1887

Abstract

Yellow fever virus (YFV)-17D is an empirically developed, highly effective live-attenuated vaccine that has been administered to human beings for almost a century. YFV-17D has stood as a paradigm for a successful viral vaccine, and has been exploited as a potential virus vector for the development of recombinant vaccines against other diseases. In this study, a DNA-launched YFV-17D construct (pBeloBAC-FLYF) was explored as a new modality to the standard vaccine to combine the commendable features of both DNA vaccine and live-attenuated viral vaccine. The DNA-launched YFV-17D construct was characterized extensively both in cell culture and in mice. High titres of YFV-17D were generated upon transfection of the DNA into cells, whereas a mutant with deletion in the capsid-coding region (pBeloBAC-YF/ΔC) was restricted to a single round of infection, with no release of progeny virus. Homologous prime–boost immunization of AAD mice with both pBeloBAC-FLYF and pBeloBAC-YF/ΔC elicited specific dose-dependent cellular immune response against YFV-17D. Vaccination of A129 mice with pBeloBAC-FLYF resulted in the induction of YFV-specific neutralizing antibodies in all vaccinated subjects. These promising results underlined the potential of the DNA-launched YFV both as an alternative to standard YFV-17D vaccination and as a vaccine platform for the development of DNA-based recombinant YFV vaccines.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000026
2015-04-01
2020-12-03
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/4/804.html?itemId=/content/journal/jgv/10.1099/jgv.0.000026&mimeType=html&fmt=ahah

References

  1. Appaiahgari M. B., Vrati S. 2010; IMOJEV(®): a yellow fever virus-based novel Japanese encephalitis vaccine. Expert Rev Vaccines 9:1371–1384 [CrossRef][PubMed]
    [Google Scholar]
  2. Arroyo J., Miller C., Catalan J., Myers G. A., Ratterree M. S., Trent D. W., Monath T. P. 2004; ChimeriVax-West Nile virus live-attenuated vaccine: preclinical evaluation of safety, immunogenicity, and efficacy. J Virol 78:12497–12507 [CrossRef][PubMed]
    [Google Scholar]
  3. Barrett A. D., Gould E. A. 1986; Comparison of neurovirulence of different strains of yellow fever virus in mice. J Gen Virol 67:631–637 [CrossRef][PubMed]
    [Google Scholar]
  4. Barrett A. D., Teuwen D. E. 2009; Yellow fever vaccine - how does it work and why do rare cases of serious adverse events take place?. Curr Opin Immunol 21:308–313 [CrossRef][PubMed]
    [Google Scholar]
  5. Barrett A. D., Monath T. P., Barban V., Niedrig M., Teuwen D. E. 2007; 17D Yellow fever vaccines: new insights: a report of a workshop held during the World Congress on Medicine and Health in the Tropics, Marseille, France, Monday 12 September 2005. Vaccine 25:2758–2765 [CrossRef][PubMed]
    [Google Scholar]
  6. Bonaldo M. C., Garratt R. C., Caufour P. S., Freire M. S., Rodrigues M. M., Nussenzweig R. S., Galler R. 2002; Surface expression of an immunodominant malaria protein B cell epitope by yellow fever virus. J Mol Biol 315:873–885 [CrossRef][PubMed]
    [Google Scholar]
  7. Bonaldo M. C., Mello S. M., Trindade G. F., Rangel A. A., Duarte A. S., Oliveira P. J., Freire M. S., Kubelka C. F., Galler R. 2007; Construction and characterization of recombinant flaviviruses bearing insertions between E and NS1 genes. Virol J 4:115 [CrossRef][PubMed]
    [Google Scholar]
