1887

Abstract

Given their free-ranging habits, feral swine could serve as reservoirs or spatially dynamic ‘mixing vessels’ for influenza A virus (IAV). To better understand virus shedding patterns and antibody response dynamics in the context of IAV surveillance amongst feral swine, we used IAV of feral swine origin to perform infection experiments. The virus was highly infectious and transmissible in feral swine, and virus shedding patterns and antibody response dynamics were similar to those in domestic swine. In the virus-inoculated and sentinel groups, virus shedding lasted ≤ 6 and ≤ 9 days, respectively. Antibody titres in inoculated swine peaked at 1 : 840 on day 11 post-inoculation (p.i.), remained there until 21 days p.i. and dropped to < 1 : 220 at 42 days p.i. Genomic sequencing identified changes in wildtype (WT) viruses and isolates from sentinel swine, most notably an amino acid divergence in nucleoprotein position 473. Using data from cell culture as a benchmark, sensitivity and specificity of a matrix gene-based quantitative reverse transcription-PCR method using nasal swab samples for detection of IAV in feral swine were 78.9 and 78.1 %, respectively. Using data from haemagglutination inhibition assays as a benchmark, sensitivity and specificity of an ELISA for detection of IAV-specific antibody were 95.4 and 95.0 %, respectively. Serological surveillance from 2009 to 2014 showed that ∼7.58 % of feral swine in the USA were positive for IAV. Our findings confirm the susceptibility of IAV infection and the high transmission ability of IAV amongst feral swine, and also suggest the need for continued surveillance of IAVs in feral swine populations.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000225
2015-09-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/9/2569.html?itemId=/content/journal/jgv/10.1099/jgv.0.000225&mimeType=html&fmt=ahah

References

  1. Alexander D.J. , Brown I.H. . ( 2000;). Recent zoonoses caused by influenza A viruses. Rev Sci Tech 19: 197–225.
    [Google Scholar]
  2. Allerson M.W. , Cardona C.J. , Torremorell M. . ( 2013;). Indirect transmission of influenza A virus between pig populations under two different biosecurity settings. PLoS One 8: e67293 [CrossRef] [PubMed].
    [Google Scholar]
  3. Bevins S.N. , Pedersen K. , Lutman M.W. , Gidlewski T. , DeLiberto T.J. . ( 2014;). Consequences associated with the recent expansion of nonnative feral swine. Bioscience 64: 291–299 [CrossRef].
    [Google Scholar]
  4. Bowman A.S. , Nolting J.M. , Nelson S.W. , Slemons R.D. . ( 2012;). Subclinical influenza virus A infections in pigs exhibited at agricultural fairs, Ohio, USA, 2009–2011. Emerg Infect Dis 18: 1945–1950 [CrossRef] [PubMed].
    [Google Scholar]
  5. Bragstad K. , Vinner L. , Hansen M.S. , Nielsen J. , Fomsgaard A. . ( 2013;). A polyvalent influenza A DNA vaccine induces heterologous immunity and protects pigs against pandemic A(H1N1)pdm09 virus infection. Vaccine 31: 2281–2288 [CrossRef] [PubMed].
    [Google Scholar]
  6. Choi Y.K. , Nguyen T.D. , Ozaki H. , Webby R.J. , Puthavathana P. , Buranathal C. , Chaisingh A. , Auewarakul P. , Hanh N.T. , other authors . ( 2005;). Studies of H5N1 influenza virus infection of pigs by using viruses isolated in Vietnam and Thailand in 2004. J Virol 79: 10821–10825 [CrossRef] [PubMed].
