. , Collins P.L. , other authors . ( 2006;). The interferon antagonist NS2 protein of respiratory syncytial virus is an important virulence determinant for humans. J Infect Dis 193: 573–581 [CrossRef] [PubMed].
    [Google Scholar]
  104. Wu W. , Munday D.C. , Howell G. , Platt G. , Barr J.N. , Hiscox J.A. . ( 2011;). Characterization of the interaction between human respiratory syncytial virus and the cell cycle in continuous cell culture and primary human airway epithelial cells. J Virol 85: 10300–10309 [CrossRef] [PubMed].
    [Google Scholar]
  105. Wu W. , Tran K.C. , Teng M.N. , Heesom K.J. , Matthews D.A. , Barr J.N. , Hiscox J.A. . ( 2012;). The interactome of the human respiratory syncytial virus NS1 protein highlights multiple effects on host cell biology. J Virol 86: 7777–7789 [CrossRef] [PubMed].
    [Google Scholar]
  106. Xie Y. , Tobin L.A. , Camps J. , Wangsa D. , Yang J. , Rao M. , Witasp E. , Awad K.S. , Yoo N. , other authors . ( 2013;). MicroRNA-24 regulates XIAP to reduce the apoptosis threshold in cancer cells. Oncogene 32: 2442–2451 [CrossRef] [PubMed].
    [Google Scholar]
  107. Xu X. , Zheng J. , Zheng K. , Hou Y. , Zhao F. , Zhao D. . ( 2014;). Respiratory syncytial virus NS1 protein degrades STAT2 by inducing SOCS1 expression. Intervirology 57: 65–73 [PubMed].
    [Google Scholar]
  108. Zhang Y. , Lei C.Q. , Hu Y.H. , Xia T. , Li M. , Zhong B. , Shu H.B. . ( 2014;). Krüppel-like factor 6 is a co-activator of NF-κB that mediates p65-dependent transcription of selected downstream genes. J Biol Chem 289: 12876–12885 [CrossRef] [PubMed].
    [Google Scholar]
  109. Zhou H. , Thompson W.W. , Viboud C.G. , Ringholz C.M. , Cheng P.Y. , Steiner C. , Abedi G.R. , Anderson L.J. , Brammer L. , Shay D.K. . ( 2012;). Hospitalizations associated with influenza and respiratory syncytial virus in the United States, 1993–2008. Clin Infect Dis 54: 1427–1436 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000261
Loading
/content/journal/jgv/10.1099/jgv.0.000261
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error