  8. Bråve A., Gudmundsdotter L., Sandström E., Haller B. K., Hallengärd D., Maltais A. K., King A. D., Stout R. R., Blomberg P.other authors 2010; Biodistribution, persistence and lack of integration of a multigene HIV vaccine delivered by needle-free intradermal injection and electroporation. Vaccine 28:8203–8209 [CrossRef][PubMed]
    [Google Scholar]
  9. Bråve A., Nyström S., Roos A. K., Applequist S. E. 2011; Plasmid DNA vaccination using skin electroporation promotes poly-functional CD4 T-cell responses. Immunol Cell Biol 89:492–496 [CrossRef][PubMed]
    [Google Scholar]
  10. Bredenbeek P. J., Kooi E. A., Lindenbach B., Huijkman N., Rice C. M., Spaan W. J. 2003; A stable full-length yellow fever virus cDNA clone and the role of conserved RNA elements in flavivirus replication. J Gen Virol 84:1261–1268 [CrossRef][PubMed]
    [Google Scholar]
  11. Bredenbeek P. J., Molenkamp R., Spaan W. J., Deubel V., Marianneau P., Salvato M. S., Moshkoff D., Zapata J., Tikhonov I.other authors 2006; A recombinant yellow fever 17D vaccine expressing Lassa virus glycoproteins. Virology 345:299–304 [CrossRef][PubMed]
    [Google Scholar]
  12. Chambers T. J., Nestorowicz A., Mason P. W., Rice C. M. 1999; Yellow fever/Japanese encephalitis chimeric viruses: construction and biological properties. J Virol 73:3095–3101[PubMed]
    [Google Scholar]
  13. Charlier N., Molenkamp R., Leyssen P., Vandamme A.-M., De Clercq E., Bredenbeek P., Neyts J. 2003; A rapid and convenient variant of fusion-PCR to construct chimeric flaviviruses. J Virol Methods 108:67–74 [CrossRef][PubMed]
    [Google Scholar]
  14. Franco D., Li W., Qing F., Stoyanov C. T., Moran T., Rice C. M., Ho D. D. 2010; Evaluation of yellow fever virus 17D strain as a new vector for HIV-1 vaccine development. Vaccine 28:5676–5685 [CrossRef][PubMed]
    [Google Scholar]
  15. Galler R., Marchevsky R. S., Caride E., Almeida L. F., Yamamura A. M., Jabor A. V., Motta M. C., Bonaldo M. C., Coutinho E. S., Freire M. S. 2005; Attenuation and immunogenicity of recombinant yellow fever 17D-dengue type 2 virus for rhesus monkeys. Braz J Med Biol Res 38:1835–1846 [CrossRef][PubMed]
    [Google Scholar]
  16. Gardiner D. F., Rosenberg T., Zaharatos J., Franco D., Ho D. D. 2009; A DNA vaccine targeting the receptor-binding domain of Clostridium difficile toxin A. Vaccine 27:3598–3604 [CrossRef][PubMed]
    [Google Scholar]
  17. Gaucher D., Therrien R., Kettaf N., Angermann B. R., Boucher G., Filali-Mouhim A., Moser J. M., Mehta R. S., Drake D. R. IIIother authors 2008; Yellow fever vaccine induces integrated multilineage and polyfunctional immune responses. J Exp Med 205:3119–3131 [CrossRef][PubMed]
    [Google Scholar]
  18. Guirakhoo F., Zhang Z. X., Chambers T. J., Delagrave S., Arroyo J., Barrett A. D., Monath T. P. 1999; Immunogenicity, genetic stability, and protective efficacy of a recombinant, chimeric yellow fever-Japanese encephalitis virus (ChimeriVax-JE) as a live, attenuated vaccine candidate against Japanese encephalitis. Virology 257:363–372 [CrossRef][PubMed]
    [Google Scholar]
  19. Guirakhoo F., Arroyo J., Pugachev K. V., Miller C., Zhang Z. X., Weltzin R., Georgakopoulos K., Catalan J., Ocran S.other authors 2001; Construction, safety, and immunogenicity in nonhuman primates of a chimeric yellow fever-dengue virus tetravalent vaccine. J Virol 75:7290–7304 [CrossRef][PubMed]
    [Google Scholar]
  20. Guy B., Saville M., Lang J. 2010; Development of Sanofi Pasteur tetravalent dengue vaccine. Hum Vaccin 6:695–705 [CrossRef][PubMed]
    [Google Scholar]