    [Google Scholar]
  7. Clavijo A. , Nikooienejad A. , Esfahani M.S. , Metz R.P. , Schwartz S. , Atashpaz-Gargari E. , Deliberto T.J. , Lutman M.W. , Pedersen K. , other authors . ( 2012;). Identification and analysis of the first 2009 pandemic H1N1 influenza virus from U.S. feral swine. Zoonoses Public Health 60: 327–335.[CrossRef]
    [Google Scholar]
  8. De Vleeschauwer A. , Atanasova K. , Van Borm S. , van den Berg T. , Rasmussen T.B. , Uttenthal A. , Van Reeth K. . ( 2009a;). Comparative pathogenesis of an avian H5N2 and a swine H1N1 influenza virus in pigs. PLoS One 4: e6662 [CrossRef] [PubMed].
    [Google Scholar]
  9. De Vleeschauwer A. , Van Poucke S. , Braeckmans D. , Van Doorsselaere J. , Van Reeth K. . ( 2009b;). Efficient transmission of swine-adapted but not wholly avian influenza viruses among pigs and from pigs to ferrets. J Infect Dis 200: 1884–1892 [CrossRef] [PubMed].
    [Google Scholar]
  10. Feng Z. , Baroch J.A. , Long L.P. , Xu Y. , Cunningham F.L. , Pedersen K. , Lutman M.W. , Schmit B.S. , Bowman A.S. , other authors . ( 2014;). Influenza A subtype H3 viruses in feral swine, United States, 2011–2012. Emerg Infect Dis 20: 843–846 [CrossRef] [PubMed].
    [Google Scholar]
  11. Ferrari M. , Borghetti P. , Foni E. , Robotti C. , Di Lecce R. , Corradi A. , Petrini S. , Bottarelli E. . ( 2010;). Pathogenesis and subsequent cross-protection of influenza virus infection in pigs sustained by an H1N2 strain. Zoonoses Public Health 57: 273–280 [CrossRef] [PubMed].
    [Google Scholar]
  12. Fogarty E. . ( 2007;). National distribution of and stakeholder attitudes toward feral hogs Thesis, Mississippi State University, Mississippi State, MS, USA..
    [Google Scholar]
  13. Guan Y. , Shortridge K.F. , Krauss S. , Li P.H. , Kawaoka Y. , Webster R.G. . ( 1996;). Emergence of avian H1N1 influenza viruses in pigs in China. J Virol 70: 8041–8046.
    [Google Scholar]
  14. Hause B.M. , Oleson T.A. , Bey R.F. , Stine D.L. , Simonson R.R. . ( 2010;). Antigenic categorization of contemporary H3N2 Swine influenza virus isolates using a high-throughput serum neutralization assay. J Vet Diagn Invest 22: 352–359 [CrossRef] [PubMed].
    [Google Scholar]
  15. Hoffmann E. , Stech J. , Guan Y. , Webster R.G. , Perez D.R. . ( 2001;). Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol 146: 2275–2289 [CrossRef] [PubMed].
    [Google Scholar]
  16. Keawcharoen J. , Oraveerakul K. , Kuiken T. , Fouchier R.A. , Amonsin A. , Payungporn S. , Noppornpanth S. , Wattanodorn S. , Theambooniers A. , other authors . ( 2004;). Avian influenza H5N1 in tigers and leopards. Emerg Infect Dis 10: 2189–2191 [CrossRef] [PubMed].
    [Google Scholar]
  17. Kida H. , Ito T. , Yasuda J. , Shimizu Y. , Itakura C. , Shortridge K.F. , Kawaoka Y. , Webster R.G. . ( 1994;). Potential for transmission of avian influenza viruses to pigs. J Gen Virol 75: 2183–2188 [CrossRef] [PubMed].
    [Google Scholar]
  18. Ko J.C. , Williams B.L. , Smith V.L. , McGrath C.J. , Jacobson J.D. . ( 1993;). Comparison of Telazol. Telazol-ketamine, Telazol-xylazine, and Telazol-ketamine-xylazine as chemical restraint and anesthetic induction combination in swine. Lab Anim Sci 43: 476–480.
    [Google Scholar]
  19. Koboldt D.C. , Zhang Q. , Larson D.E. , Shen D. , McLellan M.D. , Lin L. , Miller C.A. , Mardis E.R. , Ding L. , Wilson R.K. . ( 2012;). VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 22: 568–576 [CrossRef] [PubMed].