  21. Hall R. A., Nisbet D. J., Pham K. B., Pyke A. T., Smith G. A., Khromykh A. A. 2003; DNA vaccine coding for the full-length infectious Kunjin virus RNA protects mice against the New York strain of West Nile virus. Proc Natl Acad Sci U S A 100:10460–10464 [CrossRef][PubMed]
    [Google Scholar]
  22. Halstead S. B., Thomas S. J. 2011; New Japanese encephalitis vaccines: alternatives to production in mouse brain. Expert Rev Vaccines 10:355–364 [CrossRef][PubMed]
    [Google Scholar]
  23. Hsieh C. S., Macatonia S. E., O’Garra A., Murphy K. M. 1995; T cell genetic background determines default T helper phenotype development in vitro. J Exp Med 181:713–721 [CrossRef][PubMed]
    [Google Scholar]
  24. Inoue H., Nojima H., Okayama H. 1990; High efficiency transformation of Escherichia coli with plasmids. Gene 96:23–28 [CrossRef][PubMed]
    [Google Scholar]
  25. Jiang X., Dalebout T. J., Bredenbeek P. J., Carrion R. Jr, Brasky K., Patterson J., Goicochea M., Bryant J., Salvato M. S., Lukashevich I. S. 2011; Yellow fever 17D-vectored vaccines expressing Lassa virus GP1 and GP2 glycoproteins provide protection against fatal disease in guinea pigs. Vaccine 29:1248–1257 [CrossRef][PubMed]
    [Google Scholar]
  26. Khan A. S., Pope M. A., Draghia-Akli R. 2005; Highly efficient constant-current electroporation increases in vivo plasmid expression. DNA Cell Biol 24:810–818 [CrossRef][PubMed]
    [Google Scholar]
  27. Khromykh A. A., Westaway E. G. 1997; Subgenomic replicons of the flavivirus Kunjin: construction and applications. J Virol 71:1497–1505[PubMed]
    [Google Scholar]
  28. Khromykh A. A., Varnavski A. N., Sedlak P. L., Westaway E. G. 2001; Coupling between replication and packaging of flavivirus RNA: evidence derived from the use of DNA-based full-length cDNA clones of Kunjin virus. J Virol 75:4633–4640 [CrossRef][PubMed]
    [Google Scholar]
  29. Kopycinski J., Cheeseman H., Ashraf A., Gill D., Hayes P., Hannaman D., Gilmour J., Cox J. H., Vasan S. 2012; A DNA-based candidate HIV vaccine delivered via in vivo electroporation induces CD4 responses toward the α4β7-binding V2 loop of HIV gp120 in healthy volunteers. Clin Vaccine Immunol 19:1557–1559 [CrossRef][PubMed]
    [Google Scholar]
  30. Kutzler M. A., Weiner D. B. 2008; DNA vaccines: ready for prime time?. Nat Rev Genet 9:776–788 [CrossRef][PubMed]
    [Google Scholar]
  31. Lin F., Shen X., Kichaev G., Mendoza J. M., Yang M., Armendi P., Yan J., Kobinger G. P., Bello A.other authors 2012; Optimization of electroporation-enhanced intradermal delivery of DNA vaccine using a minimally invasive surface device. Hum Gene Ther Methods 23:157–168 [CrossRef][PubMed]
    [Google Scholar]
  32. Lindenbach B., Rice C. M. 2007; Flaviviridae: the viruses and their replication. In Fields Virology, 5th edn. pp. 991–1042 Edited by Knipe D. M., Howley P. M. Philadelphia: Lippincott Williams and Wilkins;
    [Google Scholar]
  33. Luxembourg A., Hannaman D., Ellefsen B., Nakamura G., Bernard R. 2006; Enhancement of immune responses to an HBV DNA vaccine by electroporation. Vaccine 24:4490–4493 [CrossRef][PubMed]
    [Google Scholar]
  34. Maciel M. Jr, Kellathur S. N., Chikhlikar P., Dhalia R., Sidney J., Sette A., August T. J., Marques E. T. Jr 2008; Comprehensive analysis of T cell epitope discovery strategies using 17DD yellow fever virus structural proteins and BALB/c (H2d) mice model. Virology 378:105–117 [CrossRef][PubMed]
    [Google Scholar]
  35. McAllister A., Arbetman A. E., Mandl S., Peña-Rossi C., Andino R. 2000; Recombinant yellow fever viruses are effective therapeutic vaccines for treatment of murine experimental solid tumors and pulmonary metastases. J Virol 74:9197–9205 [CrossRef][PubMed]
    [Google Scholar]
  36. Medi B. M., Hoselton S., Marepalli R. B., Singh J. 2005; Skin targeted DNA vaccine delivery using electroporation in rabbits: I: efficacy. Int J Pharm 294:53–63 [CrossRef][PubMed]
    [Google Scholar]
  37. Meier K. C., Gardner C. L., Khoretonenko M. V., Klimstra W. B., Ryman K. D. 2009; A mouse model for studying viscerotropic disease caused by yellow fever virus infection. PLoS Pathog 5:e1000614 [CrossRef][PubMed]
    [Google Scholar]
  38. Monath T. P. 2005; Yellow fever vaccine. Expert Rev Vaccines 4:553–574 [CrossRef][PubMed]
    [Google Scholar]
  39. Monath T. P., Soike K., Levenbook I., Zhang Z. X., Arroyo J., Delagrave S., Myers G., Barrett A. D., Shope R. E.other authors 1999; Recombinant, chimaeric live, attenuated vaccine (ChimeriVax) incorporating the envelope genes of Japanese encephalitis (SA14-14-2) virus and the capsid and nonstructural genes of yellow fever (17D) virus is safe, immunogenic and protective in non-human primates. Vaccine 17:1869–1882 [CrossRef][PubMed]
    [Google Scholar]
  40. Monath T. P., Liu J., Kanesa-Thasan N., Myers G. A., Nichols R., Deary A., McCarthy K., Johnson C., Ermak T.other authors 2006; A live, attenuated recombinant West Nile virus vaccine. Proc Natl Acad Sci U S A 103:6694–6699 [CrossRef][PubMed]
    [Google Scholar]
  41. Otten G., Schaefer M., Doe B., Liu H., Srivastava I., zur Megede J., O’Hagan D., Donnelly J., Widera G.other authors 2004; Enhancement of DNA vaccine potency in rhesus macaques by electroporation. Vaccine 22:2489–2493 [CrossRef][PubMed]
    [Google Scholar]
  42. Otten G. R., Schaefer M., Doe B., Liu H., Megede J. Z., Donnelly J., Rabussay D., Barnett S., Ulmer J. B. 2006; Potent immunogenicity of an HIV-1 gag–pol fusion DNA vaccine delivered by in vivo electroporation. Vaccine 24:4503–4509 [CrossRef][PubMed]
    [Google Scholar]
  43. Pulendran B. 2009; Learning immunology from the yellow fever vaccine: innate immunity to systems vaccinology. Nat Rev Immunol 9:741–747[PubMed]
    [Google Scholar]
  44. Querec T. D., Akondy R. S., Lee E. K., Cao W., Nakaya H. I., Teuwen D., Pirani A., Gernert K., Deng J.other authors 2009; Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat Immunol 10:116–125 [CrossRef][PubMed]
    [Google Scholar]
  45. Rice C. M., Lenches E. M., Eddy S. R., Shin S. J., Sheets R. L., Strauss J. H. 1985; Nucleotide sequence of yellow fever virus: implications for flavivirus gene expression and evolution. Science 229:726–733 [CrossRef][PubMed]
    [Google Scholar]
  46. Sambrook J., Fritsch T., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  47. Sangster M. Y., Mackenzie J. S., Shellam G. R. 1998; Genetically determined resistance to flavivirus infection in wild Mus musculus domesticus and other taxonomic groups in the genus Mus. Arch Virol 143:697–715 [CrossRef][PubMed]
    [Google Scholar]
  48. Seregin A., Nistler R., Borisevich V., Yamshchikov G., Chaporgina E., Kwok C. W., Yamshchikov V. 2006; Immunogenicity of West Nile virus infectious DNA and its noninfectious derivatives. Virology 356:115–125 [CrossRef][PubMed]
    [Google Scholar]
  49. Silva P. A., Pereira C. F., Dalebout T. J., Spaan W. J., Bredenbeek P. J. 2010; An RNA pseudoknot is required for production of yellow fever virus subgenomic RNA by the host nuclease XRN1. J Virol 84:11395–11406 [CrossRef][PubMed]
    [Google Scholar]