    [Google Scholar]
  20. Kyriakis C.S. , Rose N. , Foni E. , Maldonado J. , Loeffen W.L. , Madec F. , Simon G. , Van Reeth K. . ( 2013;). Influenza A virus infection dynamics in swine farms in Belgium, France, Italy and Spain, 2006–2008. Vet Microbiol 162: 543–550 [CrossRef] [PubMed].
    [Google Scholar]
  21. Langmead B. , Salzberg S.L. . ( 2012;). Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 357–359 [CrossRef] [PubMed].
    [Google Scholar]
  22. Lee B.W. , Bey R.F. , Baarsch M.J. , Larson M.E. . ( 1995;). Class specific antibody response to influenza A H1N1 infection in swine. Vet Microbiol 43: 241–250 [CrossRef] [PubMed].
    [Google Scholar]
  23. Liang Y. , Hong Y. , Parslow T.G. . ( 2005;). cis-Acting packaging signals in the influenza virus PB1, PB2, and PA genomic RNA segments. J Virol 79: 10348–10355 [CrossRef] [PubMed].
    [Google Scholar]
  24. Lorusso A. , Vincent A.L. , Harland M.L. , Alt D. , Bayles D.O. , Swenson S.L. , Gramer M.R. , Russell C.A. , Smith D.J. , other authors . ( 2011;). Genetic and antigenic characterization of H1 influenza viruses from United States swine from 2008. J Gen Virol 92: 919–930 [CrossRef] [PubMed].
    [Google Scholar]
  25. Mahy B. . ( 1997;). Influenza A virus (FLUA). . In A Dictionary of Virology , 2nd edn.., pp. 170–171. Edited by Mahy B. W. J. . San Diego, CA: Academic Press;.
    [Google Scholar]
  26. Mase M. , Tanimura N. , Imada T. , Okamatsu M. , Tsukamoto K. , Yamaguchi S. . ( 2006;). Recent H5N1 avian influenza A virus increases rapidly in virulence to mice after a single passage in mice. J Gen Virol 87: 3655–3659 [CrossRef] [PubMed].
    [Google Scholar]
  27. Muster T. , Subbarao E.K. , Enami M. , Murphy B.R. , Palese P. . ( 1991;). An influenza A virus containing influenza B virus 5′ and 3′ noncoding regions on the neuraminidase gene is attenuated in mice. Proc Natl Acad Sci U S A 88: 5177–5181 [CrossRef] [PubMed].
    [Google Scholar]
  28. Nelson M.I. , Vincent A.L. , Kitikoon P. , Holmes E.C. , Gramer M.R. . ( 2012;). Evolution of novel reassortant A/H3N2 influenza viruses in North American swine and humans, 2009–2011. J Virol 86: 8872–8878 [CrossRef] [PubMed].
    [Google Scholar]
  29. Ng S.S. , Li O.T. , Cheung T.K. , Malik Peiris J.S. , Poon L.L. . ( 2008;). Heterologous influenza vRNA segments with identical non-coding sequences stimulate viral RNA replication in trans. Virol J 5: 2 [CrossRef] [PubMed].
    [Google Scholar]
  30. Olsen C.W. . ( 2002;). The emergence of novel swine influenza viruses in North America. Virus Res 85: 199–210 [CrossRef] [PubMed].
    [Google Scholar]
  31. Olsen B. , Munster V.J. , Wallensten A. , Waldenström J. , Osterhaus A.D. , Fouchier R.A. . ( 2006a;). Global patterns of influenza a virus in wild birds. Science 312: 384–388 [CrossRef] [PubMed].
    [Google Scholar]
  32. Olsen C.W. , Karasin A.I. , Carman S. , Li Y. , Bastien N. , Ojkic D. , Alves D. , Charbonneau G. , Henning B.M. , other authors . ( 2006b;). Triple reassortant H3N2 influenza A viruses, Canada, 2005. Emerg Infect Dis 12: 1132–1135 [CrossRef] [PubMed].
    [Google Scholar]
  33. Panyasing Y. , Goodell C.K. , Giménez-Lirola L. , Kittawornrat A. , Wang C. , Schwartz K.J. , Zimmerman J.J. . ( 2013;). Kinetics of influenza A virus nucleoprotein antibody (IgM, IgA, and IgG) in serum and oral fluid specimens from pigs infected under experimental conditions. Vaccine 31: 6210–6215 [CrossRef] [PubMed].
    [Google Scholar]
  34. Peiris J.S. , Guan Y. , Markwell D. , Ghose P. , Webster R.G. , Shortridge K.F. . ( 2001;). Cocirculation of avian H9N2 and contemporary “human” H3N2 influenza A viruses in pigs in southeastern China: potential for genetic reassortment?. J Virol 75: 9679–9686 [CrossRef] [PubMed].
    [Google Scholar]
  35. Peiris J.S. , de Jong M.D. , Guan Y. . ( 2007;). Avian influenza virus (H5N1): a threat to human health. Clin Microbiol Rev 20: 243–267 [CrossRef] [PubMed].
    [Google Scholar]
  36. Reed L.J. , Muench H. . ( 1938;). A simple method of estimating fifty percent endpoints. Am J Epidemiol 27: 5.
    [Google Scholar]
  37. Richt J.A. , Lager K.M. , Janke B.H. , Woods R.D. , Webster R.G. , Webby R.J. . ( 2003;). Pathogenic and antigenic properties of phylogenetically distinct reassortant H3N2 swine influenza viruses cocirculating in the United States. J Clin Microbiol 41: 3198–3205 [CrossRef] [PubMed].
    [Google Scholar]
  38. Scholtissek C. . ( 1994;). Source for influenza pandemics. Eur J Epidemiol 10: 455–458 [CrossRef] [PubMed].
    [Google Scholar]
  39. Shu B. , Garten R. , Emery S. , Balish A. , Cooper L. , Sessions W. , Deyde V. , Smith C. , Berman L. , other authors . ( 2012;). Genetic analysis and antigenic characterization of swine origin influenza viruses isolated from humans in the United States, 1990-2010. Virology 422: 151–160 [CrossRef] [PubMed].
    [Google Scholar]
  40. Sun H. , Jiao P. , Jia B. , Xu C. , Wei L. , Shan F. , Luo K. , Xin C. , Zhang K. , Liao M. . ( 2011;). Pathogenicity in quails and mice of H5N1 highly pathogenic avian influenza viruses isolated from ducks. Vet Microbiol 152: 258–265 [CrossRef] [PubMed].
    [Google Scholar]
  41. Sun H. , Yang J. , Zhang T. , Long L.P. , Jia K. , Yang G. , Webby R.J. , Wan X.F. . ( 2013;). Using sequence data to infer the antigenicity of influenza virus. MBio 4: e00230–e00213 [CrossRef] [PubMed].
    [Google Scholar]
  42. Sun H. , Cui P. , Song Y. , Qi Y. , Li X. , Qi W. , Xu C. , Jiao P. , Liao M. . ( 2015;). PB2 segment promotes high-pathogenicity of H5N1 avian influenza viruses in mice. Front Microbiol 6: 73 [CrossRef] [PubMed].
    [Google Scholar]
  43. Tellier R. . ( 2006;). Review of aerosol transmission of influenza A virus. Emerg Infect Dis 12: 1657–1662 [CrossRef] [PubMed].
    [Google Scholar]
  44. Van Reeth K. , Braeckmans D. , Cox E. , Van Borm S. , van den Berg T. , Goddeeris B. , De Vleeschauwer A. . ( 2009;). Prior infection with an H1N1 swine influenza virus partially protects pigs against a low pathogenic H5N1 avian influenza virus. Vaccine 27: 6330–6339 [CrossRef] [PubMed].