  50. Stoyanov C. T., Boscardin S. B., Deroubaix S., Barba-Spaeth G., Franco D., Nussenzweig R. S., Nussenzweig M., Rice C. M. 2010; Immunogenicity and protective efficacy of a recombinant yellow fever vaccine against the murine malarial parasite Plasmodium yoelii. Vaccine 28:4644–4652 [CrossRef][PubMed]
    [Google Scholar]
  51. Tao D., Barba-Spaeth G., Rai U., Nussenzweig V., Rice C. M., Nussenzweig R. S. 2005; Yellow fever 17D as a vaccine vector for microbial CTL epitopes: protection in a rodent malaria model. J Exp Med 201:201–209 [CrossRef][PubMed]
    [Google Scholar]
  52. Theiler M., Smith H. H. 1937; The use of yellow fever virus modified by in vitro cultivation for human immunization. J Exp Med 65:787–800 [CrossRef][PubMed]
    [Google Scholar]
  53. Theiler M., Smith H. H., Mortimer P. 2000; The use of yellow fever virus modified by in vitro cultivation for human immunization. Rev Med Virol 10:3–16 [CrossRef][PubMed]
    [Google Scholar]
  54. Tilgner M., Shi P. Y. 2004; Structure and function of the 3′ terminal six nucleotides of the West Nile virus genome in viral replication. J Virol 78:8159–8171 [CrossRef][PubMed]
    [Google Scholar]
  55. Tollefsen S., Vordermeier M., Olsen I., Storset A. K., Reitan L. J., Clifford D., Lowrie D. B., Wiker H. G., Huygen K.other authors 2003; DNA injection in combination with electroporation: a novel method for vaccination of farmed ruminants. Scand J Immunol 57:229–238 [CrossRef][PubMed]
    [Google Scholar]
  56. Tretyakova I., Nickols B., Hidajat R., Jokinen J., Lukashevich I. S., Pushko P. 2014; Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice. Virology 468-470:28–35 [CrossRef][PubMed]
    [Google Scholar]
  57. van Dinten L. C., den Boon J. A., Wassenaar A. L., Spaan W. J., Snijder E. J. 1997; An infectious arterivirus cDNA clone: identification of a replicase point mutation that abolishes discontinuous mRNA transcription. Proc Natl Acad Sci U S A 94:991–996 [CrossRef][PubMed]
    [Google Scholar]
  58. Van Epps H. L. 2005; Broadening the horizons for yellow fever: new uses for an old vaccine. J Exp Med 201:165–168 [CrossRef][PubMed]
    [Google Scholar]
  59. Vasan S., Hurley A., Schlesinger S. J., Hannaman D., Gardiner D. F., Dugin D. P., Boente-Carrera M., Vittorino R., Caskey M.other authors 2011; In vivo electroporation enhances the immunogenicity of an HIV-1 DNA vaccine candidate in healthy volunteers. PLoS ONE 6:e19252 [CrossRef][PubMed]
    [Google Scholar]
  60. Webster R. G., Robinson H. L. 1997; DNA vaccines. BioDrugs 8:273–292 [CrossRef][PubMed]
    [Google Scholar]
  61. Weiner D. B., Sardesai N. Y., Schmaljohn C. 2010; Introduction to DNA vaccines – Las Vegas. Vaccine 28:1893–1896 [CrossRef][PubMed]
    [Google Scholar]
  62. WHO (2009). Yellow Fever Fact Sheet no.100. Geneva, Switzerland: World Health Organization http://www.who.int/mediacentre/factsheets/fs100/en/
  63. WHO (2013). Yellow Fever Vaccine Information. Geneva, Switzerland: World Health Organization http://www.who.int/vaccines/en/yellowfever.shtml
  64. Widera G., Austin M., Rabussay D., Goldbeck C., Barnett S. W., Chen M., Leung L., Otten G. R., Thudium K.other authors 2000; Increased DNA vaccine delivery and immunogenicity by electroporation in vivo. J Immunol 164:4635–4640 [CrossRef][PubMed]
    [Google Scholar]
  65. Widman D. G., Frolov I., Mason P. W. 2008; Third-generation flavivirus vaccines based on single-cycle, encapsidation-defective viruses. Adv Virus Res 72:77–126 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000026
Loading
/content/journal/jgv/10.1099/jgv.0.000026
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error