    [Google Scholar]
  45. Vincent A.L. , Lager K.M. , Ma W. , Lekcharoensuk P. , Gramer M.R. , Loiacono C. , Richt J.A. . ( 2006;). Evaluation of hemagglutinin subtype 1 swine influenza viruses from the United States. Vet Microbiol 118: 212–222 [CrossRef] [PubMed].
    [Google Scholar]
  46. Vincent A.L. , Ma W. , Lager K.M. , Janke B.H. , Richt J.A. . ( 2008;). Swine influenza viruses a North American perspective. Adv Virus Res 72: 127–154 [CrossRef] [PubMed].
    [Google Scholar]
  47. Vincent A.L. , Ma W. , Lager K.M. , Gramer M.R. , Richt J.A. , Janke B.H. . ( 2009;). Characterization of a newly emerged genetic cluster of H1N1 and H1N2 swine influenza virus in the United States. Virus Genes 39: 176–185 [CrossRef] [PubMed].
    [Google Scholar]
  48. Wahl A. , Schafer F. , Bardet W. , Buchli R. , Air G.M. , Hildebrand W.H. . ( 2009;). HLA class I molecules consistently present internal influenza epitopes. Proc Natl Acad Sci U S A 106: 540–545 [CrossRef] [PubMed].
    [Google Scholar]
  49. Wallace G.D. . ( 1979;). Natural history of influenza in swine in Hawaii: swine influenza virus (Hsw1N1) in herds not infected with lungworms. Am J Vet Res 40: 1159–1164.
    [Google Scholar]
  50. Watanabe T. , Watanabe S. , Noda T. , Fujii Y. , Kawaoka Y. . ( 2003;). Exploitation of nucleic acid packaging signals to generate a novel influenza virus-based vector stably expressing two foreign genes. J Virol 77: 10575–10583 [CrossRef] [PubMed].
    [Google Scholar]
  51. Webster R.G. , Bean W.J. , Gorman O.T. , Chambers T.M. , Kawaoka Y. . ( 1992;). Evolution and ecology of influenza A viruses. Microbiol Rev 56: 152–179.
    [Google Scholar]
  52. Wei K. , Sun H. , Sun Z. , Sun Y. , Kong W. , Pu J. , Ma G. , Yin Y. , Yang H. , other authors . ( 2014;). Influenza A virus acquires enhanced pathogenicity and transmissibility after serial passages in swine. J Virol 88: 11981–11994 [CrossRef] [PubMed].
    [Google Scholar]
  53. Wyckoff A.C. , Henke S.E. , Campbell T.A. , Hewitt D.G. , VerCauteren K.C. . ( 2009;). Feral swine contact with domestic swine: a serologic survey and assessment of potential for disease transmission. J Wildl Dis 45: 422–429 [CrossRef] [PubMed].
    [Google Scholar]
  54. Zhang G. , Kong W. , Qi W. , Long L.P. , Cao Z. , Huang L. , Qi H. , Cao N. , Wang W. , other authors . ( 2011;). Identification of an H6N6 swine influenza virus in southern China. Infect Genet Evol 11: 1174–1177 [CrossRef] [PubMed].
    [Google Scholar]
  55. Zheng H. , Palese P. , García-Sastre A. . ( 1996;). Nonconserved nucleotides at the 3′ and 5′ ends of an influenza A virus RNA play an important role in viral RNA replication. Virology 217: 242–251 [CrossRef] [PubMed].
    [Google Scholar]
  56. Zhou B. , Donnelly M.E. , Scholes D.T. , St George K. , Hatta M. , Kawaoka Y. , Wentworth D.E. . ( 2009;). Single-reaction genomic amplification accelerates sequencing and vaccine production for classical and Swine origin human influenza a viruses. J Virol 83: 10309–10313 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000225
Loading
/content/journal/jgv/10.1099/jgv.0.000225
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error